Poznań, 28 June 2011

Interplay between correlations and superconductivity in the electron transport through the quantum dots

T. DOMAŃSKI

M. Curie-Skłodowska University, Lublin, Poland

* Physical setup

/ metal - QD - superconductor /

- **★** Physical setup
 - / metal QD superconductor /
- * Relevant issues

/ correlations vs superconductivity /

- * Physical setup
 - / metal QD superconductor /
- * Relevant issues
 - / correlations vs superconductivity /
- ***** Experimental realization

/enhancement of the Andreev conductance /

- Relevant issues
 / correlations vs superconductivity /
- **Experimental realization**/enhancement of the Andreev conductance /
- * Further outlook

- Relevant issues
 / correlations vs superconductivity /
- **Experimental realization**/enhancement of the Andreev conductance /
- ★ Further outlook
 ⇒ quantum interference in the multiple QDs

- * Physical setup
 - / metal QD superconductor /
- Relevant issues
 / correlations vs superconductivity /
- **Experimental realization**/enhancement of the Andreev conductance /
- * Further outlook
 - ⇒ quantum interference in the multiple QDs
 - ⇒ QD in the multiterminal structures

Physical setup

Physical situation

We consider the quantum dot (QD) in the following setup

Physical situation

We consider the quantum dot (QD) in the following setup

metallic lead

superconductor

Physical situation

We consider the quantum dot (QD) in the following setup

metallic lead

QD

superconductor

This represents a particular version of the SET.

Relevant issues

1

Hybridization of the QD to metallic lead causes:

#1

Hybridization of the QD to metallic lead causes:

#1

Hybridization of the QD to metallic lead causes:

a broadening of the QD levels

#1

Hybridization of the QD to metallic lead causes:

a broadening of the QD levels and ...

#1

Hybridization of the QD to metallic lead causes:

a broadening of the QD levels and ...

1

Hybridization of the QD to metallic lead causes:

a broadening of the QD levels and

imes appearance of the Kondo resonance at $T \leq T_K$.

2

Hybridization of the QD to superconducting lead

Hybridization of the QD to superconducting lead

2

causes the on-dot pairing i.e. proximity effect.

2

Hybridization of the QD to superconducting lead

causes the on-dot pairing i.e. proximity effect.

2

Hybridization of the QD to superconducting lead

causes the on-dot pairing i.e. proximity effect.

QD spectrum obtained for $\varepsilon_d = 0$, U = 0

Physical aspects: #1+2

Hybridizations Γ_N and Γ_S lead to a nontrivial

#1+2

Hybridizations Γ_N and Γ_S lead to a nontrivial

interplay between the superconductivity and Kondo effect

Hybridizations Γ_N and Γ_S lead to a nontrivial

interplay between the superconductivity and Kondo effect

which is a subject of the present study.

★ What kind of interplay occurs between the proximity and Kondo effects?

★ What kind of interplay occurs between the proximity and Kondo effects?

Can they cooexist?

★ What kind of interplay occurs between the proximity and Kondo effects?

Can they cooexist?

★ How do these effects affect the charge current through N-QD-S junction ?

★ What kind of interplay occurs between the proximity and Kondo effects ?

Can they cooexist?

★ How do these effects affect the charge current through N-QD-S junction ?

Any particular features?

Microscopic model

To account for the interplay between correlations and superconductivity we use

Microscopic model

To account for the interplay between correlations and superconductivity we use

$$egin{array}{lll} \hat{H} &=& \sum_{\sigma} \epsilon_{d} \hat{d}_{\sigma}^{\dagger} \hat{d}_{\sigma} + U \; \hat{n}_{d\uparrow} \; \hat{n}_{d\downarrow} + \hat{H}_{N} + \hat{H}_{S} \ &+& \sum_{\mathbf{k},\sigma} \sum_{eta = N,S} \left(V_{\mathbf{k}eta} \; \hat{d}_{\sigma}^{\dagger} \hat{c}_{\mathbf{k}\sigmaeta} + V_{\mathbf{k}eta}^{st} \; \hat{c}_{\mathbf{k}\sigma,eta}^{\dagger} \hat{d}_{\sigma}
ight) \end{array}$$

Microscopic model

To account for the interplay between correlations and superconductivity we use

$$egin{array}{lll} \hat{H} &=& \sum_{\sigma} \epsilon_{d} \hat{d}_{\sigma}^{\dagger} \hat{d}_{\sigma} + U \; \hat{n}_{d\uparrow} \; \hat{n}_{d\downarrow} + \hat{H}_{N} + \hat{H}_{S} \ &+& \sum_{\mathbf{k},\sigma} \sum_{eta = N,S} \left(V_{\mathbf{k}eta} \; \hat{d}_{\sigma}^{\dagger} \hat{c}_{\mathbf{k}\sigmaeta} + V_{\mathbf{k}eta}^{st} \; \hat{c}_{\mathbf{k}\sigma,eta}^{\dagger} \hat{d}_{\sigma}
ight) \end{array}$$

where

$$\hat{H}_{N}=\sum_{m{k},m{\sigma}}\left(arepsilon_{m{k},m{N}}\!-\!\mu_{m{N}}
ight)\hat{c}_{m{k}m{\sigma}m{N}}^{\dagger}\hat{c}_{m{k}m{\sigma}m{N}}$$

Microscopic model

To account for the interplay between correlations and superconductivity we use

$$egin{array}{lll} \hat{H} & = & \sum_{\sigma} \epsilon_{d} \hat{d}_{\sigma}^{\dagger} \hat{d}_{\sigma} + U \; \hat{n}_{d\uparrow} \; \; \hat{n}_{d\downarrow} + \hat{H}_{N} + \hat{H}_{S} \ & + & \sum_{\mathbf{k},\sigma} \sum_{eta = N,S} \left(V_{\mathbf{k}eta} \; \hat{d}_{\sigma}^{\dagger} \hat{c}_{\mathbf{k}\sigmaeta} + V_{\mathbf{k}eta}^{st} \; \hat{c}_{\mathbf{k}\sigma,eta}^{\dagger} \hat{d}_{\sigma}
ight) \end{array}$$

where

$$\hat{H}_N = \sum_{m{k}, m{\sigma}} \left(arepsilon_{m{k}, m{N}} \! - \! \mu_{m{N}}
ight) \hat{c}_{m{k}m{\sigma}m{N}}^\dagger \hat{c}_{m{k}m{\sigma}m{N}}$$

and

$$\hat{H}_S = \sum_{k,\sigma} \left(arepsilon_{k,S} - \mu_S
ight) \hat{c}^{\dagger}_{k\sigma S} \hat{c}_{k\sigma S} - \sum_{k} \left(\Delta \hat{c}^{\dagger}_{k\uparrow S} \hat{c}^{\dagger}_{k\downarrow S} + ext{h.c.}
ight)$$

Due to the proximity effect we have to introduce the matrix Green's function

Due to the proximity effect we have to introduce the matrix Green's function

$$G_d(au, au')\!=\!-\left(egin{array}{ccc} \hat{T}_ au\langle\hat{d}_\uparrow\left(au
ight)\hat{d}_\uparrow^\dagger\left(au'
ight)
angle &\hat{T}_ au\langle\hat{d}_\uparrow\left(au
ight)\hat{d}_\downarrow(au')
angle \ \hat{T}_ au\langle\hat{d}_\downarrow^\dagger\left(au
ight)\hat{d}_\uparrow^\dagger\left(au'
ight)
angle &\hat{T}_ au\langle\hat{d}_\downarrow^\dagger\left(au
ight)\hat{d}_\downarrow(au')
angle \end{array}
ight)$$

Due to the proximity effect we have to introduce the matrix Green's function

$$G_d(au, au') \!=\! - \left(egin{array}{ccc} \hat{T}_ au \langle \hat{d}_\uparrow \left(au
ight) \hat{d}_\uparrow^\dagger \left(au'
ight)
angle & \hat{T}_ au \langle \hat{d}_\uparrow \left(au
ight) \hat{d}_\downarrow(au')
angle \ \hat{T}_ au \langle \hat{d}_\downarrow^\dagger \left(au
ight) \hat{d}_\uparrow^\dagger \left(au'
ight)
angle & \hat{T}_ au \langle \hat{d}_\downarrow^\dagger \left(au
ight) \hat{d}_\downarrow(au')
angle \end{array}
ight)
ight.$$

In equillibrium its Fourier transform obeys the Dyson equation

Due to the proximity effect we have to introduce the matrix Green's function

$$G_d(au, au')\!=\!-\left(egin{array}{ccc} \hat{T}_ au\langle\hat{d}_\uparrow\left(au
ight)\hat{d}_\uparrow^\dagger\left(au'
ight)
angle &\hat{T}_ au\langle\hat{d}_\uparrow\left(au
ight)\hat{d}_\downarrow(au')
angle \ \hat{T}_ au\langle\hat{d}_\downarrow^\dagger\left(au
ight)\hat{d}_\uparrow^\dagger\left(au'
ight)
angle &\hat{T}_ au\langle\hat{d}_\downarrow^\dagger\left(au
ight)\hat{d}_\downarrow(au')
angle \end{array}
ight)$$

In equillibrium its Fourier transform obeys the Dyson equation

$$G_d(\omega)^{-1} = \left(egin{array}{cc} \omega - arepsilon_d & 0 \ 0 & \omega + arepsilon_d \end{array}
ight) - \Sigma_d^0(\omega) - \Sigma_d^U(\omega)$$

Due to the proximity effect we have to introduce the matrix Green's function

$$G_d(au, au')\!=\!-\left(egin{array}{ccc} \hat{T}_ au\langle\hat{d}_\uparrow\left(au
ight)\hat{d}_\uparrow^\dagger\left(au'
ight)
angle &\hat{T}_ au\langle\hat{d}_\uparrow\left(au
ight)\hat{d}_\downarrow(au')
angle \ \hat{T}_ au\langle\hat{d}_\downarrow^\dagger\left(au
ight)\hat{d}_\uparrow^\dagger\left(au'
ight)
angle &\hat{T}_ au\langle\hat{d}_\downarrow^\dagger\left(au
ight)\hat{d}_\downarrow(au')
angle \end{array}
ight)$$

In equillibrium its Fourier transform obeys the Dyson equation

$$G_d(\omega)^{-1} = \left(egin{array}{ccc} \omega - arepsilon_d & 0 \ 0 & \omega + arepsilon_d \end{array}
ight) - \Sigma_d^0(\omega) - \Sigma_d^U(\omega)$$

with

$$oldsymbol{\Sigma_d^0}(\omega)$$
 the selfenergy for $oldsymbol{U}=oldsymbol{0}$

Due to the proximity effect we have to introduce the matrix Green's function

$$G_d(au, au')\!=\!-\left(egin{array}{ccc} \hat{T}_ au\langle\hat{d}_\uparrow\left(au
ight)\hat{d}_\uparrow^\dagger\left(au'
ight)
angle &\hat{T}_ au\langle\hat{d}_\uparrow\left(au
ight)\hat{d}_\downarrow(au')
angle \ \hat{T}_ au\langle\hat{d}_\downarrow^\dagger\left(au
ight)\hat{d}_\uparrow^\dagger\left(au'
ight)
angle &\hat{T}_ au\langle\hat{d}_\downarrow^\dagger\left(au
ight)\hat{d}_\downarrow(au')
angle \end{array}
ight)$$

In equillibrium its Fourier transform obeys the Dyson equation

$$G_d(\omega)^{-1} = \left(egin{array}{ccc} \omega - arepsilon_d & 0 \ 0 & \omega + arepsilon_d \end{array}
ight) - \Sigma_d^0(\omega) - \Sigma_d^U(\omega)$$

with

 $\Sigma_d^U(\omega)$ correction due to $U \neq 0$.

Theoretical details c.d.

The deep sub-gap states $|\omega| \ll \Delta$ are characterized by:

c.d.

The deep sub-gap states $|\omega| \ll \Delta$ are characterized by:

a) static non-interacting contribution

$$\Sigma^0_{d1}(\omega) = -\; rac{1}{2} \; \left(egin{array}{cc} \Gamma_N & \Gamma_S \ \Gamma_S & i\Gamma_N \end{array}
ight)$$

c.d.

The deep sub-gap states $|\omega| \ll \Delta$ are characterized by:

a) static non-interacting contribution

$$\Sigma^0_{d1}(\omega) = -\; rac{1}{2} \; \left(egin{array}{cc} \Gamma_N & \Gamma_S \ \Gamma_S & i\Gamma_N \end{array}
ight)$$

b) a diagonal form of the correlation part

$$\Sigma_d^U(\omega) = \left(egin{array}{ccc} \Sigma_N(\omega) & 0 \ 0 & -\Sigma_N^*(-\omega) \end{array}
ight)$$

c.d.

The deep sub-gap states $|\omega| \ll \Delta$ are characterized by:

a) static non-interacting contribution

$$\Sigma^0_{d1}(\omega) = -\; rac{1}{2} \; \left(egin{array}{cc} \Gamma_N & \Gamma_S \ \Gamma_S & i \Gamma_N \end{array}
ight)$$

b) a diagonal form of the correlation part

$$\Sigma_d^U(\omega) = \left(egin{array}{ccc} \Sigma_N(\omega) & 0 \ 0 & -\Sigma_N^*(-\omega) \end{array}
ight)$$

For justification see e.g.

Y. Tanaka, N. Kawakami, and A. Oguri, J. Phys. Soc. Jpn. **76**, 074701 (2007).

$$(\Gamma_S/\Gamma_N = 0)$$

$$\Gamma_S/\Gamma_N = 1$$

$$\Gamma_S/\Gamma_N~=~2$$

$$\left[\Gamma_S/\Gamma_N \;=\; 3
ight]$$

$$\Gamma_S/\Gamma_N~=~4$$

$$\Gamma_S/\Gamma_N = 5$$

$$\Gamma_S/\Gamma_N = 6$$

$$\Gamma_S/\Gamma_N = 8$$

$$(\Gamma_S/\Gamma_N~=~10)$$

Spectral function obtained below T_K for $U = 10\Gamma_N$

Superconductivity supresses the Kondo resonance

Besides the usual electron tunnelling (for $|eV| \geq \Delta$) there is also a contribution from the charge transfer between N and S electrodes via anomalous channel

Besides the usual electron tunnelling (for $|eV| \geq \Delta$) there is also a contribution from the charge transfer between N and S electrodes via anomalous channel

electron

Besides the usual electron tunnelling (for $|eV| \geq \Delta$) there is also a contribution from the charge transfer between N and S electrodes via anomalous channel

electron

Besides the usual electron tunnelling (for $|eV| \geq \Delta$) there is also a contribution from the charge transfer between N and S electrodes via anomalous channel

electron

Besides the usual electron tunnelling (for $|eV| \geq \Delta$) there is also a contribution from the charge transfer between N and S electrodes via anomalous channel

hole

Cooper pair

Besides the usual electron tunnelling (for $|eV| \geq \Delta$) there is also a contribution from the charge transfer between N and S electrodes via anomalous channel

hole

Cooper pair

Besides the usual electron tunnelling (for $|eV| \geq \Delta$) there is also a contribution from the charge transfer between N and S electrodes via anomalous channel

hole

Cooper pair

This process is called **Andreev reflection**.

Non-equilibrium phenomena

The steady current J consists of two contributions

$$J(V) = J_1(V) + J_A(V)$$

Non-equilibrium phenomena

The steady current J consists of two contributions

$$J(V) = J_1(V) + J_A(V)$$

and can be expressed by the Landauer-type formula

$$J_1(V) = rac{2e}{h} \int d\omega \; T_1(\omega) \left[f(\omega\!+\!eV\!,T)\!-\!f(\omega,T)
ight]$$

with the transmitance $T_1(\omega)$ is equal

$$\left| \Gamma_N \Gamma_S \left(\left| G_{11}^r(\omega)
ight|^2 + \left| G_{12}^r(\omega)
ight|^2 - rac{2\Delta}{|\omega|} \mathrm{Re} G_{11}^r(\omega) G_{12}^r(\omega)
ight)
ight|$$

Non-equilibrium phenomena

The steady current J consists of two contributions

$$J(V) = J_1(V) + J_A(V)$$

and can be expressed by the Landauer-type formula

$$J_A(V) = rac{2e}{h} \int d\omega \; T_A(\omega) \left[f(\omega\!+\!eV\!,T)\!-\!f(\omega\!-\!eV\!,T)
ight]$$

with the transmitance

$$T_A(\omega) = \Gamma_N^2 \left| G_{12}(\omega)
ight|^2$$

Non-equilibrium phenomena

The steady current J consists of two contributions

$$J(V) = J_1(V) + J_A(V)$$

and can be expressed by the Landauer-type formula

$$J_A(V) = rac{2e}{h} \int d\omega \; T_A(\omega) \left[f(\omega\!+\!eV\!,T)\!-\!f(\omega\!-\!eV\!,T)
ight]$$

with the transmitance

$$T_A(\omega) = \Gamma_N^2 \left| G_{12}(\omega)
ight|^2$$

of the Andreev current J_A appearing at sub-gap voltages!

Andreev conductance $G_A(V)$ for: $U=10\Gamma_N$

$$U=10\Gamma_N$$

Andreev conductance $G_A(V)$ for:

$$\left(U=10\Gamma_{N}
ight)$$

Andreev conductance $G_A(V)$ for: $U=10\Gamma_N$

Andreev conductance $G_A(V)$ for:

$$U=10\Gamma_N$$

Andreev conductance $G_A(V)$ for:

$$U=10\Gamma_N$$

$$\Gamma_S/\Gamma_N=3$$

$$G_A(V) \text{ [} 4e^2/\text{h] }$$

$$0.3 \\ 0.2 \\ 0.1 \\ 0 \\ -10 \\ -5 \\ eV/\Gamma_N$$

$$0 \\ 5 \\ 10 \\ 8$$

Andreev conductance $G_A(V)$ for: $U=10\Gamma_N$

$$U=10\Gamma_N$$

Andreev conductance $G_A(V)$ for:

$$U=10\Gamma_{N}$$

$$\Gamma_S / \Gamma_N = 5$$

$$G_A(V) \text{ [} 4e^2/\text{h] }$$

$$0.3 \\ 0.2 \\ 0.1 \\ 0 \\ -10 \\ -5 \\ eV / \Gamma_N$$

$$0 \\ 5 \\ 10 \\ 8$$

Andreev conductance $G_A(V)$ for:

 $U=\overline{10\Gamma_N}$

Andreev conductance $G_A(V)$ for:

$$U=10\Gamma_{N}$$

Andreev conductance $G_A(V)$ for:

$$\left(U=10\Gamma_{N}
ight)$$

$$\Gamma_S / \Gamma_N = 8$$

$$G_A(V) \text{ [} 4e^2/\text{h] }$$

$$0.3 \\ 0.2 \\ 0.1 \\ 0 \\ -10 \\ -5 \\ eV / \Gamma_N$$

$$5 \\ 10 \\ 8$$

Andreev conductance $G_A(V)$ for:

$$\left(U=10\Gamma_{N}
ight)$$

$$\Gamma_S / \Gamma_N = 8$$

$$G_A(V) \ [4e^2/h \]$$

$$0.3$$

$$0.2$$

$$0.1$$

$$0 -10$$

$$-5$$

$$eV / \Gamma_N$$

$$0$$

$$10$$

$$8$$

Kondo resonance <u>enhances</u> zero-bias Andreev conductance for $\Gamma_S \sim \Gamma_N$!

Experimental realization

Experimental setup / University of Tokyo /

Experimental setup

/ University of Tokyo /

Experimental setup

/ University of Tokyo /

QD: self-assembled InAs

diameter \sim 100 nm

backgate: Si-doped GaAs

Experimental setup

/ University of Tokyo /

 $T_K \simeq 1.2$ K

 $\Delta \simeq 152 \mu$ eV

QD: self-assembled InAs

diameter \sim 100 nm

backgate: Si-doped GaAs

R.S. Deacon et al, Phys. Rev. Lett. 104, 076805 (2010).

/ due to the proximity effect /

R.S. Deacon et al, Phys. Rev. Lett. 104, 076805 (2010).

/ due to the proximity effect /

R.S. Deacon et al, Phys. Rev. Lett. 104, 076805 (2010).

 $arepsilon_d \sim \mu_{\scriptscriptstyle N,S}$

/ due to the proximity effect /

R.S. Deacon et al, Phys. Rev. Lett. 104, 076805 (2010).

Sample α -I

 $\Gamma_N \sim 12 \; \Gamma_S$

/ due to the proximity effect /

R.S. Deacon et al, Phys. Rev. Lett. 104, 076805 (2010).

Sample α -I

$$\Gamma_N \sim 12 \; \Gamma_S$$

Samples γ -I, β -III

$$\Gamma_S \sim 40 \; \Gamma_N$$

/ due to the proximity effect /

R.S. Deacon et al, Phys. Rev. Lett. 104, 076805 (2010).

"We attribute the subgap peaks to resonant Andreev transport ... through electron-hole mixing of the QD energy level."

Interplay with the Kondo effect

R.S. Deacon et al, Phys. Rev. B 81, 121308(R) (2010).

Interplay with the Kondo effect

"The zero-bias
conductance peak
is consistent with
Andreev transport
enhanced by the
Kondo singlet state"

R.S. Deacon et al, Phys. Rev. B 81, 121308(R) (2010).

Interplay with the Kondo effect

"The zero-bias conductance peak is consistent with Andreev transport enhanced by the Kondo singlet state"

"We note that
the feature exhibits
excellent qualitative
agreement with
a recent theoretical
treatment by
Domanski et al"

R.S. Deacon et al, Phys. Rev. B 81, 121308(R) (2010).

Further outlook

 between a metal and superconductor 	
	- between a metal and superconductor

- between a metal and superconductor

between a metal and superconductor

Side-coupled QD (T-shape configuration)

- between a metal and superconductor

Side-coupled QD (T-shape configuration)

Relevant issues:

between a metal and superconductor

Side-coupled QD (T-shape configuration)

Relevant issues:

 \Longrightarrow induced on-dot pairing(due to Γ_S)

between a metal and superconductor

Side-coupled QD (T-shape configuration)

Relevant issues:

- \implies induced on-dot pairing(due to Γ_S)
- \Longrightarrow Coulomb blockade & Kondo effect (due to U)

between a metal and superconductor

Side-coupled QD (T-shape configuration)

Relevant issues:

- \Longrightarrow induced on-dot pairing(due to Γ_S)
- \Longrightarrow Coulomb blockade & Kondo effect (due to U)
- \Rightarrow quantum interference(due to t)

Quantum interference - effect of t

Quantum interference - effect of t

Quantum interference -

- effect of t

Quantum interference -

- effect of t

Quantum interference - effect of t

Quantum interference - effect of t

Fano-type resonance

in Andreev conductance

Differential conductance of the Andreev current

Fano-type resonance

in Andreev conductance

Differential conductance of the Andreev current

Fano-type resonance

in Andreev conductance

Differential conductance of the Andreev current

The gate-voltage dependence of G_A obtained for U=0

J. Barański and T. Domański, (2011) submitted.

Fano vs Kondo – competition

Fano vs Kondo – competition

Fano vs Kondo

competition

Fano vs Kondo

competition

Fano vs Kondo

competition

Double QD singlet states

- singlet states

- singlet states

Various kinds of possible singlet states

- singlet states

Various kinds of possible singlet states

Y. Tanaka, N. Kawakami, and A. Oguri, Phys. Rev. B 82, 094514 (2008).

Double-QD coupled to three electrodes Double-QD

coupled to three electrodes

Double-QD acts as a Cooper-pair splitter.

Double-QD

coupled to three electrodes

Double-QD acts as a Cooper-pair splitter.

J. Eldridge, M.G. Pala, M. Governale, J. König, Phys. Rev. B 82, 184507 (2010)

QD spin-valve - using a superconducting lead QD spin-valve

- using a superconducting lead

QD spin-valve

using a superconducting lead

Spintronic transport via the Andreev reflections

QD spin-valve

- using a superconducting lead

Spintronic transport via the Andreev reflections

B. Sothmann, D. Futterer, M. Governale, J. König, Phys. Rev. B 82, 094514 (2010).

QD coupled between N and S electrodes:

QD coupled between N and S electrodes:

absorbs the superconducting order / proximity effect /

QD coupled between N and S electrodes:

- absorbs the superconducting order / proximity effect /
- is sensitive to the correlation effects
 / Kondo resonance /

QD coupled between N and S electrodes:

- absorbs the superconducting order / proximity effect /
- is sensitive to the correlation effects
 / Kondo resonance /

Their interplay is manifested:

QD coupled between N and S electrodes:

- absorbs the superconducting order / proximity effect /
- is sensitive to the correlation effects
 / Kondo resonance /

Their interplay is manifested:

 \Rightarrow in the subgap Andreev conductance / i.e. for $|eV| \leq \Delta$ /

QD coupled between N and S electrodes:

- absorbs the superconducting order / proximity effect /
- is sensitive to the correlation effects
 / Kondo resonance /

Their interplay is manifested:

- ⇒ in the subgap Andreev conductance
 - / i.e. for $|eV| \leq \Delta$ /
- \Rightarrow causing the zero-bias enhancement / below T_K /

QD coupled between N and S electrodes:

- absorbs the superconducting order / proximity effect /
- ⇒ is sensitive to the correlation effects / Kondo resonance /

Their interplay is manifested:

- ⇒ in the subgap Andreev conductance
 - / i.e. for $|eV| \leq \Delta$ /
- ⇒ causing the zero-bias enhancement / below T_K /

http://kft.umcs.lublin.pl/doman/lectures