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EVERY-DAY EXAMPLES OF PHASE TRANSITIONS



VARIETY OF PHASE TRANSITIONS

Many-body systems in the thermodynamic limit (N ≈ 1023)
can exhibit at some critical points:

⇒ classical phase transitions
(classified by Landau into the 1-st and/or 2-nd order )

⇒ quantum phase transitions
(due to qualitative change of the ground state)

⇒ topological transitions
(due to change of topology, e.g. Chern number)

Recently (2013) this list has been updated by:

⇒ phase transitions in time-domain
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1. TRANSITION TO SUPERCONDUCTING STATE

Phase transition is manifested by non-analytic behaviour
appearing at critical temperature Tc in the specific heat



2. TRANSITION TO SUPERFLUID STATE

Transition is manifested by λ shape of the specific heat



I. Dynamical quantum phase transition

[ general idea ]
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DYNAMICS IMPOSED BY QUANTUM QUENCH

For t < 0 we assume the system Ĥ0 to be in its ground state:

Ĥ0 |Ψ0〉 = E0 |Ψ0〉

Next, at time t = 0, we impose an abrupt change (quench):

Ĥ0 −→ Ĥ

For t > 0 the Schrödinger eqn i d
dt |Ψ(t)〉 = Ĥ |Ψ(t)〉 implies:

|Ψ(t)〉 = e−itĤ |Ψ0〉

Fidelity (similarity) of these states is:

〈Ψ0|Ψ(t)〉 =
〈
Ψ0|e−itĤ|Ψ0

〉
Loschmidt amplitude
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dt |Ψ(t)〉 = Ĥ |Ψ(t)〉 implies:

|Ψ(t)〉 = e−itĤ |Ψ0〉
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STATIONARY VS DYNAMICAL PHASE TRANSITION

Idea: M. Heyl, A. Polkovnikov, S. Kehrein, Phys. Rev. Lett. 110, 135704 (2013).

Partition function Loschmidt amplitude

Z =
〈

e−βĤ
〉 〈

Ψ0|e−itĤ|Ψ0

〉
where Loschmidt echo L(t)

β =
1

kBT
L(t) =

∣∣∣〈Ψ0|e−itĤ|Ψ0

〉∣∣∣2
Free energy F(T) Return rate λ(t)

Z(T) ≡ e−βF(T) L(t) ≡ e−Nλ(t)

Critical temperature Tc Critical time tc

nonanalytical lim
T→Tc

F(T) nonanalytical lim
t→tc

λ(t)
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CRITICAL TIME

At critical time tc the rate function λ(t) of L(t) ≡ e−Nλ(t)

has a kink, or other types of nonanalytic behaviour.

At this time-instant ψ(tc) might be orthogonal to initial ψ(t0) .
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At this time-instant ψ(tc) might be orthogonal to initial ψ(t0) .



A few examples ...



ISING MODEL: CHANGE OF MAGNETIC FIELD

Post-quench return rate of the Ising model (g ≡ h/J)
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solid red line - across a phase transition (gc = 1)

dashed green line - inside the same phase



SU-SCHRIEFFER-HEEGER MODEL

Quasiparticle spectrum of the SSH model under stationary conditions.
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SSH MODEL: QUENCH DRIVEN TRANSITION
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solid red line: δ = −0.3 −→ δ = +0.3

dashed green line: δ = 0.95 −→ δ = −0.95



REMARKS ON DYNAMICAL PHASE TRANSITIONS

They usually occur:

⇒ upon crossing phase-boundaries
(though, there exist numerous exceptions)

⇒ at equidistant critical times
(in most cases, but not always)

⇒ and can survive at finite temperatures
(when they are no longer sharp)
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(possible observability)
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ISING MODEL: DQPT OF FINITE-SIZE SYSTEM
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"Local measures of dynamical quantum phase transitions"
J.C. Halimeh, D. Trapin, M. Damme & M. Heyl, Phys. Rev. B 104, 075130 (2021).



II. Application to superconducting nanostructures



HETEROSTRUCTURES WITH SUPERCONDUCTOR(S)

superconductor (S) - quantum dot (QD) - superconductor (S)

Tunneling of Cooper pairs via bound states in Josephson junction.



HETEROSTRUCTURES WITH SUPERCONDUCTOR(S)

normal metal (N) - quantum dot (QD) - superconductor (S)

J. Estrada Saldaña, A. Vekris, V. Sosnovtseva, T. Kanne, P. Krogstrup,

K. Grove-Rasmussen and J. Nygård, Commun. Phys. 3, 125 (2020).



SUPERCONDUCTING PROXIMITY EFFECT

• Coupling of the localized (QD) to itinerant (SC) electrons induces:

⇒ on-dot pairing

• This is manifested spectroscopically by:

⇒ in-gap bound states

• originating from:

⇒ leakage of Cooper pairs on QD (Andreev)

⇒ exchange int. of QD with SC (Yu-Shiba-Rusinov)
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Why are we interested in this issue ?

Selected headlines ...
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SUPERCONDUCTING QUBITS

Quantum bits (qubits) can be constructed out of in-gap bound

states, using either the Josephson junctions (transmons)

or the semiconducting-superconducting hybrids (gatemons).



SUPERCONDUCTING QUBITS

Recent evidence for experimental realization



SUPERCONDUCTING QUBITS

Conventional and/or topological superconducting qubits



Characteristic time-scales

(relevant to operations on sc qubits)



Characteristic time-scales

(relevant to operations on sc qubits)



DYNAMICS OF A SINGLE QUANTUM DOT

Quantum quench protocols:

⇒ sudden coupling to superconductor 0→ ΓS

⇒ abrupt application of gate potential 0→ VG
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BUILDUP OF IN-GAP STATES

Schematics of the Andreev states formation induced by quench 0→ ΓS

K. Wrześniewski, B. Baran, R. Taranko, T. Domański & I. Weymann, PRB 103, 155420 (2021).



BUILDUP OF IN-GAP STATES

Time-dependent observables driven by the quantum quench 0→ ΓS
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solid lines - time dependent NRG

dashed lines - Hartree-Fock-Bogolubov

K. Wrześniewski, B. Baran, R. Taranko, T. Domański & I. Weymann, PRB 103, 155420 (2021).



Singlet-doublet (quantum phase) transition

[ static version ]
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SINGLY OCCUPIED VS BCS-TYPE CONFIGURATIONS

Quantum dot proximitized to superconductor can described by

ĤQD =
∑
σ

εd d̂†σ d̂σ + Ud n̂d↑ n̂d↓ −
(
ΓS d̂†↑ d̂†↓ + h.c.

)

Eigen-states of this problem are represented by:

|↑〉 and |↓〉 ⇐ doublet states (spin 1
2 )

u |0〉 − v |↑↓〉
v |0〉+ u |↑↓〉

}
⇐ singlet states (spin 0)

Upon varrying the parameters εd, Ud or ΓS there can be induced

phase transition between these doublet/singlet ground states.
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QUANTUM PHASE TRANSITION (STATIC VERSION)

Singlet-doublet quantum (phase transition): NRG results

ξd ≡ εd−U/2
−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

singlet

doublet

 ξ
d
 / U 

 Γ
 /

 U
 

 

 

∆
sc

/πΓ =1

∆
sc

/πΓ =0.3

∆
sc

/πΓ =0.05

J. Bauer, A. Oguri & A.C. Hewson, J. Phys.: Condens. Matter 19, 486211 (2007).



QUANTUM PHASE TRANSITION: EXPERIMENT

J. Estrada Saldaña, A. Vekris, V. Sosnovtseva, T. Kanne, P. Krogstrup,

K. Grove-Rasmussen and J. Nygård, Commun. Phys. 3, 125 (2020).



Singlet-doublet (quantum phase) transition

[ dynamical realization ]
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QUANTUM QUENCHES ACROSS STATIC QPT

(a)

(b)

  

 

K. Wrześniewski, I. Weymann, N. Sedlmayr & T. Domański, Phys. Rev. B 105, 094514 (2022).



DYNAMICAL QUANTUM PHASE TRANSITION
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tNRG RESULTS: ABRUPT CHANGE OF ΓS
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K. Wrześniewski, I. Weymann, N. Sedlmayr & T. Domański, Phys. Rev. B 105, 094514 (2022).



tNRG RESULTS: ABRUPT CHANGE OF ΓS
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tNRG RESULTS: QUANTUM QUENCH εd → εd +VG
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K. Wrześniewski, I. Weymann, N. Sedlmayr & T. Domański, Phys. Rev. B 105, 094514 (2022).



ISSUES TO BE SPECIFIED

Means to detect dynamical singlet-doublet transition(s):

• measurement of the time-dependent charge current

• detection of the time-dependent magnetic moment

Quantitative results will be provided . . . . . . . . . . . (on-going project)
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SIMILAR IDEAS: #1 ULTRACOLD SUPERFLUIDS

Rapid change across the BCS-BEC limits in the ultracold atom superfluids.



SIMILAR IDEAS: #2 DYNAMICS OF SHIBA STATES



SIMILAR IDEAS: #3 HIGGS & GOLDSTONE MODES

Possibility to observe the collective amplitude (Higgs-type)

mode of the order parameter in presence of ultrafast ac field.



SIMILAR IDEAS: #4 HIGGS & GOLDSTONE MODES

Possibility to observe the collective amplitude (Higgs-type)

and phasal (Goldstone-type) modes of the order parameter.



FINAL CONCLUSIONS

Quench imposed on quantum dot attached to superconductor:

• induces the Rabi-type oscillations (due to particle-hole mixing)

• leads to emergence/rearrangement of the in-gap states

• can drive dynamical transitions (changeover of ground states)

These phenomena are empirically detectable by the charge

transport measurements (Andreev spectroscopy).
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SINGLET VS DOUBLET: EXPERIMENT

Differential conductance vs source-drain bias Vsd (vertical axis)

and gate potential Vp (horizontal axis) measured for various ΓS/U

U � Γs U ≥ Γs U < Γs

J. Estrada Saldaña, A. Vekris, V. Sosnovtseva, T. Kanne, P. Krogstrup,

K. Grove-Rasmussen and J. Nygård, Commun. Phys. 3, 125 (2020).

Crossings of in-gap states correspond to the singlet-doublet QPT.
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