
Poznań, 28 June 2011

Interplay between correlations and

superconductivity in the electron

transport through the quantum dots

T. DOMAŃSKI
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Physical situation

We consider the quantum dot (QD) in the following setup

metallic lead QD superconductor

This represents a particular version of the SET.
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⋆ a broadening of the QD levels and

⋆ appearance of the Kondo resonance at T ≤ TK .
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which is a subject of the present study.
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Questions:

⋆ What kind of interplay occurs between

the proximity and Kondo effects ?

Can they cooexist ?

⋆ How do these effects affect the charge current

through N-QD-S junction ?

Any particular features ?
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Ĥ =
∑

σ

ǫdd̂†
σd̂σ + U n̂d↑ n̂d↓ + ĤN + ĤS

+
∑

k,σ

∑

β=N,S

(

Vkβ d̂†
σĉkσβ + V ∗

kβ ĉ†
kσ,βd̂σ

)

where

ĤN =
∑

k,σ (εk,N −µN) ĉ†
kσN ĉkσN

and

ĤS =
∑

k,σ (εk,S −µS) ĉ†
kσS ĉkσS −

∑

k

(

∆ĉ†
k↑S ĉ†

k↓S+h.c.

)
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Gd(ω)−1 =





ω − εd 0

0 ω + εd



 − Σ0

d(ω) − ΣU
d (ω)

with

ΣU
d (ω) correction due to U 6= 0.
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The deep sub-gap states |ω| ≪ ∆ are characterized by:

a) static non-interacting contribution

Σ0

d1
(ω) = −

1

2





ΓN ΓS

ΓS iΓN





b) a diagonal form of the correlation part

ΣU
d (ω) =





ΣN(ω) 0

0 −Σ∗
N(−ω)





For justification see e.g.

Y. Tanaka, N. Kawakami, and A. Oguri, J. Phys. Soc. Jpn. 76, 074701 (2007).
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Superconductivity supresses the Kondo resonance
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Transport properties

Besides the usual electron tunnelling (for |eV | ≥ ∆)

there is also a contribution from the charge transfer

between N and S electrodes via anomalous channel

N S

hole Cooper pair

This proccess is called Andreev reflection .
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Non-equilibrium phenomena

The steady current J consists of two contributions

J(V ) = J1(V ) + JA(V )

and can be expressed by the Landauer-type formula

JA(V ) =
2e

h

∫

dω TA(ω) [f(ω+eV, T )−f(ω−eV, T )]

with the transmitance

TA(ω) = Γ2

N |G12(ω)|
2

of the Andreev current JA appearing at sub-gap voltages !
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Kondo resonance enhances zero-bias

Andreev conductance for ΓS ∼ ΓN !
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QD : self-assembled InAs

diameter ∼ 100 nm

backgate : Si-doped GaAs

TK ≃ 1.2K

∆ ≃ 152µeV

R.S. Deacon et al, Phys. Rev. Lett. 104, 076805 (2010).
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Andreev features / due to the proximity effect /

R.S. Deacon et al, Phys. Rev. Lett. 104, 076805 (2010).

εd ∼ µN,S

Sample α-I

ΓN ∼ 12 ΓS

Samples γ-I, β-III

ΓS ∼ 40 ΓN

”We attribute the subgap peaks to resonant Andreev transport

... through electron-hole mixing of the QD energy level.”
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Interplay with the Kondo effect

R.S. Deacon et al, Phys. Rev. B 81, 121308(R) (2010).

”The zero-bias

conductance peak

is consistent with

Andreev transport

enhanced by the

Kondo singlet state”

”We note that

the feature exhibits

excellent qualitative

agreement with

a recent theoretical

treatment by

Domanski et al”
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Spectral function obtained at QD1 for ε1 =0
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J. Barański and T. Domański, (2011) submitted.
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Y. Tanaka, N. Kawakami, and A. Oguri, Phys. Rev. B 82, 094514 (2008).
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Double-QD acts as a Cooper-pair splitter.

J. Eldridge, M.G. Pala, M. Governale, J. König, Phys. Rev. B 82, 184507 (2010)
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Spintronic transport via the Andreev reflections

B. Sothmann, D. Futterer, M. Governale, J. König, Phys. Rev. B 82, 094514 (2010).
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http://kft.umcs.lublin.pl/doman/lectures


