Interplay of superconductivity and magnetism in nanostructures

Tadeusz DOMAŃSKI

M. Curie-Skłodowska Univ.

Symposium on Spintronics and Quantum Information (Poznań) 21.10.21

PROPERTIES OF BULK SUPERCONDUCTORS

Perfect conductor

PROPERTIES OF BULK SUPERCONDUCTORS

BCS (non-Fermi liquid) ground state :

$$|\mathrm{BCS}
angle = \prod_k \left(u_k + v_k \ \hat{c}^\dagger_{k\uparrow} \ \hat{c}^\dagger_{-k\downarrow}
ight) \ |\mathrm{vacuum}
angle$$

BCS (non-Fermi liquid) ground state :

$$|\mathrm{BCS}
angle = \prod_k \left(u_k + v_k \ \hat{c}^\dagger_{k\uparrow} \ \hat{c}^\dagger_{-k\downarrow}
ight) \ |\mathrm{vacuum}
angle$$

 $|v_k|^2 \Rightarrow$ probablity of occupied states $(k \uparrow, -k \downarrow)$

 $|u_k|^2 \Rightarrow$ probablity of unoccupied states $(k \uparrow, -k \downarrow)$

BCS (non-Fermi liquid) ground state :

$$|\mathrm{BCS}
angle = \prod_k \left(u_k + v_k \ \hat{c}^\dagger_{k\uparrow} \ \hat{c}^\dagger_{-k\downarrow}
ight) \ |\mathrm{vacuum}
angle$$

 $|v_k|^2 \Rightarrow$ probablity of occupied states $(k \uparrow, -k \downarrow)$

 $|u_k|^2 \Rightarrow$ probablity of unoccupied states $(k \uparrow, -k \downarrow)$

Bogoliubov quasiparticle = superposition of a particle and hole

$$egin{array}{rcl} \hat{\gamma}_{k\uparrow} &=& u_k \hat{c}_{k\uparrow} \ + v_k \hat{c}^{\dagger}_{-k\downarrow} \ \hat{\gamma}^{\dagger}_{-k\downarrow} &=& -v_k \hat{c}_{k\uparrow} \ + u_k \hat{c}^{\dagger}_{-k\downarrow} \end{array}$$

BOGOLIUBOV QUASIPARTICLES

Quasiparticle spectrum of conventional superconductors consists of two Bogoliubov (p/h) branches, gaped around E_F

Pairing vs magnetism

Pairing vs magnetism

are they friends or foes ?

DESTRUCTIVE INFLUENCE OF MAGNETIC FIELD

Magnetism and electron pairing seem to be antagonistic ...

DESTRUCTIVE INFLUENCE OF MAGNETIC FIELD

Magnetism and electron pairing seem to be antagonistic ...

Magnetic field can penetrate type-II superconductors (vortex-structure)

Nanoscopic superconductors

Nanoscopic superconductors

1. impurity attached to bulk superconductor

PAIRING MECHANISM: PROXIMITY EFFECT

Quantum impurity/dot (QD) coupled to bulk superconductor:

 \Rightarrow develops electron pairing

PAIRING MECHANISM: PROXIMITY EFFECT

Quantum impurity/dot (QD) coupled to bulk superconductor:

 \Rightarrow develops electron pairing

which is spectroscopically manifested by:

 \Rightarrow in-gap bound states

PAIRING MECHANISM: PROXIMITY EFFECT

Quantum impurity/dot (QD) coupled to bulk superconductor:

 \Rightarrow develops electron pairing

which is spectroscopically manifested by:

- \Rightarrow in-gap bound states
- driven by:
- \Rightarrow leakage of Cooper pairs on QD (Andreev)
- \Rightarrow exchange int. of QD with SC (Yu-Shiba-Rusinov)

IN-GAP STATES

Spectrum of a single impurity coupled to bulk superconductor:

IN-GAP STATES

Spectrum of a single impurity coupled to bulk superconductor:

Quasiparticle states appearing in the subgap region $-\Delta < \omega < \Delta$.

IN-GAP STATES

Spectrum of a single impurity coupled to bulk superconductor:

Quasiparticle states appearing in the subgap region $-\Delta < \omega < \Delta$.

Yu-Shiba-Rusinov (Andreev) bound states

More complex objects in superconductors, like magnetic chains

More complex objects in superconductors, like magnetic chains

or magnetic islands

More complex objects in superconductors, like magnetic chains

arrange their in-gap bound states into Shiba-bands.

More complex objects in superconductors, like magnetic chains

arrange their in-gap bound states into Shiba-bands.

Specific magnetic textures of these chains and/or islands can induce topologically non-trivial superconducting state, hosting the Majorana-type boundary modes !

A few examples ...

Pairing of identical spin electrons is driven by the spin-orbit (Rashba) interaction in presence of magnetic field, using the semiconducting nanowires proximitized to conventional (*s-wave*) superconductor.

TRANSITION TO TOPOLOGICAL PHASE

Bound states of the proximitized Rashba nanowire

TRANSITION TO TOPOLOGICAL PHASE

Bound states of the proximitized Rashba nanowire

closing/reopening of a soft gap ↔ topological transition M.M. Maśka, A. Gorczyca-Goraj, J. Tworzydło, T. Domański, PRB 95, 045429 (2017).

SPATIAL PROFILE OF MAJORANA QPS

Majorana qps are localized near the edges

R. Aguado, Riv. Nuovo Cim. 40, 523 (2017).

EXAMPLE OF EMPIRICAL REALIZATION

Litographically fabricated AI nanowire contacted to InAs

F. Nichele, ..., and Ch. Marcus, Phys. Rev. Lett. 119, 136803 (2017).

/ Niels Bohr Institute, Copenhagen, Denmark /

Magnetic atoms (like Fe) on a surface of s-wave superconductor (for example Pb) arrange themselves into a spiral order, which selfsustains the topological superconducting phase (topolofilia)

MAGNETIC CHAIN ON SUPERCONDUCTOR

Itinerant electrons in the chain of magnetic impurities placed on a surface of isotropic superconductor can be described by the Hamiltonian:

$$\begin{split} H &= - t \sum_{i,\sigma} \left(\hat{c}_{i,\sigma}^{\dagger} \hat{c}_{i+1,\sigma} + \text{H.c.} \right) - \mu \sum_{i,\sigma} \hat{c}_{i,\sigma}^{\dagger} \hat{c}_{i,\sigma} \\ &+ J \sum_{i} \vec{S}_{i} \cdot \hat{\vec{S}}_{i} + \sum_{i} \left(\Delta \hat{c}_{i\uparrow}^{\dagger} \hat{c}_{i\downarrow}^{\dagger} + \text{H.c.} \right) \end{split}$$

Here \vec{s}_i are the classical magnetic moments and $\hat{\vec{s}}_i = \frac{1}{2} \sum_{\alpha,\beta} \hat{c}^{\dagger}_{i,\alpha} \vec{\sigma}_{\alpha\beta} \hat{c}_{i,\beta}$ denote the spins of mobile electrons

 \Rightarrow J is the coupling between magnetic atoms and itinerant electrons

 \Rightarrow Δ is the proximity induced on-site pairing

3. MAGNETIC LADDER ON SUPERCONDUCTOR

Spiral order of a magnetic ladder deposited on conventinal superconductor.

M.M. Maśka, N. Sedlmayr, A. Kobiałka, T. Domański, Phys. Rev. B 103, 235419 (2021).

TOPOLOGICAL PHASES

In thermodynamic limit ($N \to \infty$) we have determined the topological invariant $\mathbb Z$ of this system, which belongs to class AllI.

Regions of the topological superconducting phase are characterized by either antiparallel or parallel spiral arrangements of the magnetic ladder.

UNCONVENTIONAL TOPOLOGICAL TRANSITIONS

UNCONVENTIONAL TOPOLOGICAL TRANSITIONS

Discontinuous transitions to/from topological phase without gap closing!

DISCONTINUOUS TRANSITIONS

Total energy as function of q and Δq obtained for $\Delta = 0.3t$ and several μ .

Red arrows indicate the minimum energy.

4. PLANAR JOSEPHSON JUNCTIONS

Two-dimensional electron gas of InAs epitaxially covered by a thin Al layer

Width: $W_1 = 80 \text{ nm}$

Length:

 $L_1 = 1.6 \ \mu m$

A. Fornieri, ..., <u>Ch. Marcus</u> and F. Nichele, Nature <u>569</u>, 89 (2019). Niels Bohr Institute (Copenhagen, Denmark)

PLANAR JOSEPHSON JUNCTIONS

Two-dimensional HgTe quantum well coupled to 15 nm thick Al film

Width: W = 600 nmLength:

 $L = 1.0 \ \mu m$

H. Ren, ..., <u>L.W. Molenkamp</u>, B.I. Halperin & A. Yacoby, Nature <u>569</u>, 93 (2019). Würzburg Univ. (Germany) + Harvard Univ. (USA)

PLANAR JOSEPHSON JUNCTIONS

Diagram of the trivial and topological superconducting state with respect to (1) phase difference ϕ and (2) in-plane magnetic field

H. Ren, ..., <u>L.W. Molenkamp</u>, B.I. Halperin & A. Yacoby, Nature <u>569</u>, 93 (2019). Würzburg Univ. (Germany) + Harvard Univ. (USA)

TOPOGRAPHY OF MAJORANA MODES

Spatial profile of the zero-energy ($E_n = 0$) Majorana quasiparticles in a homogeneous metallic strip embedded into Josephson junction.

Sz. Głodzik, N. Sedlmayr & T. Domański, PRB 102, 085411 (2020).

LOCAL DEFECT IN JOSEPHSON JUNCTION

Spatial profile of the Majorana modes in presence of the strong electrostatic defect placed in the center.

Sz. Głodzik, N. Sedlmayr & T. Domański, PRB 102, 085411 (2020).

LOCAL DEFECT IN JOSEPHSON JUNCTION

LOCAL DEFECT IN JOSEPHSON JUNCTION

Two-dimensional topological textures

Two-dimensional topological textures

(platform for chiral Majorana modes)

PROPAGATING MAJORANA EDGE MODES

Magnetic island of Fe atoms deposited on the superconducting Re surface

A. Palacio-Morales, ... & <u>R. Wiesendanger</u>, Science Adv. <u>5</u>, eaav6600 (2019). University of Hamburg (Germany)

VAN DER WAALS HETEROSTRUCTURES

Ferromagnetic island CrBr₃ deposited on superconducting NbSe₂

S. Kezilebieke ... Sz. Głodzik ... P. Lilienroth, Nature 424, 588 (2020).

Scenario for topological superconductivity induced in 2D magnetic thin film hosting a skyrmion deposited on conventional s-wave superconductor

Scenario for topological superconductivity induced in 2D magnetic thin film hosting a skyrmion deposited on conventional s-wave superconductor

M. Garnier, A. Mesaros, P. Simon, Comm. Phys. 2, 126 (2019).

 \Rightarrow constructively cooperate

- \Rightarrow constructively cooperate
- \Rightarrow inducing novel topological phases

 \Rightarrow constructively cooperate

 \Rightarrow inducing novel topological phases

Topological superconductors, hosting the Majorana boundary modes, can be used for constructing stable qubits & quantum computations.

COAUTHORS

\Rightarrow Maciek Maśka

(Technical University, Wrocław)

(M. Curie-Skłodowska University, Lublin)

(M. Curie-Skłodowska University, Lublin)

DYNAMICS OF BOUND STATES

Quantum quench protocols:

DYNAMICS OF BOUND STATES

Quantum quench protocols:

 \Rightarrow sudden coupling to superconductor $0 \rightarrow \Gamma_S$

DYNAMICS OF BOUND STATES

Quantum quench protocols:

- \Rightarrow sudden coupling to superconductor $0 \rightarrow \Gamma_S$
- \Rightarrow abrupt application of gate potential $0 \rightarrow V_G$

K. Wrześniewski, B. Baran, R. Taranko, T. Domański & I. Weymann, PRB 103, 155420 (2021).

BUILDUP OF IN-GAP STATES

Time-dependent observables driven by the quantum quench $0 \rightarrow \Gamma_S$

solid lines - time dependent NRG dashed lines - Hartree-Fock-Bogolubov

K. Wrześniewski, B. Baran, R. Taranko, T. Domański & I. Weymann, PRB 103, 155420 (2021).

Rabbi-type oscillations observable in development of the in-gap states

K. Wrześniewski, B. Baran, R. Taranko, T. Domański & I. Weymann, PRB 103, 155420 (2021).

SINGLET/DOUBLET CONFIGURATIONS

The proximitized quantum dot can described by

$$\hat{H}_{\mathrm{QD}} = \sum_{\sigma} \epsilon_d \; \hat{d}^{\dagger}_{\sigma} \; \hat{d}_{\sigma} \; + \; U_d \; \hat{n}_{d\uparrow} \hat{n}_{d\downarrow} - \left(\Delta_d \; \hat{d}^{\dagger}_{\uparrow} \hat{d}^{\dagger}_{\downarrow} + \mathrm{h.c.}
ight)$$
SINGLET/DOUBLET CONFIGURATIONS

The proximitized quantum dot can described by

$$\hat{H}_{QD} = \sum_{\sigma} \epsilon_d \; \hat{d}^{\dagger}_{\sigma} \; \hat{d}_{\sigma} \; + \; U_d \; \hat{n}_{d\uparrow} \hat{n}_{d\downarrow} - \left(\Delta_d \; \hat{d}^{\dagger}_{\uparrow} \hat{d}^{\dagger}_{\downarrow} + \mathrm{h.c.}
ight)$$

Eigen-states of this problem are represented by:

 $\begin{array}{ccc} |\uparrow\rangle & \text{and} & |\downarrow\rangle & \Leftarrow & \text{doublet states (spin <math>\frac{1}{2})} \\ u |0\rangle - v |\uparrow\downarrow\rangle \\ v |0\rangle + u |\uparrow\downarrow\rangle \end{array} & \Leftarrow & \text{singlet states (spin 0)} \end{array}$

SINGLET/DOUBLET CONFIGURATIONS

The proximitized quantum dot can described by

$$\hat{H}_{QD} = \sum_{\sigma} \epsilon_d \; \hat{d}^{\dagger}_{\sigma} \; \hat{d}_{\sigma} \; + \; U_d \; \hat{n}_{d\uparrow} \hat{n}_{d\downarrow} - \left(\Delta_d \; \hat{d}^{\dagger}_{\uparrow} \hat{d}^{\dagger}_{\downarrow} + \mathrm{h.c.}
ight)$$

Eigen-states of this problem are represented by:

 $\begin{array}{ccc} |\uparrow\rangle & \text{and} & |\downarrow\rangle & \Leftarrow & \text{doublet states (spin <math>\frac{1}{2})} \\ u |0\rangle - v |\uparrow\downarrow\rangle \\ v |0\rangle + u |\uparrow\downarrow\rangle \end{array} & \Leftarrow & \text{singlet states (spin 0)} \end{array}$

Upon varrying the parameters ε_d , U_d or Γ_S there can be induced transition between these doublet/singlet states.

SINGLET-DOUBLET TRANSITION: EXPERIMENT

J. Estrada Saldaña, A. Vekris, V. Sosnovtseva, T. Kanne, P. Krogstrup, K. Grove-Rasmussen and J. Nygård, Commun. Phys. <u>3</u>, 125 (2020).

SINGLET VS DOUBLET: EXPERIMENT

Differential conductance vs source-drain bias V_{sd} (vertical axis) and gate potential V_p (horizontal axis) measured for various Γ_S/U

 $U \geq \Gamma_s$

J. Estrada Saldaña, A. Vekris, V. Sosnovtseva, T. Kanne, P. Krogstrup, K. Grove-Rasmussen and J. Nygård, Commun. Phys. <u>3</u>, 125 (2020).

SINGLET VS DOUBLET: EXPERIMENT

Differential conductance vs source-drain bias V_{sd} (vertical axis) and gate potential V_p (horizontal axis) measured for various Γ_S/U

 $U \geq \Gamma_s$

J. Estrada Saldaña, A. Vekris, V. Sosnovtseva, T. Kanne, P. Krogstrup, K. Grove-Rasmussen and J. Nygård, Commun. Phys. <u>3</u>, 125 (2020).

Crossings of bound states correspond to singlet-doublet transition.

DYNAMICAL SINGLET-DOUBLET TRANSITION

Loschmidt echo

 $L(t) \equiv |\langle \Psi(0) | \Psi(t) \rangle|^2$

Return rate $\lambda(t) \equiv -\frac{1}{N} \ln \{L(t)\}$

The squared magnetic moment $\langle S_z^2(t)
angle$

tnrg results: $\Gamma_S = U/4 \longrightarrow \Gamma_S = 3U/4$

Loschmidt echo L(t) and return rate $\lambda(t)$ obtained for various $\Gamma_N \equiv \Gamma$

Finite-size scaling analysis near the critical-time point.

leads to development of bound states

(or their rescaling)

leads to development of bound states

(or their rescaling)

activates Rabi-type oscillations

(due to particle-hole mixing)

leads to development of bound states (or their rescaling)

activates Rabi-type oscillations

(due to particle-hole mixing)

can exhibit dynamical transition (upon varying ground states)

leads to development of bound states (or their rescaling)

activates Rabi-type oscillations (due to particle-hole mixing)

can exhibit dynamical transition (upon varying ground states)

These phenomena are detectable in transport properties !

ACKNOWLEDGEMENTS

- dynamical singlet-doublet transition
- \Rightarrow I. Weymann (Poznań), K. Wrześniewski (Poznań),
 - N. Sedlmayr (Lublin),
- transient phenomena, Floquet formalism
- \Rightarrow R. Taranko (Lublin), B. Baran (Lublin),
- time-resolved leakage of Majorana qps
- \Rightarrow J. Barański (Dęblin)