Nontrivial topological phases in superconducting nanostructures

2DTtronics symposium

Poznań, 31 January 2024

1. Topological superconductivity (magnetism vs electron pairing)

2. Josephson junctions (platform for topological phases)

3. Dynamical phenomena

(in topological nanohybrid structures)

Part 1. Topological superconductivity (magnetism vs electron pairing)

FRIENDS OR FOES ?

Magnetism vs electron pairing

FRIENDS OR FOES ?

Magnetism vs electron pairing

Magnetic field has destructive influence on superconducting state

PAIRING & MAGNETISM IN NANOWIRES

Spin-orbit (Rashba) interaction in presence of magnetic field applied to semiconducting nanowire proximitized to s-wave superconductor induces the triplet pairing of electrons on the neighboring sites.

PAIRING & MAGNETISM IN NANOWIRES

Spin-orbit (Rashba) interaction in presence of magnetic field applied to semiconducting nanowire proximitized to s-wave superconductor induces the triplet pairing of electrons on the neighboring sites.

Such intersite triplet pairing of mobile electrons in 1-dimensional chains has been predicted to host the Majorana boundary modes.

TOPOLOGICAL TRANSITION

Effective quasiparticle states of the Rashba nanowire

TOPOLOGICAL TRANSITION

Effective quasiparticle states of the Rashba nanowire

Closing / reopening of a gap \iff band-invertion of topological insulators

M.M. Maśka, A. Gorczyca-Goraj, J. Tworzydło, T. Domański, PRB 95, 045429 (2017).

SPATIAL PROFILE OF MAJORANA MODES

Majorana zero-energy modes are confined on edges (and/or defects)

R. Aguado, Riv. Nuovo Cim. 40, 523 (2017).

Magnetic atoms (like Fe) on a surface of s-wave superconductor (for example Pb or AI) arrange themselves into the spiral order, promoting the topological superconducting state (topofilia).

Higher-dimensional textures

Higher-dimensional textures

(platform for chiral Majorana modes)

VAN DER WAALS HETEROSTRUCTURES

Ferromagnetic island CrBr₃ deposited on superconducting NbSe₂

S. Kezilebieke ... Sz. Głodzik ... P. Lilieroth, Nature 424, 588 (2020).

Part 2. Josephson junctions (platform for topological phases)

Idea: Narrow metallic region with the strong spin-orbit interaction and in presence of magnetic field embedded between external superconductors.

F. Pientka et al., Phys. Rev. X 7,021032 (2017)

Idea: Narrow metallic region with the strong spin-orbit interaction and in presence of magnetic field embedded between external superconductors.

F. Pientka et al., Phys. Rev. X 7,021032 (2017)

Benefit:

Phase-tunable topological superconductivity induced in the metallic stripe.

Diagram of topological superconducting state vs - phase difference ϕ , - magnetic field E_z .

Two-dimensional electron gas of InAs epitaxially covered by a thin Al layer

Width: $W_1 = 80 \text{ nm}$

Length:

 $L_1 = 1.6 \ \mu m$

A. Fornieri, ..., <u>Ch. Marcus</u> and F. Nichele, Nature <u>569</u>, 89 (2019). Niels Bohr Institute (Copenhagen, Denmark)

Two-dimensional HgTe quantum well coupled to 15 nm thick Al film

Width: W = 600 nmLength:

 $L = 1.0 \ \mu m$

H. Ren, ..., <u>E. Hankiewicz</u>, ... & A. Yacoby, Nature <u>569</u>, 93 (2019). Würzburg Univ. (Germany) + Harvard Univ. (USA)

PLANAR JOSEPHSON JUNCTION: EXPERIMENT

H. Ren, ..., E. Hankiewicz, ... & A. Yacoby, Nature 569, 93 (2019).

PLANAR JOSEPHSON JUNCTION: EXPERIMENT

H. Ren, ..., E. Hankiewicz, ... & A. Yacoby, Nature 569, 93 (2019).

Experimental data obtained for three different magnetic fields indicated by the symbols in phase diagram \Rightarrow .

Topography of Majoranas

Spatial profile of the zero-energy quasiparticles of a homogeneous metallic strip embedded into the Josephson junction obtained for the phase difference $\phi = \pi$, that is optimal for topological state.

"Majorana polarization vector" $u_{\uparrow,n}v_{\uparrow,n} - u_{\downarrow,n}v_{\downarrow,n}$ obtained for the quasiparticle eigenvalue $E_n = 0$.
Spatial profile of the zero-energy quasiparticles of a homogeneous metallic strip embedded into the Josephson junction obtained for the phase difference $\phi = \pi$, that is optimal for topological state.

"Majorana polarization vector" $u_{\uparrow,n}v_{\uparrow,n} - u_{\downarrow,n}v_{\downarrow,n}$ obtained for the quasiparticle eigenvalue $E_n = 0$. Magnitude of this quantity can be probed by conductance of the SESAR spectroscopy.

Sz. Głodzik, N. Sedlmayr & T. Domański, PRB 102, 085411 (2020).

TOPOGRAPHY OF MAJORANA MODES

Selective Equal Spin Andreev Reflection (SESAR)

Sz. Głodzik, N. Sedlmayr & T. Domański, PRB 102, 085411 (2020).

Means to localize Majoranas

I. DESHAPED JOSEPHSON JUNCTION

To reduce spatial extent of the Majorana modes and increase the topological gap one can use zigzag-shape metallic stripe.

T. Laeven, B. Nijholt, M. Wimmer & A.R. Akhmerov, PRL 102, 086802 (2020).

I. DESHAPED JOSEPHSON JUNCTION

$$\begin{array}{c} \overbrace{\blacksquare}\\ & \overbrace{=}\\ & \overbrace{=}\\ & \overbrace{=}\\ & -500 \end{array} \begin{array}{c} E_M = 7 \times 10^{-4} \Delta & (a) \\ & \overbrace{=}\\ & E_{gap} = 9.9 \times 10^{-3} \Delta & \xi_M = 26.7 \ \mu \text{m} \end{array} \\ \overbrace{=}\\ & \overbrace{=}\\ & \overbrace{=}\\ & -500 \end{array} \begin{array}{c} E_M = 8 \times 10^{-5} \Delta & (b) \\ & \overbrace{=}\\ & E_{gap} = 1.1 \times 10^{-1} \Delta & \xi_M = 0.4 \ \mu \text{m} \end{array} \\ \overbrace{=}\\ & \overbrace{=}\\ & \overbrace{=}\\ & \overbrace{=}\\ & -500 \end{array} \begin{array}{c} E_M = 2 \times 10^{-4} \Delta & (c) \\ & \overbrace{=}\\ & E_{gap} = 1.3 \times 10^{-1} \Delta & \xi_M = 0.4 \ \mu \text{m} \end{array} \\ \overbrace{=}\\ & \overbrace{=}\\ & \overbrace{=}\\ & -500 \end{array} \begin{array}{c} E_M = 2 \times 10^{-4} \Delta & (c) \\ & \overbrace{=}\\ & \overbrace{=}\\ & -500 \end{array} \begin{array}{c} E_{gap} = 1.1 \times 10^{-1} \Delta & \xi_M = 0.4 \ \mu \text{m} \\ \hline{=}\\ & \overbrace{=}\\ & 0 \end{array} \\ \overbrace{=}\\ & \overbrace{=}\\ & 0 \end{array} \begin{array}{c} E_{gap} = 1.1 \times 10^{-1} \Delta & \xi_M = 0.4 \ \mu \text{m} \\ \hline{=}\\ & 0 \end{array} \\ \overbrace{=}\\ & 0 \end{array} \begin{array}{c} E_{gap} = 1.1 \times 10^{-1} \Delta & \xi_M = 0.4 \ \mu \text{m} \\ \hline{=}\\ & 0 \end{array} \\ \overbrace{=}\\ & 0 \end{array} \\ \overbrace{=}\\ & 0 \end{array} \begin{array}{c} E_{gap} = 1.1 \times 10^{-1} \Delta & \xi_M = 0.4 \ \mu \text{m} \\ \hline{=}\\ & 0 \end{array} \\ \overbrace{=}\\ & 0 \end{array} \begin{array}{c} E_{gap} = 1.1 \times 10^{-1} \Delta & \xi_M = 0.4 \ \mu \text{m} \\ \hline{=}\\ & 0 \end{array} \\ \overbrace{=}\\ & 0 \end{array} \\ \overbrace{=}\\ & 0 \end{array}$$

T. Laeven, B. Nijholt, M. Wimmer & A.R. Akhmerov, PRL 102, 086802 (2020).

II. LOCAL DEFECT IN JOSEPHSON JUNCTION

Spatial profile of the Majorana modes in presence of the strong electrostatic defect placed in the center.

Sz. Głodzik, N. Sedlmayr & T. Domański, PRB 102, 085411 (2020).

II. LOCAL DEFECT IN JOSEPHSON JUNCTION

Spatial profile of the Majorana modes in presence of the strong electrostatic defect placed near the edge.

Sz. Głodzik, N. Sedlmayr & T. Domański, PRB 102, 085411 (2020).

III. RANDOM DISORDER

The left-hand-side part of the metallic stripe is randomly disordered

III. RANDOM DISORDER

The left-hand-side part of the metallic stripe is randomly disordered

moderate disorder

Sz. Głodzik, N. Sedlmayr & T. Domański, PRB 102, 085411 (2020).

Theoretical proposals

Skyrmions can be driven by combining:

Skyrmions can be driven by combining: \star ferromagnetic exchange \star Dzialoshinskii-Moriya interaction \star external magnetic field

Josephson junction deposited on top of a skyrmion crystal.

N. Mohanta, S. Okamoto & E. Dagotto, Communications Physics 4, 163 (2021).

FM - ferromagnetic layer HM/HI - heavy metal or heavy insulator

Phase difference has detrimental effect on the Majorana modes

N. Mohanta, S. Okamoto & E. Dagotto, Communications Physics 4, 163 (2021).

What about self-organization ?

Narrow metallic stripe with the classical magnetic moments placed between two s-wave superconductors, differing in phase $\phi_L \neq \phi_R$.

M.M. Maśka, M. Dziurawiec & N. Sedlmayr, T.D. – work in progress / Technical University (Wrocław) & UMCS (Lublin) cooperation/

Proximity-induced s-wave (left) and p-wave (right) pairings.

Width: left-side superconductor (sites 1-4), metallic magnetic stripe (sites 5-8), right-side superconductor (sites 9-12),

Length: 40 sites.

Topography of the Majorana quasiparticles obtained for the coplanar moments and for various Josephson phase differences $\phi_R - \phi_L$.

 $\phi_R - \phi_L = 0.6\pi$ $\phi_R - \phi_L = 0.4\pi$ $\phi_R - \phi_L = 0.2\pi$ $\phi_R - \phi_L = 0.0$

Phasal dependence of the Majorana boundary modes

/ preliminary results obtained for the coplanar magnetic moments /

In analogy to the skyrmion based Josephson junction, we observe that the optimal condition for the topological phase occurs at $\phi_L - \phi_R = 0$.

In analogy to the skyrmion based Josephson junction, we observe that the optimal condition for the topological phase occurs at $\phi_L - \phi_R = 0$.

Total spectral weight of Majorana modes vs phase difference.

M.M. Maśka, M. Dziurawiec, N. Sedlmayr & T.D. – work in progress

Some ideas for the braiding protocols using the phase difference.

Some ideas for the braiding protocols using the phase difference.

Phase difference is used for moving the Majorana modes. M.M. Maśka, M. Dziurawiec, N. Sedlmayr & T.D. – work in progress

Part 3. Dynamical phenomena (in topological nanohybrides)

DYNAMICAL MAJORANA-LEAKAGE

Hybrid structure: quantum dot coupled to topological nanowire

Question:

How much time does it take for the Majorana mode to leak on QD?

J. Barański, M. Barańska, T. Zienkiewicz, R. Taranko, T.Domański, PRB 103, 235416 (2021).

DYNAMICAL MAJORANA-LEAKAGE

Time-dependent conductance of the biased N-QD-S junction

QD is coupled to the topological nanowire at t = 10.

Transient effects: Gradual development of the trivial (Andreev) and topological (Majorana) zero-energy bound states in QD.

DYNAMICAL MAJORANA-LEAKAGE

Time-dependent zero-bias conductance

For realistic parameters of the hybrid structure the Majorana zero-bias feature establishes in about nanoseconds.

J. Barański, M. Barańska, T. Zienkiewicz, R. Taranko, T.Domański, PRB 103, 235416 (2021).

Two quantum dots side-attached to the topological nanowire

Question: Can any nonlocal cross-correlations be transmitted between **QD**₁ and **QD**₂ via the Majorana boundary modes ?

R. Taranko, K. Wrześniewski, I. Weymann, T. Domański, arXiv:2312.04488 (2023).

Time-dependent conductance of the biased N-QD₁-S junction

Transient effects: Gradual development of the trivial (Andreev) and topological (Majorana) bound states in **QD**₁.

Time-dependent interdot electron pairing $\mathcal{C}_{12}(t)=\left\langle \hat{d}_{1\downarrow}\hat{d}_{2\uparrow}
ight
angle$

The nonlocal electron pairing persists only over a short transient time-scale. It could be detected by crossed Andreev refelections.

R. Taranko, K. Wrześniewski, I. Weymann, T. Domański, arXiv:2312.04488 (2023).

MAJORANA SIGNATURES IN AC-CONDUCTANCE

Quantum dot coupled to the topological nanowire under ac-voltage

Question:

Can we resolve Majorana and Kondo states in ac-response?

K.P. Wójcik, T. Domański, I. Weymann, arXiv:2311.03605 [submitted to PRB].

The frequency dependent conductance of ac-driven L-QD-R junction

Spin-resolved conductances: Signatures of the Coulomb peak and the Kondo effect can be clearly observed at finite-frequencies.

 \Rightarrow either conventional (Andreev-type),

 \Rightarrow either conventional (Andreev-type),

 \Rightarrow or topological (Majorana-type).

 \Rightarrow either conventional (Andreev-type),

 \Rightarrow or topological (Majorana-type).

Both types are promising candidates for stable qubits and/or future quantum computations

 \Rightarrow either conventional (Andreev-type),

 \Rightarrow or topological (Majorana-type).

Both types are promising candidates for stable qubits and/or future quantum computations

http://kft.umcs.lublin.pl/doman/lectures