Lublin, 7 XI 2006

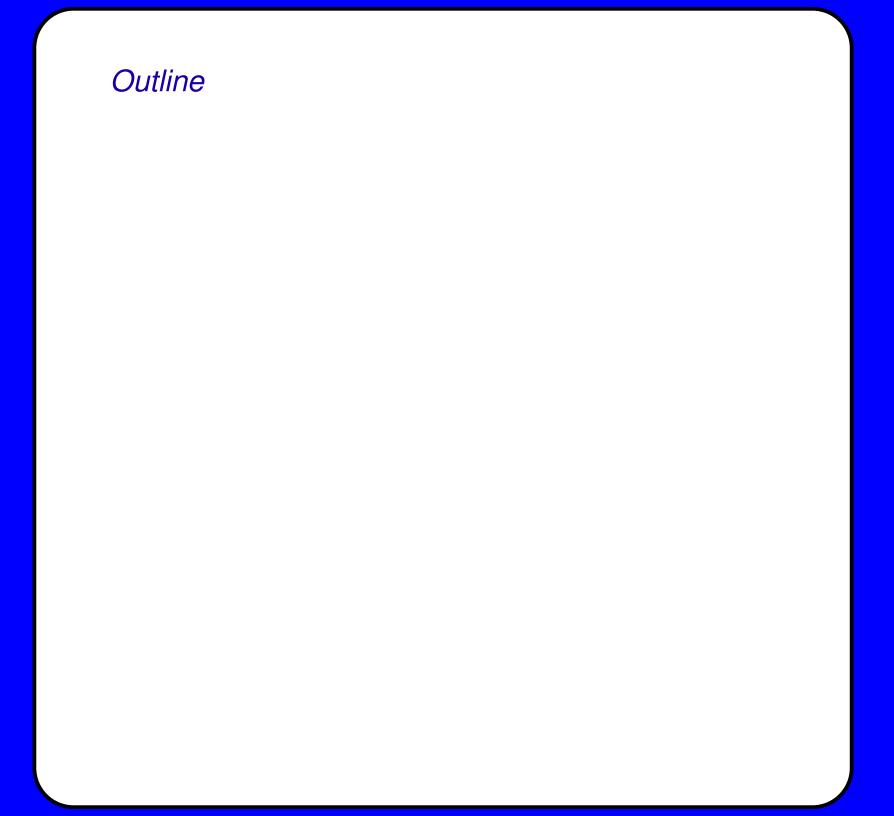
Description of a transition into the superconducting state

Tadeusz Domański

Institute of Physics,

M. Curie-Skłodowska University, Lublin

http://kft.umcs.lublin.pl/doman/lectures



Introduction

/ pairing in the many-body systems /

- * Introduction
 - / pairing in the many-body systems /
- **Path integral formulation**

/ the saddle-point solution, Gaussian corrections /

- **Introduction**
 - / pairing in the many-body systems /
- **Path integral formulation**
 - / the saddle-point solution, Gaussian corrections /
- Renormalization Group technique

/ the idea of scaling /

- Introduction
 / pairing in the many-body systems /
- Path integral formulation
 / the saddle-point solution, Gaussian corrections /
- Renormalization Group technique

 / the idea of scaling /
- Recent RG extentions
 / beyond the BCS framework /

I. Introduction

The underlying **pairing mechanism** can be triggered by:

The underlying **pairing mechanism** can be triggered by:

1. exchange of phonons

/ classical superconductors, MgB₂, diamond, ... /

The underlying **pairing mechanism** can be triggered by:

1. exchange of phonons

/ classical superconductors, MgB₂, diamond, ... /

2. exchange of magnons

/ superconductivity of the heavy fermion compounds /

The underlying **pairing mechanism** can be triggered by:

1. exchange of phonons

/ classical superconductors, MgB₂, diamond, ... /

2. exchange of magnons

/ superconductivity of the heavy fermion compounds /

3. strong correlations

/ high T_c superconductors /

The underlying **pairing mechanism** can be triggered by:

1. exchange of phonons

/ classical superconductors, MgB₂, diamond, ... /

2. exchange of magnons

/ superconductivity of the heavy fermion compounds /

3. strong correlations

/ high T_c superconductors /

4. Feshbach resonance

/ ultracold superfluid atoms /

The underlying **pairing mechanism** can be triggered by:

1. exchange of phonons

/ classical superconductors, MgB₂, diamond, ... /

2. exchange of magnons

/ superconductivity of the heavy fermion compounds /

3. strong correlations

/ high T_c superconductors /

4. Feshbach resonance

/ ultracold superfluid atoms /

5. other

/ pairing in nuclei, gluon-quark plasma /

The underlying **pairing mechanism** can be triggered by:

1. exchange of phonons

/ classical superconductors, MgB₂, diamond, ... /

2. exchange of magnons

/ superconductivity of the heavy fermion compounds /

3. strong correlations

/ high T_c superconductors /

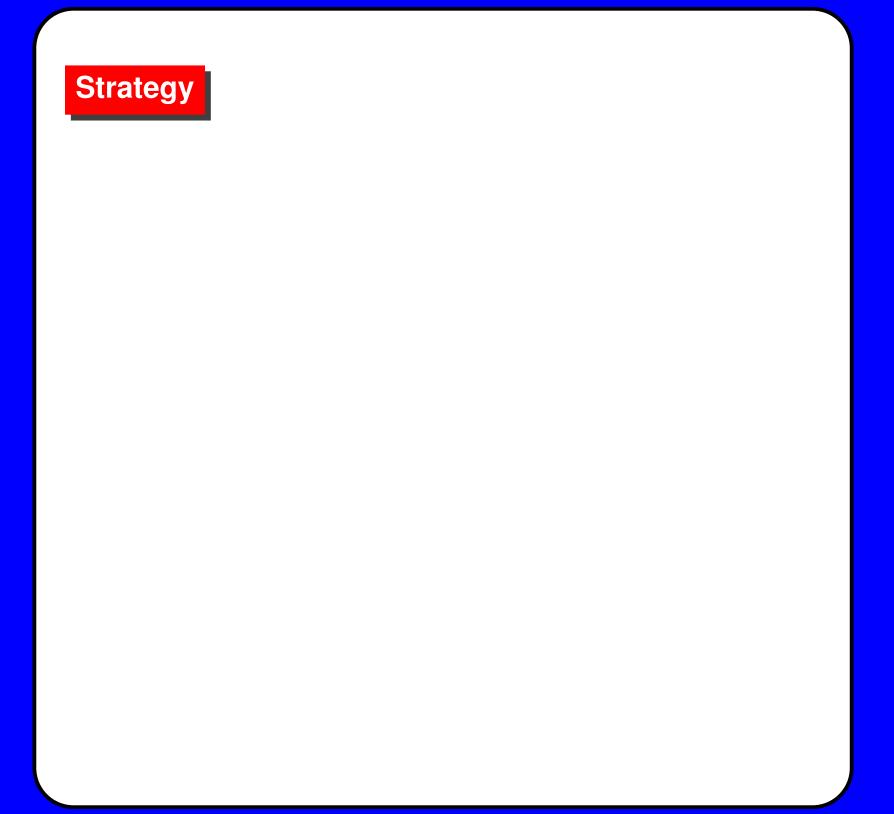
4. Feshbach resonance

/ ultracold superfluid atoms /

5. other

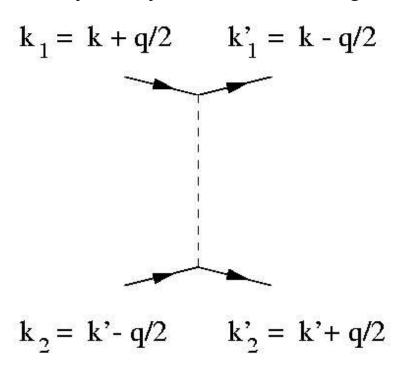
/ pairing in nuclei, gluon-quark plasma /

Very often formation of the fermion pairs goes hand in hand with **superconductivity/superfluidity** but it needs not be the rule.



Strategy

Our objective is to study the system of interacting fermions

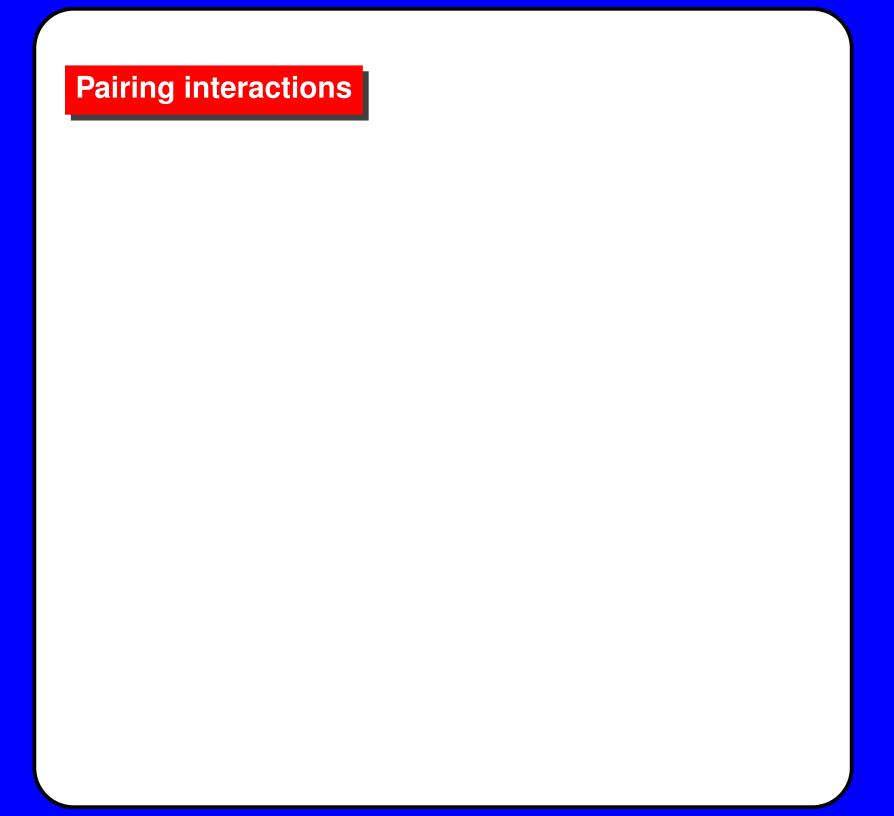


Strategy

Our objective is to study the system of interacting fermions

$$k_1 = k + q/2$$
 $k'_1 = k - q/2$
 $k_2 = k' - q/2$ $k'_2 = k' + q/2$

$$\begin{split} \hat{H} &= \sum_{\mathbf{k},\sigma} (\epsilon_{\mathbf{k}} - \mu) \hat{c}^{\dagger}_{\mathbf{k}\sigma} \hat{c}_{\mathbf{k}\sigma} \\ &+ \frac{1}{2} \sum_{\mathbf{k},\mathbf{k}',\mathbf{q}} \sum_{\sigma,\sigma'} g_{\mathbf{k},\mathbf{k}',\mathbf{q}} \hat{c}^{\dagger}_{\mathbf{k}'+\frac{\mathbf{q}}{2},\sigma} \hat{c}^{\dagger}_{\mathbf{k}-\frac{\mathbf{q}}{2},\sigma'} \hat{c}_{\mathbf{k}+\frac{\mathbf{q}}{2},\sigma'} \hat{c}_{\mathbf{k}'-\frac{\mathbf{q}}{2},\sigma} \end{split}$$



Pairing interactions

The momentum representation:

$$\hat{H} = \sum_{\mathbf{k},\sigma} \xi_{\mathbf{k}} \hat{c}^{\dagger}_{\mathbf{k}\sigma} \hat{c}_{\mathbf{k}\sigma} \ + \sum_{\mathbf{k},\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} \ \hat{c}^{\dagger}_{\mathbf{k}\uparrow} \ \hat{c}^{\dagger}_{-\mathbf{k}\downarrow} \ \hat{c}_{-\mathbf{k}'\downarrow} \hat{c}_{\mathbf{k}'\uparrow}$$

where $V_{\mathbf{k},\mathbf{k'}} < 0$ (at least for some $\mathbf{k},\mathbf{k'}$ states)

Pairing interactions

The momentum representation:

$$\hat{H} = \sum_{\mathbf{k},\sigma} \xi_{\mathbf{k}} \hat{c}^{\dagger}_{\mathbf{k}\sigma} \hat{c}_{\mathbf{k}\sigma} \; + \; \sum_{\mathbf{k},\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} \; \; \hat{c}^{\dagger}_{\mathbf{k}\uparrow} \; \hat{c}^{\dagger}_{-\mathbf{k}\downarrow} \; \hat{c}_{-\mathbf{k}'\downarrow} \hat{c}_{\mathbf{k}'\uparrow}$$

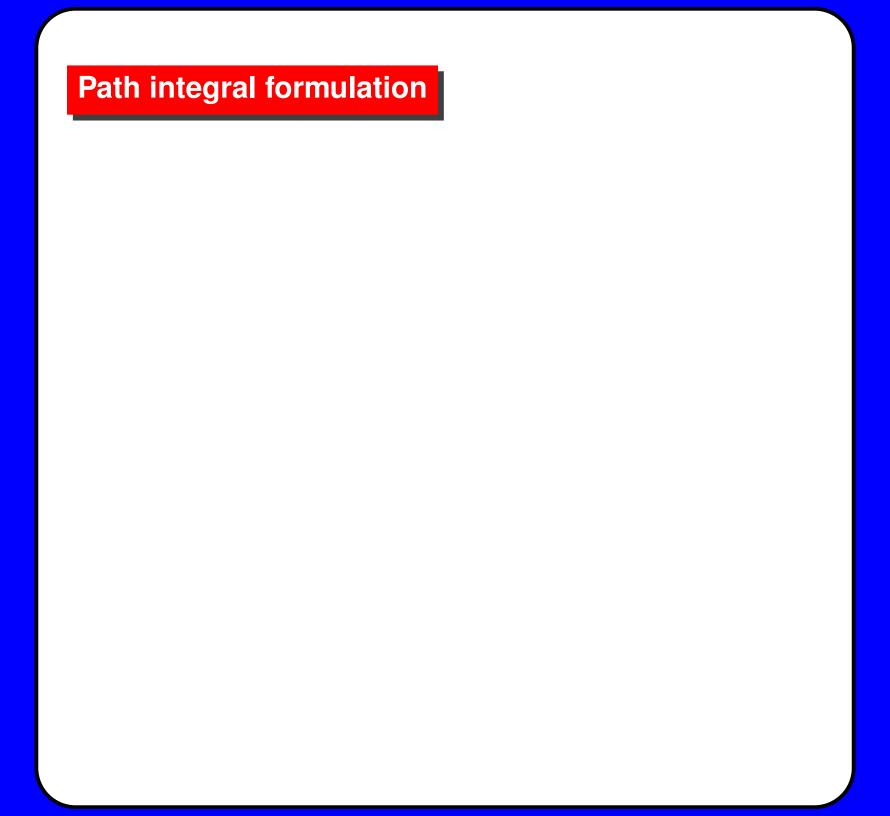
where $V_{\mathbf{k},\mathbf{k}'} < 0$ (at least for some \mathbf{k},\mathbf{k}' states)

The real space representation:

$$\hat{H} = \sum_{i,j} \sum_{\sigma} t_{i,j} \hat{c}^{\dagger}_{i\sigma} \hat{c}_{j\sigma} \; + \; \sum_{i,j} V_{i,j} \; \hat{c}^{\dagger}_{i\uparrow} \; \hat{c}_{i\uparrow} \; \hat{c}_{j\downarrow} \hat{c}_{j\downarrow}$$

with attractive potential $V_{i,j} < 0$

II. Path integral formulation



Path integral formulation

Thermodynamic properties such as the total energy, specific heat, pressure *etc* can be derived from the partition function defined as

$$\mathcal{Z}=\operatorname{Tr}\left\{e^{-eta\hat{H}}
ight\}$$

where $\beta = 1/k_BT$.

Path integral formulation

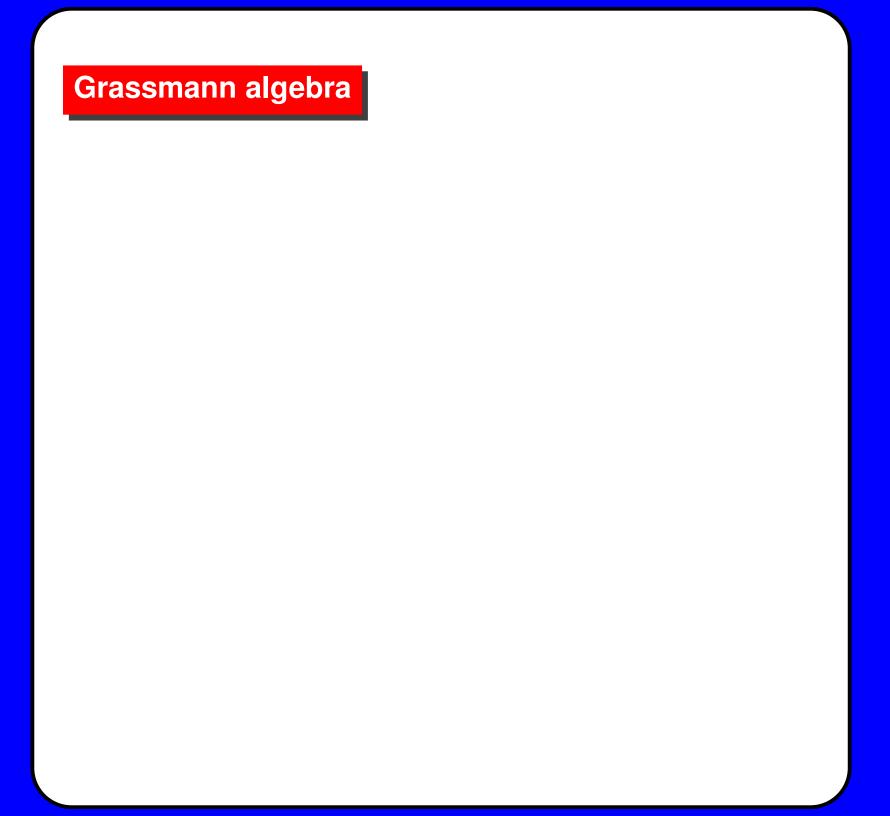
Thermodynamic properties such as the total energy, specific heat, pressure *etc* can be derived from the partition function defined as

$$\mathcal{Z}=\operatorname{Tr}\left\{e^{-eta\hat{H}}
ight\}$$

where $\beta = 1/k_BT$.

It is convenient to express the partition unction \mathcal{Z} in terms of the path integrals over Grassmann variables

$$\mathcal{Z} = \int D[c,c^*] \;\; e^{-S}$$



Grassmann algebra

To illustrate the main idea let us consider a single fermion problem

$$\hat{H}=\hat{H}[\hat{c}^{\dagger},\hat{c}]$$

Grassmann algebra

To illustrate the main idea let us consider a single fermion problem

$$\hat{H}=\hat{H}[\hat{c}^{\dagger},\hat{c}]$$

and introduce the *coherent fermion states* defined as

$$|c
angle = e^{-c \, \hat{c}^{\dagger}} \, |0
angle$$
 $\langle c^*| = |0
angle \, e^{-\hat{c} \, c^*}$

Grassmann algebra

To illustrate the main idea let us consider a single fermion problem

$$\hat{H}=\hat{H}[\hat{c}^{\dagger},\hat{c}]$$

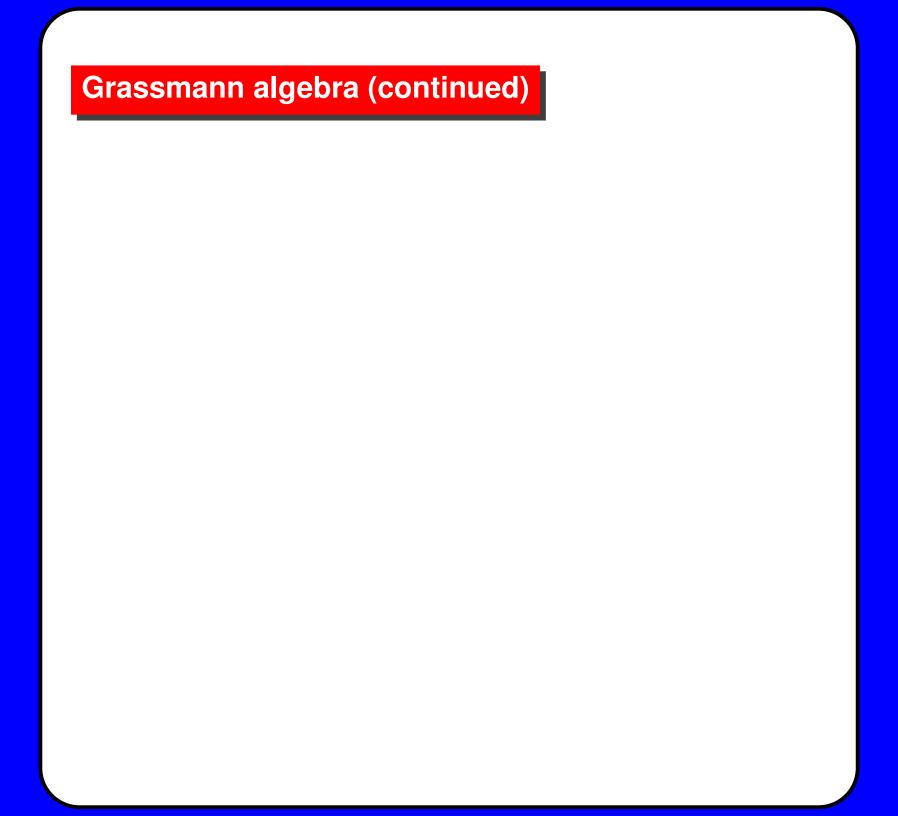
and introduce the *coherent fermion states* defined as

$$|c
angle = e^{-\boldsymbol{c} \; \hat{c}^{\dagger}} \; |0
angle \ \langle c^{st}| \; = \; |0
angle \, e^{-\hat{c} \; \boldsymbol{c}^{st}}$$

Formally they are eigenvectors of \hat{c} and \hat{c}^{\dagger} operators

$$egin{array}{lll} \hat{c} \, | \, c
angle & = & c \, | \, c
angle \ \langle \, c^* \, | \, \hat{c}^\dagger & = & \langle \, c^* \, | \, c^* \end{array}$$

with c and c^* being their eigenvalues (Grassmann numbers).



Grassmann algebra (continued)

From the completness relation

$$\int dc^* \; dc \; e^{-c^* \; c} \ket{c} ra{c^*} = 1$$

Grassmann algebra (continued)

From the completness relation

$$\int dc^* \; dc \; e^{-c^* \; c} \ket{c} ra{c^*} = 1$$

we determine the trace using

$$ext{Tr}\left\{\hat{A}
ight\} = -\int dc^*\;dc\;e^{-c^*\;c}\left\langle c^*|\,\hat{A}\,|c
ight
angle$$
 .

Grassmann algebra (continued)

From the completness relation

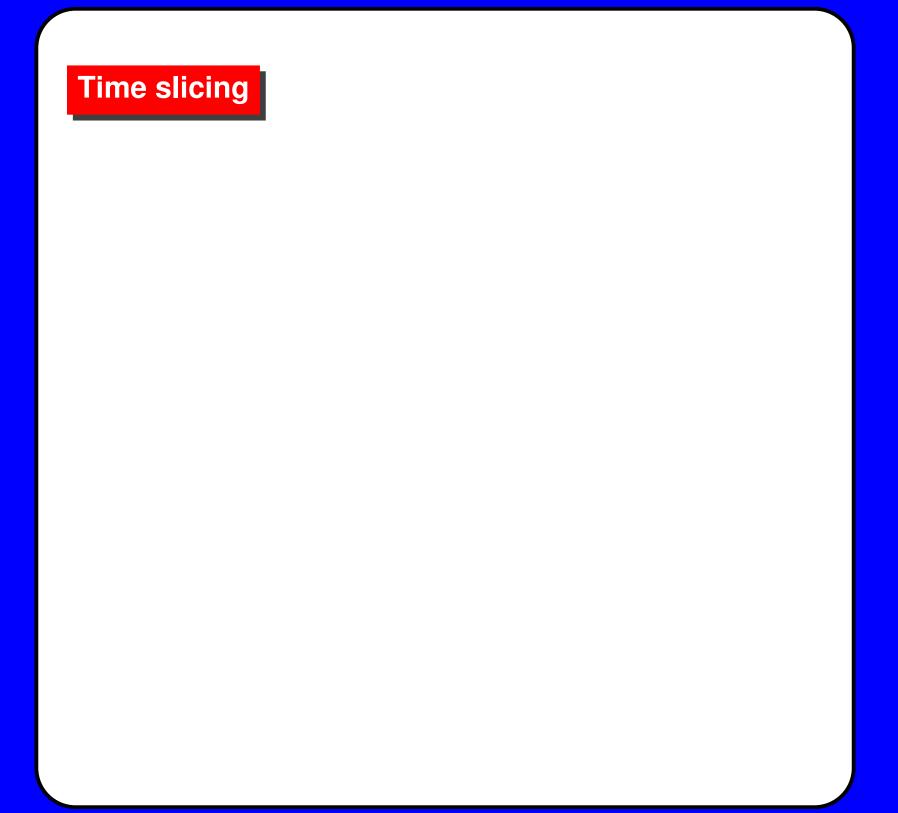
$$\int dc^* \; dc \; e^{-c^* \; c} \ket{c} ra{c^*} = 1$$

we determine the trace using

$$ext{Tr}\left\{\hat{A}
ight\} = -\int dc^*\;dc\;e^{-c^*\;c}\left\langle c^* |\,\hat{A}\,|c
ight
angle$$
 .

In this way the partition function can be expressed as

$$\mathcal{Z}=-\int dc_N^*\; dc_1\; e^{-c_N^*\; c_1} \left\langle c_N^* \middle| e^{-eta \hat{H}} \left| c_1
ight
angle$$
 .



Time slicing

We now expand the exponential into a sequence

$$e^{-\beta \hat{H}} = \left(e^{-\Delta \tau \; \hat{H}}\right)^N$$

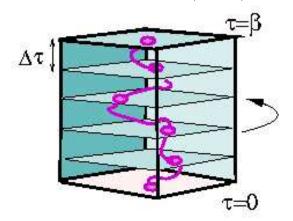
of the discretized imaginary time $\tau \in \langle 0, \beta \rangle$ where $\Delta \tau = \beta/N$.

Time slicing

We now expand the exponential into a sequence

$$e^{-eta\hat{H}} = \left(e^{-\Delta au\;\hat{H}}
ight)^N$$

of the discretized imaginary time $\tau \in \langle 0, \beta \rangle$ where $\Delta \tau = \beta/N$.

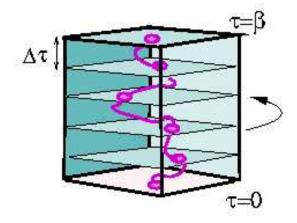


Time slicing

We now expand the exponential into a sequence

$$e^{-eta\hat{H}} = \left(e^{-\Delta au \; \hat{H}}
ight)^N$$

of the discretized imaginary time $\tau \in \langle 0, \beta \rangle$ where $\Delta \tau = \beta/N$.



Using the normally ordered Hamiltonian

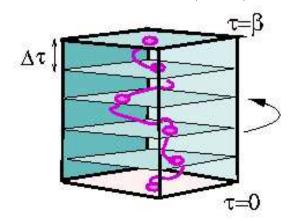
$$\left\langle c_j^* \middle| e^{-\hat{H}\Delta\tau} \middle| c_j \right\rangle = e^{c_j^* c_j} e^{-\Delta\tau H[c_j^*, c_j]}$$

Time slicing

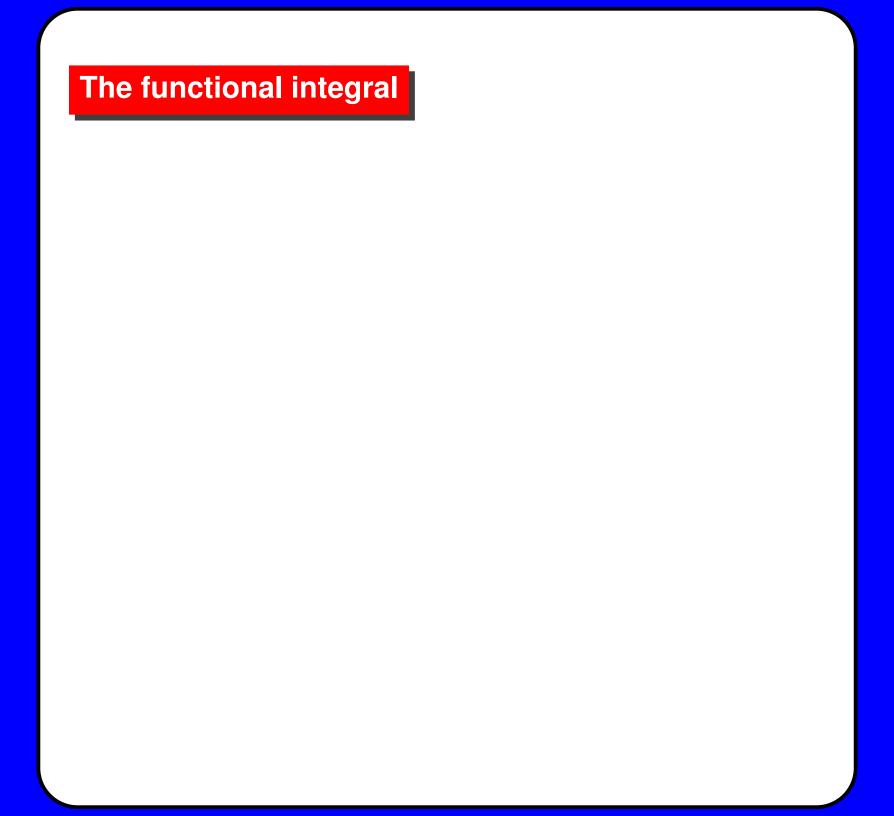
We now expand the exponential into a sequence

$$e^{-eta\hat{H}} = \left(e^{-\Delta au \; \hat{H}}
ight)^N$$

of the discretized imaginary time $\tau \in \langle 0, \beta \rangle$ where $\Delta \tau = \beta/N$.



we finally obtain



The functional integral

In the extreme limit

The functional integral

In the extreme limit

$$N \longrightarrow \infty$$

we formally obtain

where $D[c^*,c] \equiv \Pi_{j=1}^N dc_j^* \ dc_j$

The functional integral

In the extreme limit

$$N \longrightarrow \infty$$

we formally obtain

where $D[c^*,c] \equiv \Pi_{j=1}^N dc_j^* \ dc_j$

Grassmann variables obey the anti-periodic boundary conditions

$$c(au+eta)=-c(au), \qquad c^*(au+eta)=-c^*(au)$$



The BCS Hamiltonian

We now apply the path integral formalism to the BCS model

$$\hat{H} = \sum_{\mathbf{k},\sigma} \xi_{\mathbf{k}} \; \hat{c}^{\dagger}_{\mathbf{k}\sigma} \hat{c}_{\mathbf{k}\sigma} - g \; \hat{A}^{\dagger} \hat{A}$$

The BCS Hamiltonian

We now apply the path integral formalism to the BCS model

$$\hat{H} = \sum_{\mathbf{k},\sigma} \xi_{\mathbf{k}} \; \hat{c}^{\dagger}_{\mathbf{k}\sigma} \hat{c}_{\mathbf{k}\sigma} - g \; \hat{A}^{\dagger} \hat{A}$$

with the pair operators defined by

$$\hat{A} = \sum_{\mathbf{k}} \hat{c}_{-\mathbf{k}\downarrow} c_{\mathbf{k}\uparrow} \qquad \qquad \hat{A}^\dagger = \sum_{\mathbf{k}} c_{\mathbf{k}\uparrow}^\dagger \;\; \hat{c}_{-\mathbf{k}\downarrow}^\dagger$$

and the pairing potential $V_{\mathbf{k},\mathbf{k}'} \equiv -g$.

The BCS Hamiltonian

We now apply the path integral formalism to the BCS model

$$\hat{H} = \sum_{\mathbf{k},\sigma} \xi_{\mathbf{k}} \; \hat{c}^{\dagger}_{\mathbf{k}\sigma} \hat{c}_{\mathbf{k}\sigma} - g \; \hat{A}^{\dagger} \hat{A}$$

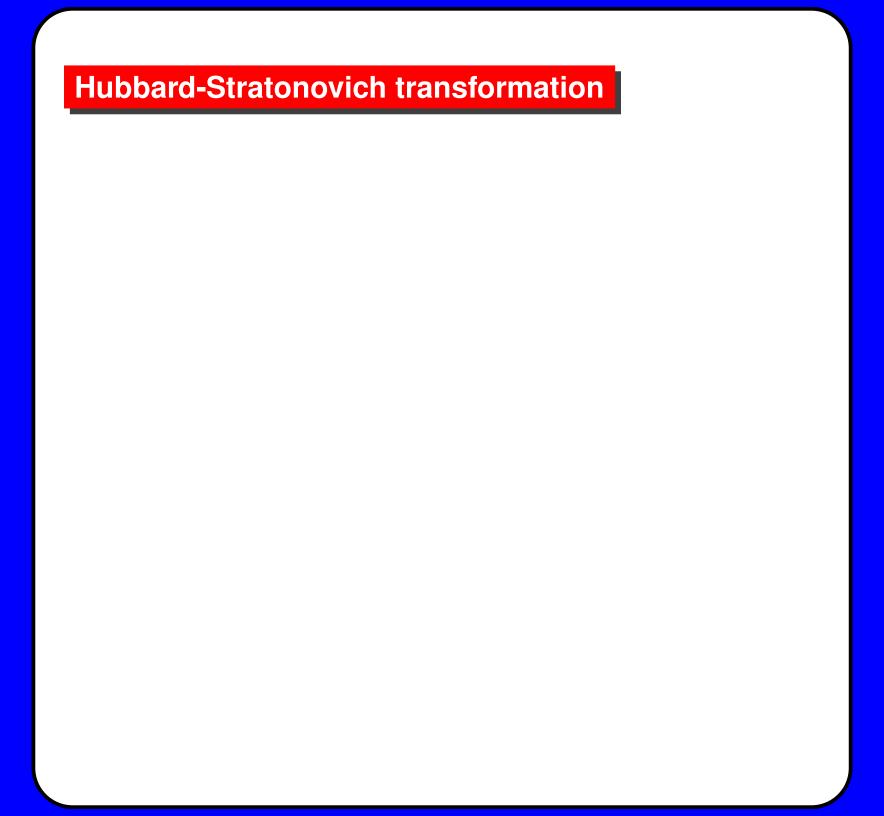
with the pair operators defined by

$$\hat{A} = \sum_{\mathbf{k}} \hat{c}_{-\mathbf{k}\downarrow} c_{\mathbf{k}\uparrow} \qquad \qquad \hat{A}^\dagger = \sum_{\mathbf{k}} c_{\mathbf{k}\uparrow}^\dagger \;\; \hat{c}_{-\mathbf{k}\downarrow}^\dagger$$

and the pairing potential $V_{\mathbf{k},\mathbf{k}'} \equiv -g$.

The partition function $\mathcal{Z}=\int D[c^*,c]e^{-S}$ contains the action

$$S = \int_0^eta \!\!\! d au \sum_{{
m k}\sigma} c_{{
m k}\sigma}^*(au) \left(\partial_ au + \xi_{
m k}
ight) c_{{
m k}\sigma}(au) - g A^*(au) A(au)$$



Hubbard-Stratonovich transformation

It is convenient to use the following identity

$$\int D[\Delta^*,\Delta] ext{exp} \left\{ -rac{1}{g} \int_0^eta d au \Delta^*(au) \Delta(au)
ight\} = 1$$

Hubbard-Stratonovich transformation

It is convenient to use the following identity

$$\int D[\Delta^*,\Delta] ext{exp} \left\{ -rac{1}{g} \int_0^eta d au \Delta^*(au) \Delta(au)
ight\} = 1$$

which is also valid if one imposes the shift

$$\Delta \longrightarrow \Delta + gA \qquad \quad \Delta^* \longrightarrow \Delta^* + gA^*$$

Hubbard-Stratonovich transformation

It is convenient to use the following identity

$$\int D[\Delta^*,\Delta] ext{exp} \left\{ -rac{1}{g} \int_0^eta d au \Delta^*(au) \Delta(au)
ight\} = 1$$

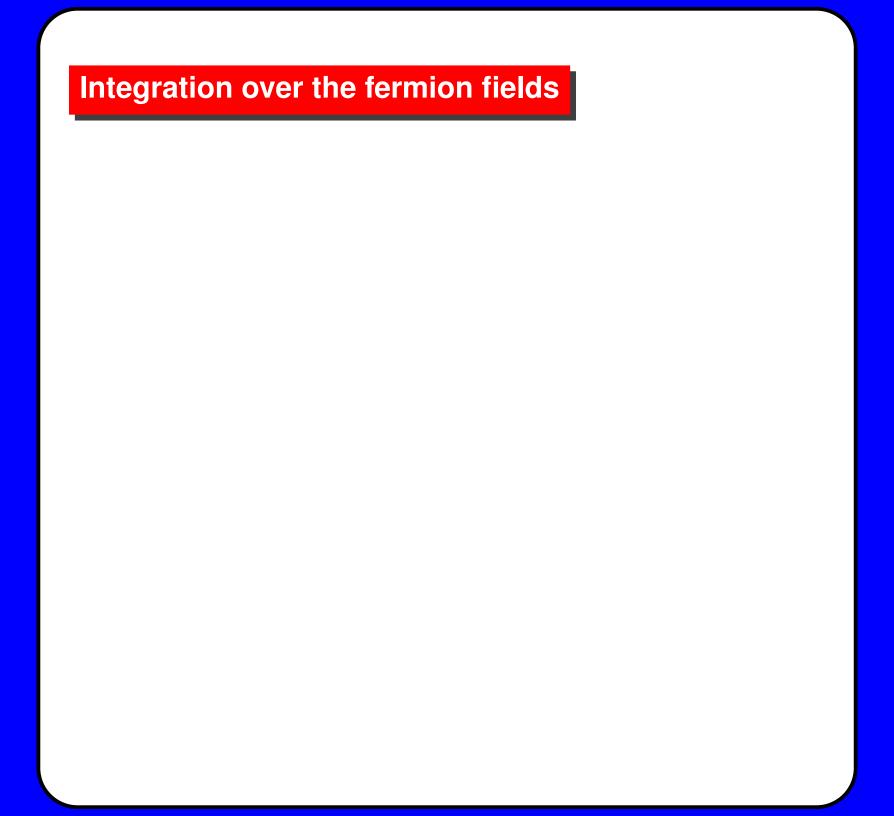
which is also valid if one imposes the shift

$$oldsymbol{\Delta} \longrightarrow oldsymbol{\Delta} + g A \qquad oldsymbol{\Delta}^* \longrightarrow oldsymbol{\Delta}^* + g A^*$$

Substituting it to the partition function $\mathcal{Z}=\int D[\Delta^*,\Delta,c^*,c]\;e^{-S}$

$$S = \int_0^eta d au \sum_{\mathbf{k}oldsymbol{\sigma}} oldsymbol{c_{\mathbf{k}oldsymbol{\sigma}}^*} \left(\partial_ au + oldsymbol{\xi_{\mathbf{k}}}
ight) oldsymbol{c_{\mathbf{k}oldsymbol{\sigma}}} + \Delta oldsymbol{A^*} + \Delta^*oldsymbol{A} + rac{1}{g}\Delta^*\Delta$$

we obtain the action which becomes quadratic in the fermion fields!



Integration over the fermion fields

The path integral can be now carried out $\frac{\text{exactly}}{\text{exactly}}$ with respect to the Grassmann variables $c_{\mathbf{k}\sigma}$ and $c_{\mathbf{k}\sigma}^*$ giving

$$\mathcal{Z} = \int D[\Delta^*, \Delta] \; e^{-S_{eff}[\Delta^*, \Delta]}$$

Integration over the fermion fields

The path integral can be now carried out $\frac{\text{exactly}}{\text{exactly}}$ with respect to the Grassmann variables $c_{\mathbf{k}\sigma}$ and $c_{\mathbf{k}\sigma}^*$ giving

$$\mathcal{Z} = \int D[\Delta^*, \Delta] \; e^{-S_{eff}[\Delta^*, \Delta]}$$

The effective action of the pairing (boson) field is given by

$$S_{eff}[\Delta^*,\Delta] = \int_0^eta d au \left(rac{\Delta^*(au)\Delta(au)}{g} + \sum_{f k} {
m Tr} \ln\left(\partial_ au + h_{f k}
ight)
ight)$$

Integration over the fermion fields

The path integral can be now carried out $\frac{\text{exactly}}{\text{exactly}}$ with respect to the Grassmann variables $c_{\mathbf{k}\sigma}$ and $c_{\mathbf{k}\sigma}^*$ giving

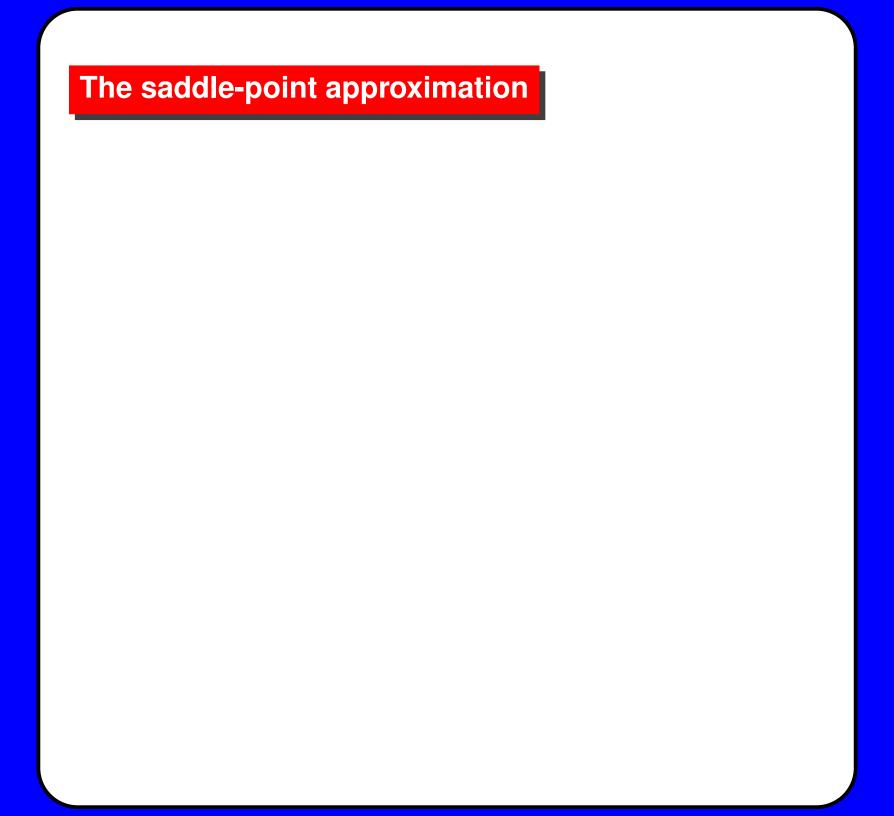
$$\mathcal{Z} = \int D[\Delta^*, \Delta] \; e^{-S_{eff}[\Delta^*, \Delta]}$$

The effective action of the pairing (boson) field is given by

$$S_{eff}[\Delta^*,\Delta] = \int_0^eta d au \left(rac{\Delta^*(au)\Delta(au)}{g} + \sum_{f k} {
m Tr} \ln\left(\partial_ au + h_{f k}
ight)
ight)$$

where

$$h_{
m k} = \left[egin{array}{ccc} \xi_{
m k} & \Delta(au) \ \Delta^*(au) & -\xi_{
m k} \end{array}
ight]$$



This problem can be solved exactly either if the pairing field $\Delta(\tau)$ is uniform or almost uniform (including the small Gaussian corrections).

This problem can be solved exactly either if the pairing field $\Delta(\tau)$ is uniform or almost uniform (including the small Gaussian corrections).

For the case of uniform $\Delta(\tau)=\Delta$ we obtain the determinant

$$\det\left(\partial_{ au}+h_{\mathrm{k}}
ight)=\Pi_{\mathrm{k}}\left(\omega_{n}^{2}+\xi_{\mathrm{k}}^{2}+|\Delta|^{2}
ight)$$

where $\omega_n = (2n+1)\pi\beta^{-1}$ is the Matsubara frequency.

This problem can be solved exactly either if the pairing field $\Delta(\tau)$ is uniform or almost uniform (including the small Gaussian corrections).

The partition function is related with the Free energy via $\mathcal{Z}=e^{-\beta F}$, so we finally get

$$F = -rac{1}{eta} \sum_{\mathbf{k},n} \ln \left(\omega_n^2 + \xi_\mathbf{k}^2 + |\Delta|^2
ight) + rac{|\Delta|^2}{g}$$

This problem can be solved exactly either if the pairing field $\Delta(\tau)$ is uniform or almost uniform (including the small Gaussian corrections).

The partition function is related with the Free energy via $\mathcal{Z}=e^{-\beta F}$, so we finally get

$$F = -rac{1}{eta} \sum_{\mathbf{k},n} \ln \left(\omega_n^2 + \xi_\mathbf{k}^2 + |\Delta|^2
ight) + rac{|\Delta|^2}{g}$$

Minimizing F with respect to Δ^* we obtain the BCS gap equation

$$rac{\partial F}{\partial \Delta^*} = 0 = -\sum_{ ext{k},n} rac{\Delta}{\omega_n^2 + \xi_ ext{k}^2 + |\Delta|^2} + rac{\Delta}{g}$$

This problem can be solved exactly either if the pairing field $\Delta(\tau)$ is uniform or almost uniform (including the small Gaussian corrections).

The partition function is related with the Free energy via $\mathcal{Z}=e^{-\beta F}$, so we finally get

$$F = -rac{1}{eta} \sum_{\mathbf{k},n} \ln \left(\omega_n^2 + \xi_\mathbf{k}^2 + |\Delta|^2
ight) + rac{|\Delta|^2}{g}$$

Minimizing F with respect to Δ^* we obtain the BCS gap equation

$$\Delta = g \sum_{\mathbf{k},n} rac{\Delta}{\omega_n^2 + \xi_\mathbf{k}^2 + |\Delta|^2}$$

This problem can be solved exactly either if the pairing field $\Delta(\tau)$ is uniform or almost uniform (including the small Gaussian corrections).

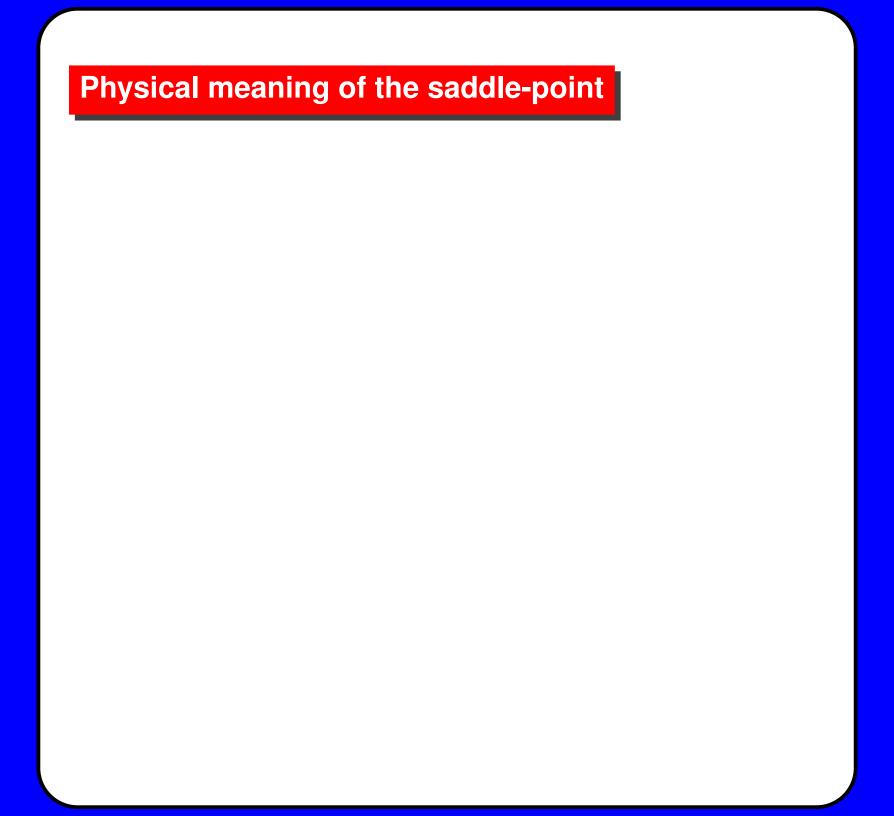
The partition function is related with the Free energy via $\mathcal{Z}=e^{-\beta F}$, so we finally get

$$F = -rac{1}{eta} \sum_{\mathbf{k},n} \ln \left(\omega_n^2 + \xi_\mathbf{k}^2 + |\Delta|^2
ight) + rac{|\Delta|^2}{g}$$

Minimizing F with respect to Δ^* we obtain the BCS gap equation

$$\Delta = g \sum_{\mathbf{k}} rac{\Delta}{2E_{\mathbf{k}}} anh \left(rac{eta E_{\mathbf{k}}}{2}
ight)$$

where
$$E_{\mathbf{k}} = \sqrt{\xi_{\mathbf{k}}^2 + |\Delta|^2}$$
.



Minimization of the Free energy with respect to Δ is equivalent to a concept of the *symmetry breaking* introduced in 1937 by Landau.

Minimization of the Free energy with respect to Δ is equivalent to a concept of the *symmetry breaking* introduced in 1937 by Landau.

On purely phenomenologial grounds Landau proposed to express ${\cal F}$ as a functional of the *order parameter*

$$F[\Delta^*,\Delta] = -a \left(T_c - T
ight)^2 |\Delta|^2 \ + \ b |\Delta|^4$$

Minimization of the Free energy with respect to Δ is equivalent to a concept of the *symmetry breaking* introduced in 1937 by Landau.

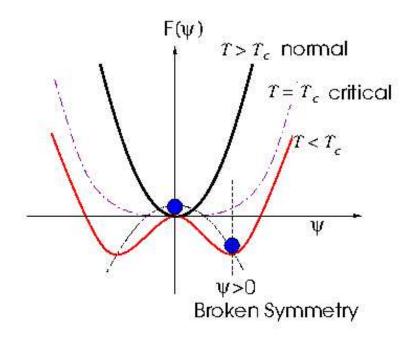
On purely phenomenologial grounds Landau proposed to express ${\cal F}$ as a functional of the ${\it order\ parameter}$

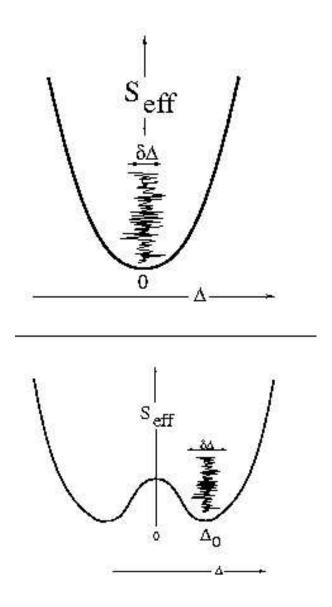
$$F[\Delta^*,\Delta] = -a \left(T_c - T
ight)^2 |\Delta|^2 \ + \ b |\Delta|^4$$

Minimization of the Free energy with respect to Δ is equivalent to a concept of the *symmetry breaking* introduced in 1937 by Landau.

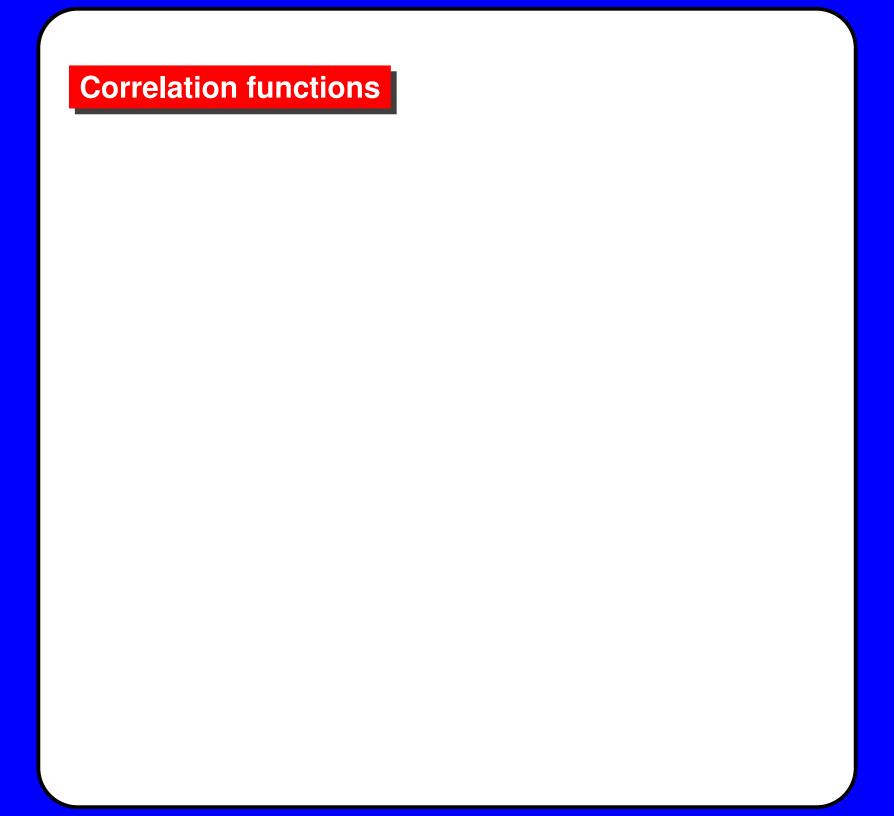
On purely phenomenologial grounds Landau proposed to express ${\cal F}$ as a functional of the *order parameter*

$$F[\Delta^*,\Delta] = -a \left(T_c - T
ight)^2 |\Delta|^2 \ + \ b |\Delta|^4$$





One can also include some fluctuations around the saddle-point.



Various dynamical quantities such as the correlation functions can be derived using the **generating functional**

Various dynamical quantities such as the correlation functions can be derived using the **generating functional**

$$\mathcal{G}[\chi,\chi^*] = \log \left[\mathcal{Z}^{-1} \int D[c^*,c] e^{-(S + \sum_{\mathbf{k},\sigma} c^*_{\mathbf{k}\sigma} \chi_{\mathbf{k}\sigma} + \chi^*_{\mathbf{k}\sigma} c_{\mathbf{k}\sigma})} \right]$$

with $\chi_{\mathbf{k}\sigma}$ and $\chi_{\mathbf{k}\sigma}^*$ being the source fields.

Various dynamical quantities such as the correlation functions can be derived using the **generating functional**

$$\mathcal{G}[\chi,\chi^*] = \log \left[\mathcal{Z}^{-1} \int D[c^*,c] e^{-(S + \sum_{\mathbf{k},\sigma} c^*_{\mathbf{k}\sigma} \chi_{\mathbf{k}\sigma} + \chi^*_{\mathbf{k}\sigma} c_{\mathbf{k}\sigma})} \right]$$

with $\chi_{\mathbf{k}\sigma}$ and $\chi_{\mathbf{k}\sigma}^*$ being the source fields.

For instance, the two-point Green's function is

$$rac{\delta}{\delta\chi_{{
m k}\sigma}^{*}}\,rac{\delta}{\delta\chi_{{
m k}\sigma}}\,{\cal G}[\chi,\chi^{*}]_{|_{\chi=0,\chi^{*}=0}}$$

Various dynamical quantities such as the correlation functions can be derived using the **generating functional**

$$\mathcal{G}[\chi,\chi^*] = \log\left[\mathcal{Z}^{-1} \int D[c^*,c] e^{-(S+\sum_{\mathbf{k},\sigma} c^*_{\mathbf{k}\sigma} \chi_{\mathbf{k}\sigma} + \chi^*_{\mathbf{k}\sigma} c_{\mathbf{k}\sigma})}\right]$$

with $\chi_{\mathbf{k}\sigma}$ and $\chi_{\mathbf{k}\sigma}^*$ being the source fields.

For instance, the two-point Green's function is

$$rac{\delta}{\delta\chi_{{
m k}\sigma}^{*}}\,rac{\delta}{\delta\chi_{{
m k}\sigma}}\,{\cal G}[\chi,\chi^{*}]_{|_{\chi=0,\chi^{*}=0}}$$

A more specific discussion can be found e.g. in

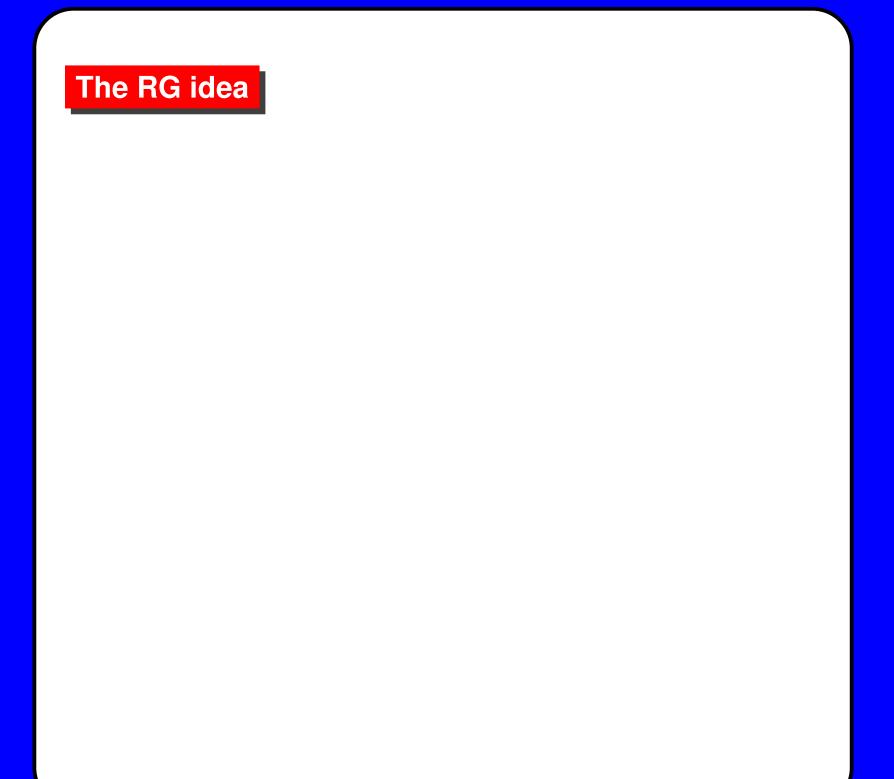
V.N. Popov,

Functional integrals and collective excitations, Cambridge Univ. Press (1987);

J.W. Negele and H. Orland,

Quantum many-particle systems, Perseus Books (1998).

III. Renormalization Group



Physically the most relevant degrees of freedom are located near the Fermi surface hence we can adopt the following scheme:

Physically the most relevant degrees of freedom are located near the Fermi surface hence we can adopt the following scheme:

$$\mathcal{Z} = \int D^{<\Lambda}[c^*,c] \; \int D^{>\Lambda}[c^*,c] \; e^{-S[c^*,c]}$$

Physically the most relevant degrees of freedom are located near the Fermi surface hence we can adopt the following scheme:

$$\mathcal{Z} = \int D^{<\Lambda}[c^*,c] \; \int D^{>\Lambda}[c^*,c] \; e^{-S[c^*,c]}$$

It is then useful to introduce the *renormalized* action $S^{\Lambda}[c^*,c]$

$$e^{-S^{\Lambda}[c^*,c]} = \int D^{>\Lambda}[c^*,c] \;\; e^{-S[c^*,c]}$$

Physically the most relevant degrees of freedom are located near the Fermi surface hence we can adopt the following scheme:

$$\mathcal{Z} = \int D^{<\Lambda}[c^*,c] \; \int D^{>\Lambda}[c^*,c] \; e^{-S[c^*,c]}$$

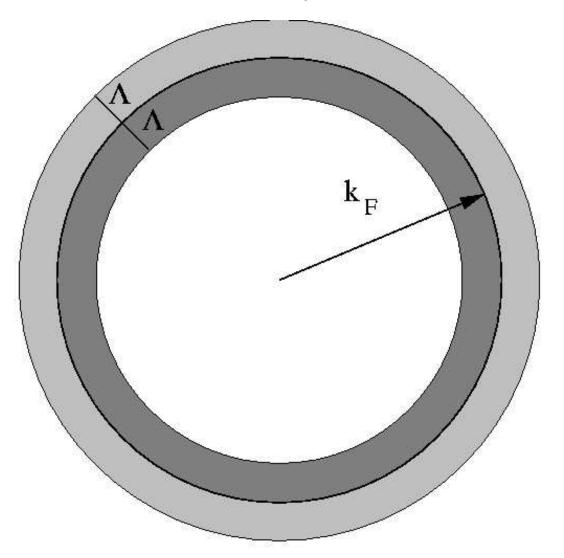
It is then useful to introduce the *renormalized* action $S^{\Lambda}[c^*,c]$

$$e^{-S^{\Lambda}[c^*,c]} = \int D^{>\Lambda}[c^*,c] \;\; e^{-S[c^*,c]}$$

so that the generating functional becomes

$$\mathcal{G}[\chi,\chi^*] = \log \left[\mathcal{Z}^{-1} \int D^{<\Lambda}[c^*,c] e^{-S^{\Lambda} - \int_k^{<\Lambda} c_{\mathbf{k}\sigma}^* \chi_{\mathbf{k}\sigma} + c_{\mathbf{k}\sigma} \chi_{\mathbf{k}\sigma}^*} \right]$$

Mode elimination in the momentum space:



Fast modes (i.e. fermion fields outside the shell of width 2Λ) are integrated out and the leftover contains only slow modes which are relevant for the physically observed properties.

Nobel Prize in Physics 1982

Kenneth Wilson

for his theory of critical phenomena in connection with phase transitions

Upon a succesive decrease of the energy cut-off Λ toward the Fermi energy the high energy excitations are integrated out. This leads simultaneously to:

 \Rightarrow the Λ -dependent scaling of such quantities like the interaction potentials, quasiparticle masses, etc

- \Rightarrow the Λ -dependent scaling of such quantities like the interaction potentials, quasiparticle masses, etc
- ⇒ position of the Fermi surface might drift

- \Rightarrow the Λ -dependent scaling of such quantities like the interaction potentials, quasiparticle masses, etc
- ⇒ position of the Fermi surface might drift
- ⇒ topology of the Fermi surface might deform

- \Rightarrow the Λ -dependent scaling of such quantities like the interaction potentials, quasiparticle masses, etc
- ⇒ position of the Fermi surface might drift
- ⇒ topology of the Fermi surface might deform
- ⇒ and sometimes even the Fermi surface itself might completely break down!

Upon a succesive decrease of the energy cut-off Λ toward the Fermi energy the high energy excitations are integrated out. This leads simultaneously to:

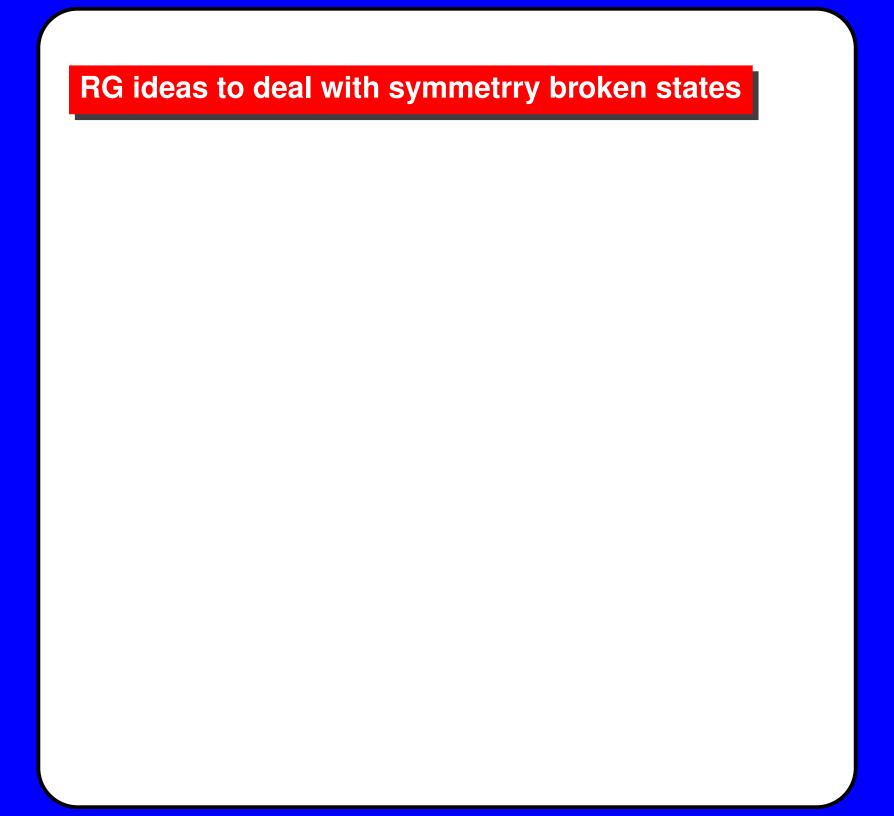
- \Rightarrow the Λ -dependent scaling of such quantities like the interaction potentials, quasiparticle masses, etc
- ⇒ position of the Fermi surface might drift
- ⇒ topology of the Fermi surface might deform
- ⇒ and sometimes even the Fermi surface itself might completely break down!

In case of the symmetry broken phases the scaling procedure is additionally complicated due to a lower boundary (the energy gap $|\Delta|$).

The conventional RG techniques are blind with respect to the symmetry-broken states which are separated by energy barrier from the symmetric state.

R. Gersch, J. Reiss and C. Honerkamp, Progr. Theor. Phys. (2006).

IV. Recent RG extentions



RG ideas to deal with symmetrry broken states

1. A small symmetry-breaking component $\Delta(\Lambda_0)$ is imposed at a certain initial condition Λ_0 . Its physical meaning establishes from the flow to the asymptotic fixed point

$$\Delta = \lim_{\Lambda o 0} \Delta(\Lambda)$$

M. Salmhofer et al, Progr. Theor. Phys. 112, 943 (2004).

RG ideas to deal with symmetrry broken states

1. A small symmetry-breaking component $\Delta(\Lambda_0)$ is imposed at a certain initial condition Λ_0 . Its physical meaning establishes from the flow to the asymptotic fixed point

$$\Delta = \lim_{\Lambda o 0} \Delta(\Lambda)$$

M. Salmhofer et al, Progr. Theor. Phys. 112, 943 (2004).

2. One introduceds the collective boson fields Φ , Φ^* via the Hubbard- Stratonovich transformation. Some effective Fermi-Bose theory is then developed using the functional RG equations.

$$S = S_0[c,c^*] + S_0[\Phi,\Phi^*] + S_I[c,c^*,\Phi,\Phi^*]$$

F. Schütz, L. Bartosch, P. Kopietz, Phys. Rev. B 72, 035107 (2005).

Continuous unitary transformation

Instead of integrating out the fast modes (high energy sector) one constructs the canonical transformation $\hat{H}(l) = \hat{U}(l)\hat{H}\hat{U}^{\dagger}(l)$ such that:

• Hamiltonian is diagonalized in a series of infinitesimal steps

$$\hat{m{H}} \longrightarrow ... \longrightarrow \hat{m{H}}(l) \longrightarrow ... \longrightarrow \hat{m{H}}(\infty)$$

with l being a continuous parameter

evolution of the Hamiltonian is governed by the flow equation

$$egin{aligned} \partial_l \hat{H}(l) = \left[\hat{\eta}(l), \hat{H}(l)
ight] \end{aligned}$$

where formally $\hat{\eta}(l) = -\hat{U}(l) \; \partial_l \hat{U}^{\dagger}(l)$.

F. Wegner, Annalen der Physik 3, 77 (1994).

Comparison to the usual RG method

Similarities:

- diagonalization of the high energy states occurs mainly during the first part of the transformation
- the low energy states are diagonalized at the very end of transformation

Roughly speaking, one can draw the following relation to the Wilson's numerical RG method:

$$rac{1}{\sqrt{l}} \longleftrightarrow \Gamma$$

Differences:

Throughout the continuous canonical transformation one keeps track of the slow and high energy modes, therefore their mutual feedback effects can be analyzed.

Practical choice

For Hamiltonians with the following structure

$$\hat{m{H}}=\hat{m{H}}_0+\hat{m{H}}_1$$

one can choose

$$\hat{\eta}(l) = \left[\hat{H}_0(l), \hat{H}_1(l)
ight]$$

and then

$$\lim_{l\to\infty}\hat{H}_1(l)=0$$

Other possible ways for constructing the generating operator $\hat{\eta}$ have been discussed by various authors. For a detailed information see for instance:

S. Kehrein, Springer Tracts in Modern Physics **217**, (2006);

F. Wegner, J. Phys. A: Math. Gen. 39, 8221 (2006).

The bilinear Hamiltonian:

$$\hat{H} = \sum_{\mathbf{k},\sigma} \xi_{\mathbf{k}} \hat{c}^{\dagger}_{\mathbf{k}\sigma} \hat{c}_{\mathbf{k}\sigma} - \sum_{\mathbf{k}} \left(\Delta_{\mathbf{k}} \hat{c}^{\dagger}_{\mathbf{k}\uparrow} \ \hat{c}^{\dagger}_{-\mathbf{k}\downarrow} + \Delta^{*}_{\mathbf{k}} \hat{c}_{-\mathbf{k}\downarrow} \hat{c}_{\mathbf{k}\uparrow} \
ight)$$

The bilinear Hamiltonian:

$$\hat{H} = \sum_{\mathbf{k},\sigma} \xi_{\mathbf{k}} \hat{c}^{\dagger}_{\mathbf{k}\sigma} \hat{c}_{\mathbf{k}\sigma} - \sum_{\mathbf{k}} \left(\Delta_{\mathbf{k}} \hat{c}^{\dagger}_{\mathbf{k}\uparrow} \; \hat{c}^{\dagger}_{-\mathbf{k}\downarrow} + \Delta^{*}_{\mathbf{k}} \hat{c}_{-\mathbf{k}\downarrow} \hat{c}_{\mathbf{k}\uparrow} \;
ight)$$

This (reduced BCS) Hamiltonian can be solved exactly using e.g. the Bogoliubov transformation

The bilinear Hamiltonian:

$$\hat{H} = \sum_{\mathbf{k},\sigma} \xi_{\mathbf{k}} \hat{c}^{\dagger}_{\mathbf{k}\sigma} \hat{c}_{\mathbf{k}\sigma} - \sum_{\mathbf{k}} \left(\Delta_{\mathbf{k}} \hat{c}^{\dagger}_{\mathbf{k}\uparrow} \ \hat{c}^{\dagger}_{-\mathbf{k}\downarrow} + \Delta^{*}_{\mathbf{k}} \hat{c}_{-\mathbf{k}\downarrow} \hat{c}_{\mathbf{k}\uparrow} \
ight)$$

This (reduced BCS) Hamiltonian can be solved exactly using e.g. the Bogoliubov transformation

$$egin{array}{lll} \hat{c}_{\mathrm{k}\uparrow} &=& u_{\mathrm{k}} \; \hat{c}_{\mathrm{k}\uparrow} \; + v_{\mathrm{k}} \; \hat{c}_{-\mathrm{k}\downarrow}^{\dagger} \ \hat{c}_{-\mathrm{k}\downarrow}^{\dagger} &=& -v_{\mathrm{k}} \; \hat{c}_{\mathrm{k}\uparrow} \; + u_{\mathrm{k}} \; \hat{c}_{-\mathrm{k}\downarrow}^{\dagger} \end{array}$$

The bilinear Hamiltonian:

$$\hat{H} = \sum_{\mathbf{k},\sigma} \xi_{\mathbf{k}} \hat{c}^{\dagger}_{\mathbf{k}\sigma} \hat{c}_{\mathbf{k}\sigma} - \sum_{\mathbf{k}} \left(\Delta_{\mathbf{k}} \hat{c}^{\dagger}_{\mathbf{k}\uparrow} \ \hat{c}^{\dagger}_{-\mathbf{k}\downarrow} + \Delta^{*}_{\mathbf{k}} \hat{c}_{-\mathbf{k}\downarrow} \hat{c}_{\mathbf{k}\uparrow} \
ight)$$

This (reduced BCS) Hamiltonian can be solved exactly using e.g. the Bogoliubov transformation

$$egin{array}{lll} \hat{c}_{\mathrm{k}\uparrow} &=& u_{\mathrm{k}} \; \hat{c}_{\mathrm{k}\uparrow} \; + v_{\mathrm{k}} \; \hat{c}_{-\mathrm{k}\downarrow}^{\dagger} \ \hat{c}_{-\mathrm{k}\downarrow}^{\dagger} &=& -v_{\mathrm{k}} \; \hat{c}_{\mathrm{k}\uparrow} \; + u_{\mathrm{k}} \; \hat{c}_{-\mathrm{k}\downarrow}^{\dagger} \end{array}$$

N.N. Bogoliubov, Sov. Phys. JETP 7, 41 (1948)

Here we solve the operator equation

$$\partial_l \hat{H} = \left[\hat{\eta}, \hat{H}
ight]$$

Here we solve the operator equation

$$\partial_l \hat{H} = \left[\hat{\eta}, \hat{H}
ight]$$

and obtain the set of coupled flow equations

$$egin{array}{lll} \partial_l \ \xi_{
m k}(l) &=& 4 \xi_{
m k}(l) \ |\Delta_{
m k}(l)|^2 \ \ \partial_l \ \Delta_{
m k}(l) &=& -4 |\xi_{
m k}(l)|^2 \ \Delta_{
m k}^*(l) \end{array}$$

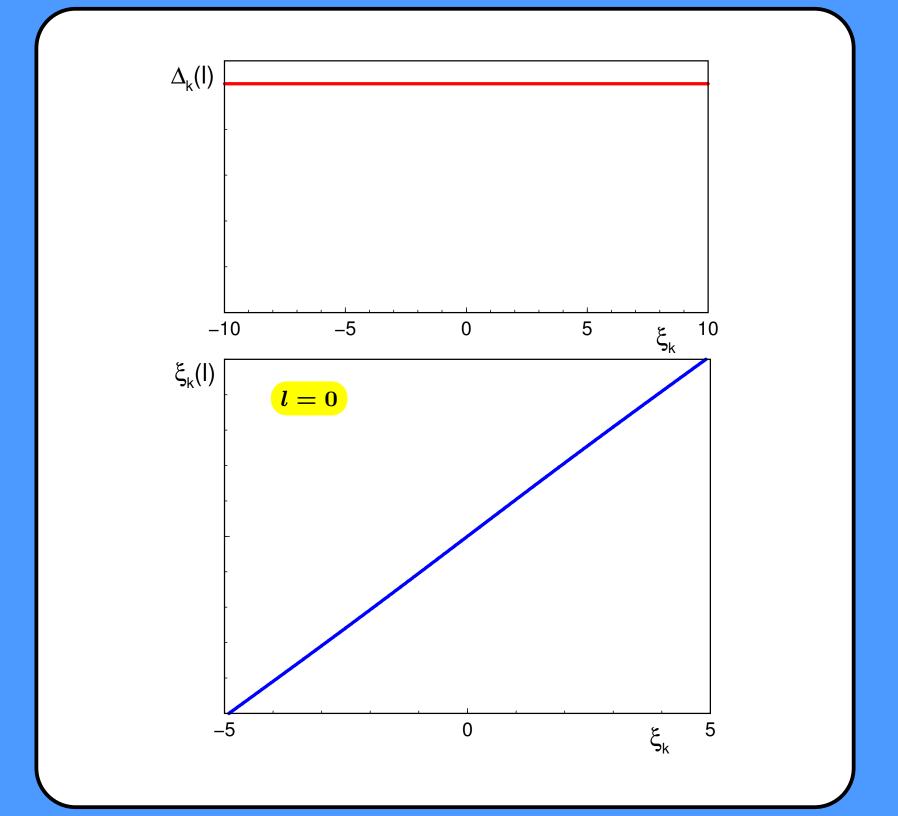
Here we solve the operator equation

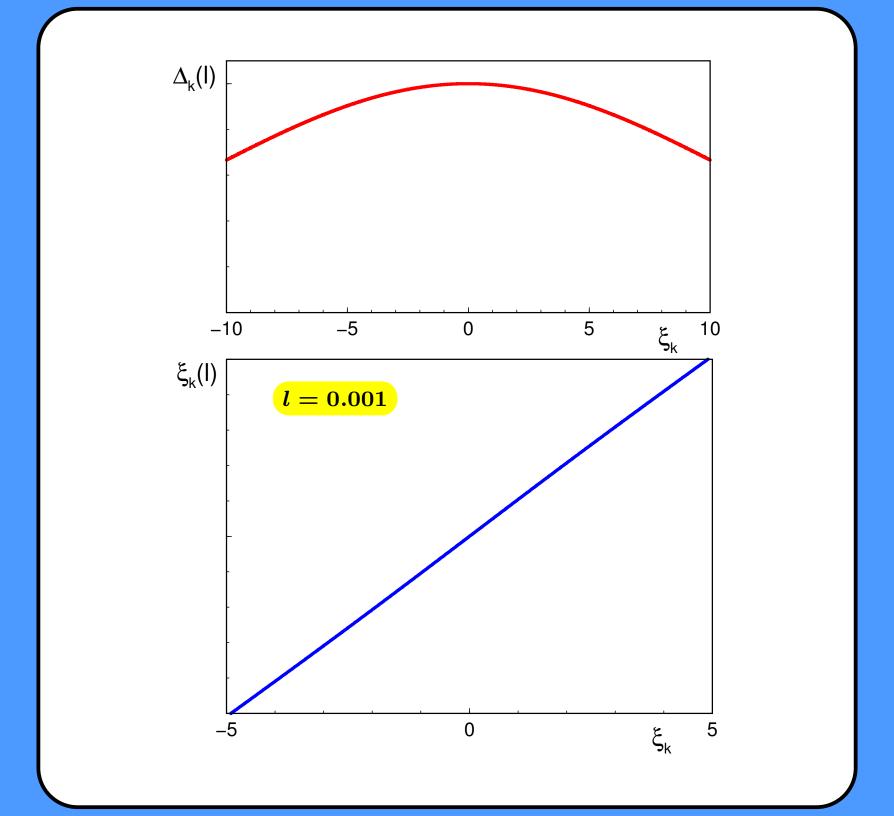
$$\partial_l \hat{H} = \left[\hat{\eta}, \hat{H}
ight]$$

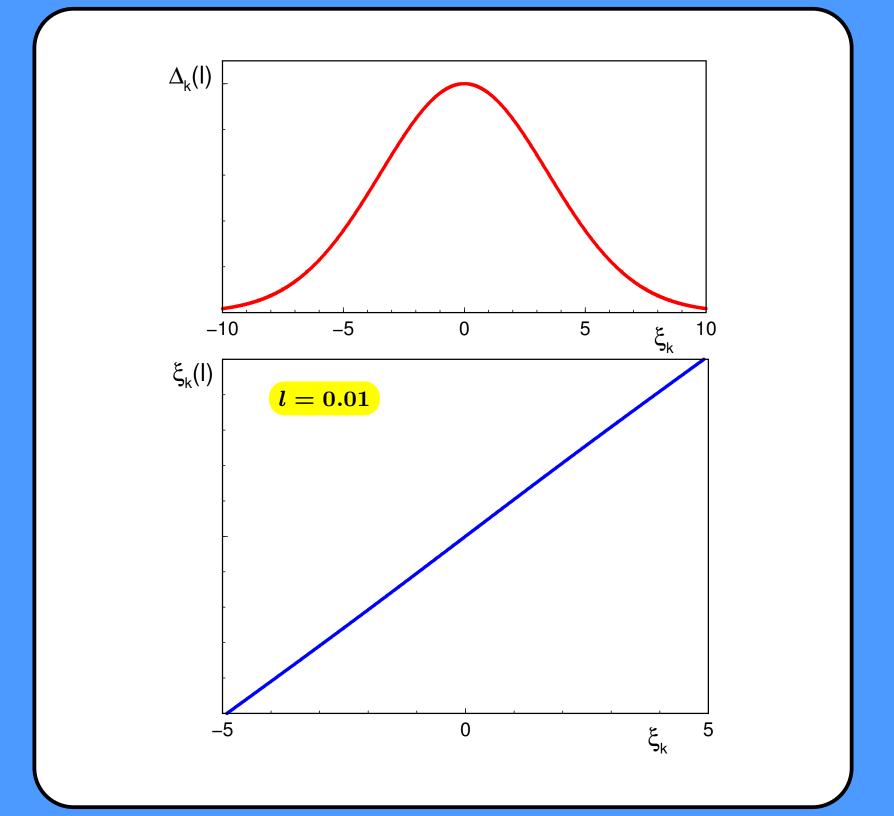
and obtain the set of coupled flow equations

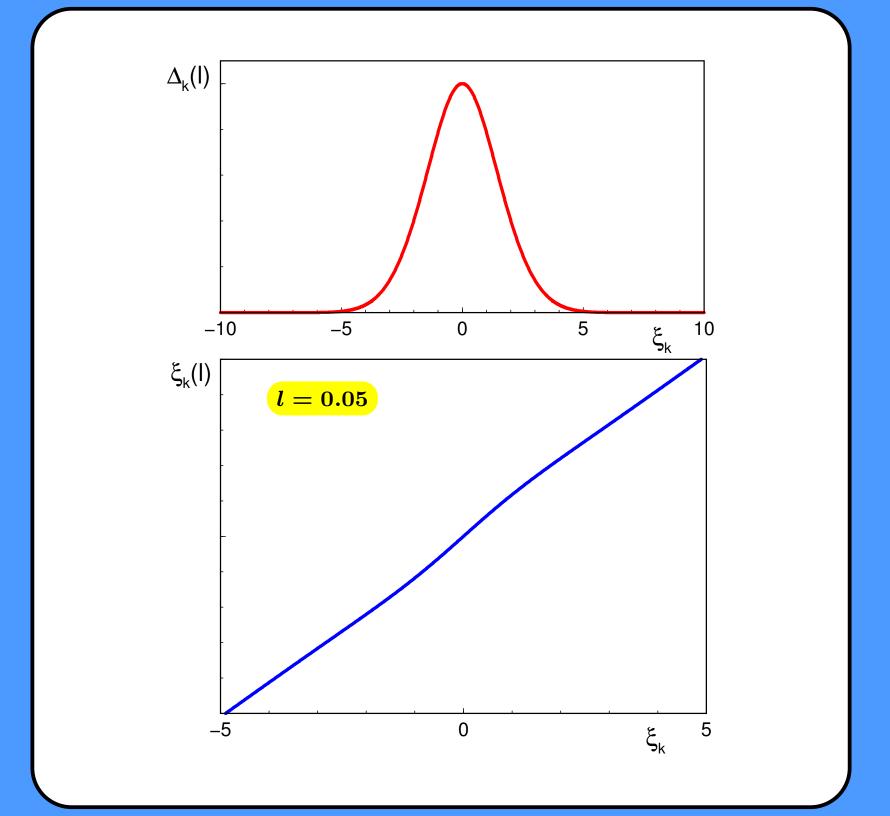
$$egin{array}{lll} \partial_l \ \xi_{
m k}(l) &=& 4 \xi_{
m k}(l) \ |\Delta_{
m k}(l)|^2 \ \ \partial_l \ \Delta_{
m k}(l) &=& -4 |\xi_{
m k}(l)|^2 \ \Delta_{
m k}^*(l) \end{array}$$

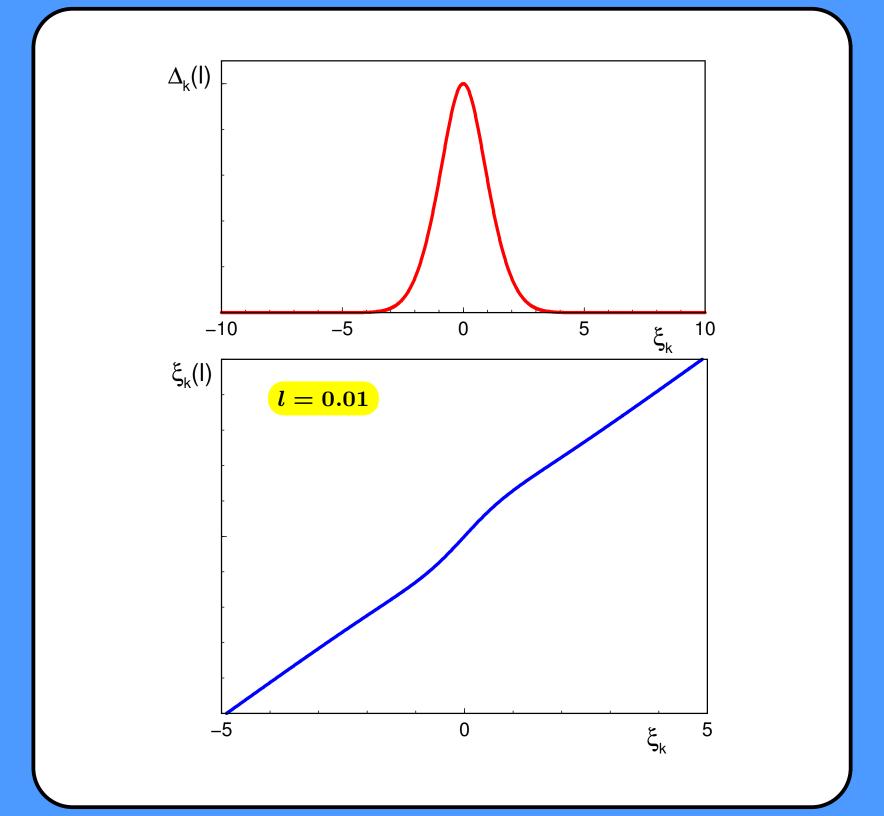
T. Domański, cond-mat/0602236 (to be published).

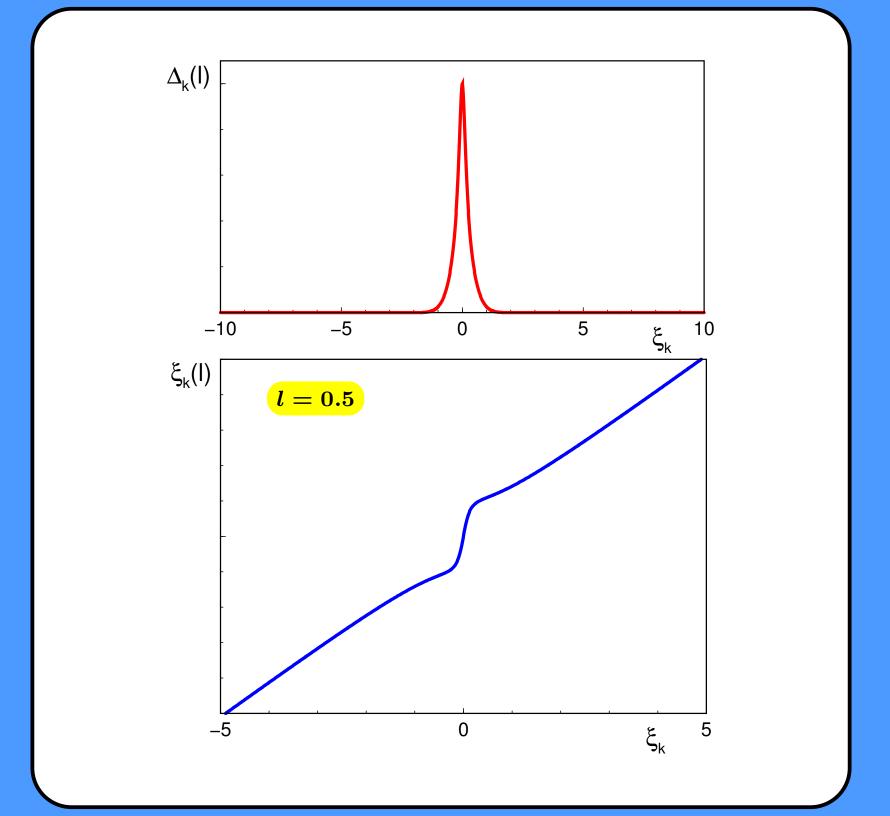


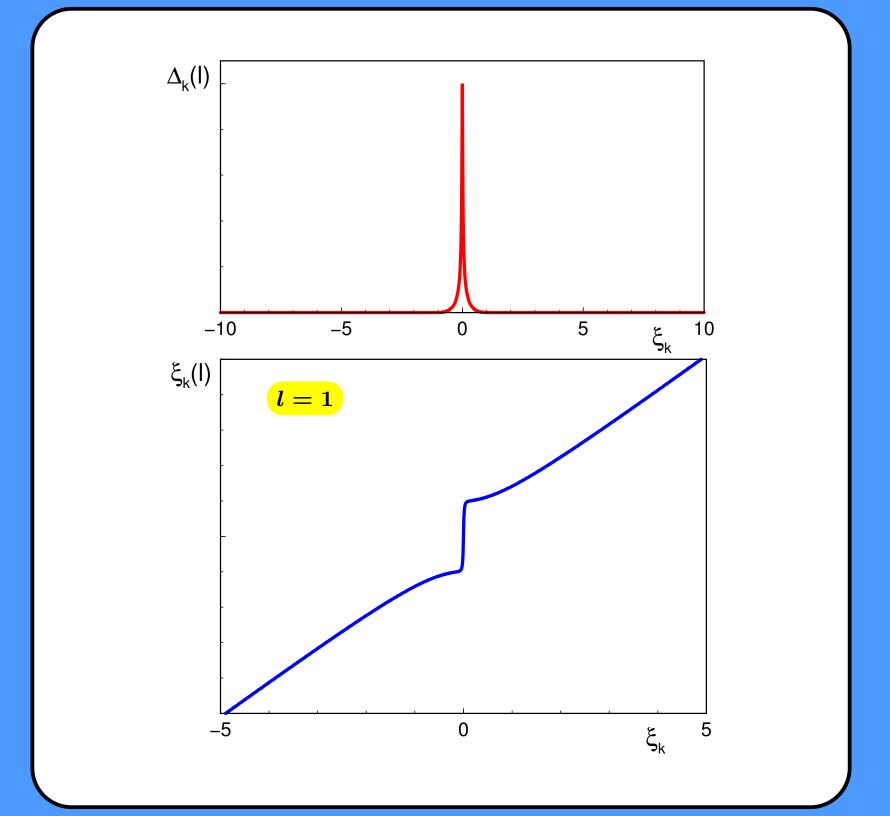


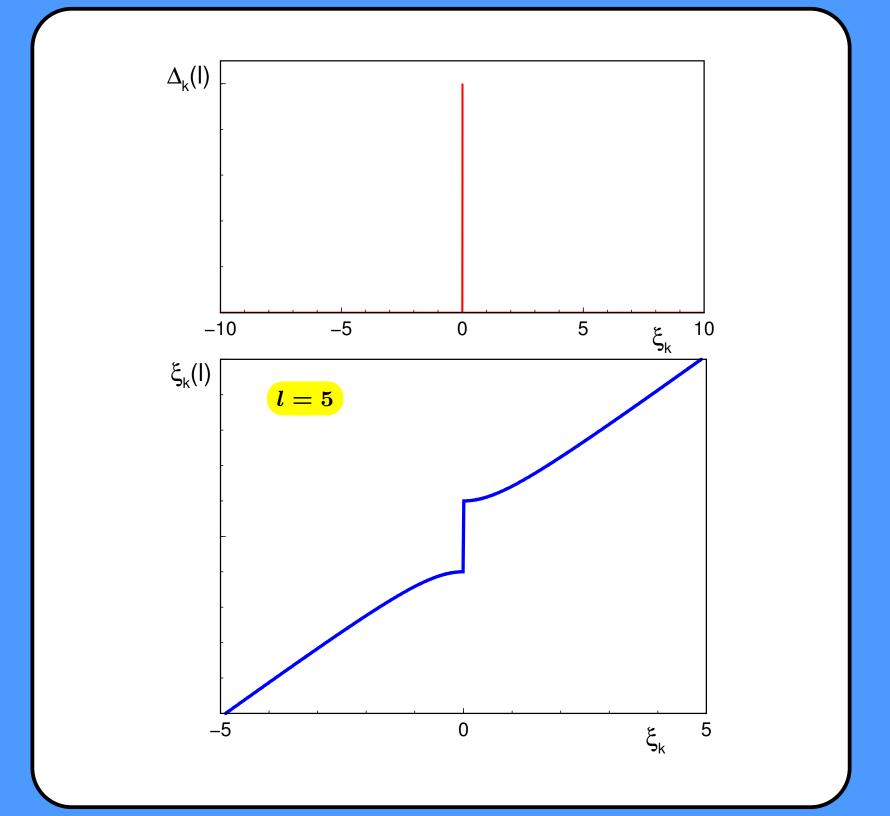


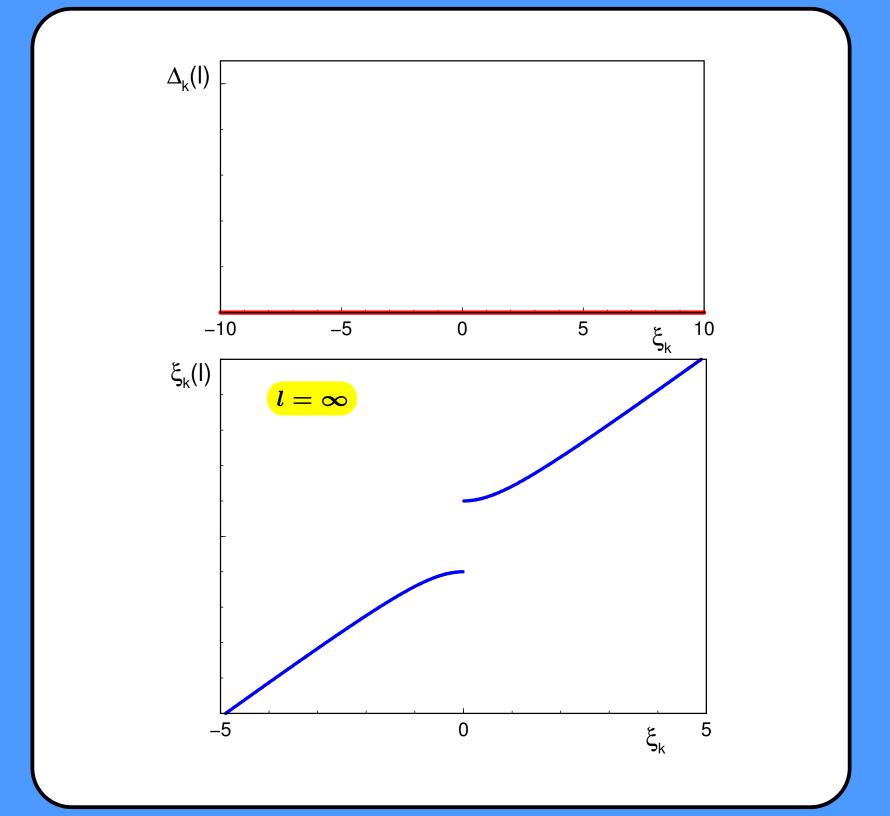


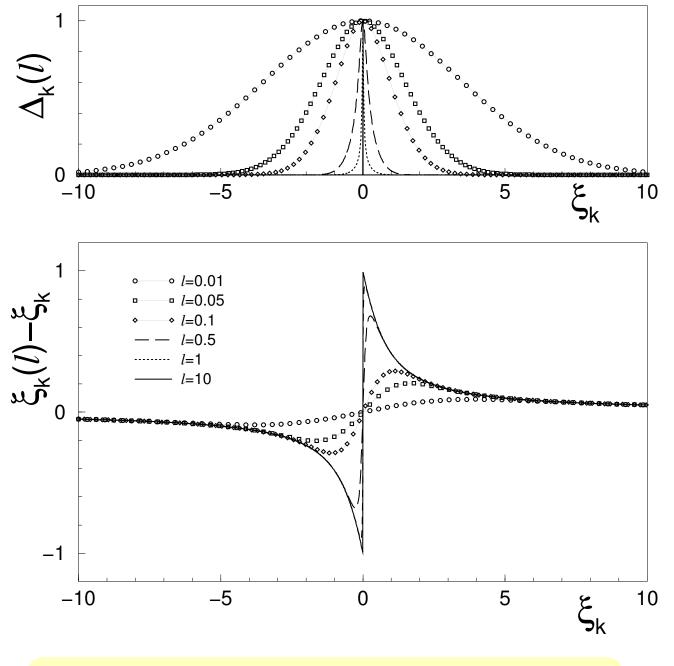












Renormalization of $\Delta_{\mathbf{k}}(l)$ and $\xi_{\mathbf{k}}(l)$ during the flow.

2. The real challenge

Boson-fermion model

$$egin{array}{lll} H &=& \sum_{\mathbf{k}\sigma} \left(arepsilon_{\mathbf{k}} - \mu
ight) c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + \sum_{\mathbf{q}} \left(E_{\mathbf{q}} - 2 \mu
ight) b_{\mathbf{q}}^{\dagger} b_{\mathbf{q}} \\ &+& rac{1}{\sqrt{N}} \sum_{\mathbf{k},\mathbf{q}} v_{\mathbf{k},\mathbf{q}} \left[b_{\mathbf{q}}^{\dagger} c_{\mathbf{k},\downarrow} c_{\mathbf{q}-\mathbf{k},\uparrow} & + ext{h.c.}
ight] \end{array}$$

2. The real challenge

Boson-fermion model

$$egin{array}{lll} H & = & \sum_{\mathbf{k}\sigma} \left(arepsilon_{\mathbf{k}} - \mu
ight) c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + \sum_{\mathbf{q}} \left(E_{\mathbf{q}} - 2 \mu
ight) b_{\mathbf{q}}^{\dagger} b_{\mathbf{q}} \\ & + & \frac{1}{\sqrt{N}} \sum_{\mathbf{k},\mathbf{q}} v_{\mathbf{k},\mathbf{q}} \left[b_{\mathbf{q}}^{\dagger} c_{\mathbf{k},\downarrow} c_{\mathbf{q}-\mathbf{k},\uparrow} & + ext{h.c.}
ight] \end{array}$$

Such Hamiltonian is obtained by elliminating the two-body interactions via the Hubbard-Stratonovich transformation

2. The real challenge

Boson-fermion model

$$egin{array}{lll} H &=& \sum_{\mathbf{k}\sigma} \left(arepsilon_{\mathbf{k}} - \mu
ight) c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + \sum_{\mathbf{q}} \left(E_{\mathbf{q}} - 2 \mu
ight) b_{\mathbf{q}}^{\dagger} b_{\mathbf{q}} \\ &+& rac{1}{\sqrt{N}} \sum_{\mathbf{k},\mathbf{q}} v_{\mathbf{k},\mathbf{q}} \left[b_{\mathbf{q}}^{\dagger} c_{\mathbf{k},\downarrow} c_{\mathbf{q}-\mathbf{k},\uparrow} & + ext{h.c.}
ight] \end{array}$$

Such Hamiltonian is obtained by elliminating the two-body interactions via the Hubbard-Stratonovich transformation

$$\sum_{\mathrm{k}'} c_{\mathrm{q-k}',\uparrow}^{\dagger} \,\, c_{\mathrm{k}',\downarrow}^{\dagger} \longrightarrow b_{\mathrm{q}}^{\dagger}$$

In order to study the many-body effects we construct

In order to study the many-body effects we construct

the continuous canonical transformation $e^{\hat{S(l)}}\hat{H}e^{-\hat{S}(l)}$

In order to study the many-body effects we construct the continuous canonical transformation $e^{\hat{S(l)}}\hat{H}e^{-\hat{S}(l)}$ which decouples the boson from fermion parts.

In order to study the many-body effects we construct the continuous canonical transformation $e^{\hat{S(l)}}\hat{H}e^{-\hat{S}(l)}$ which decouples the boson from fermion parts.

Hamiltonian at l=0

$$\hat{H}_F + \hat{H}_B + \hat{V}_{BF}$$

In order to study the many-body effects we construct the continuous canonical transformation $e^{\hat{S(l)}}\hat{H}e^{-\hat{S}(l)}$ which decouples the boson from fermion parts.

Hamiltonian at $0 < l < \infty$

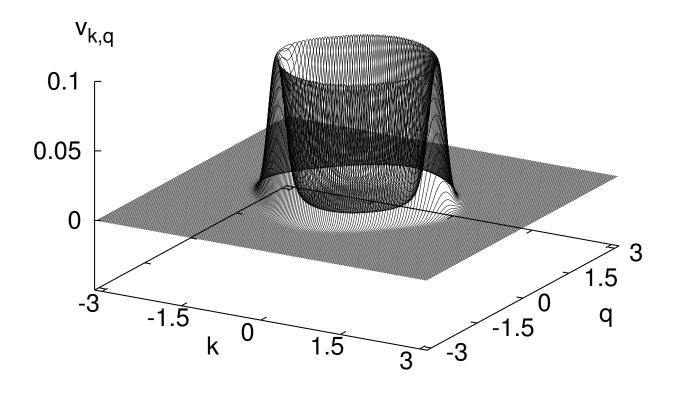
$$\hat{m{H}}_F(l) + \hat{m{H}}_B(l) + \hat{m{V}}_{BF}(l)$$

In order to study the many-body effects we construct the continuous canonical transformation $e^{\hat{S(l)}}\hat{H}e^{-\hat{S}(l)}$ which decouples the boson from fermion parts.

Hamiltonian at $l=\infty$

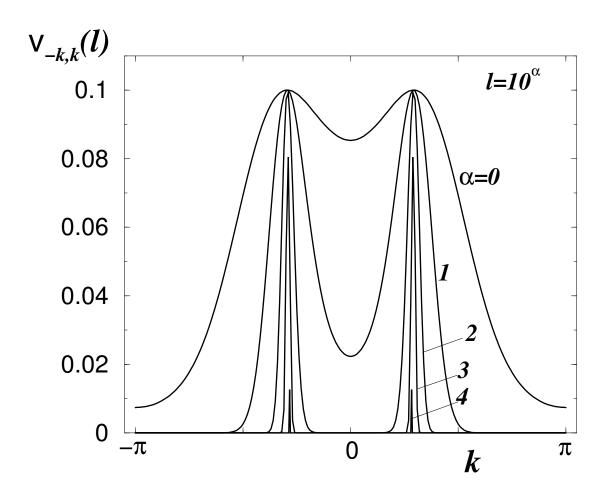
$$\hat{H}_F(\infty) + \hat{H}_B(\infty)$$

The boson-fermion coupling $v_{\mathbf{k},\mathbf{q}}(l)$ during the flow.



T. Domański, J. Ranninger, Phys. Rev. B 63, 134505 (2001).

Flow of the boson-fermion coupling element $v_{-\mathbf{k},\mathbf{k}}(l)$.



T. Domański, J. Ranninger, Phys. Rev. B 63, 134505 (2001).

In a course of transformation all parameters of the Hamiltonian become renormalized and at the fixed point $l \to \infty$:

In a course of transformation all parameters of the Hamiltonian become renormalized and at the fixed point $l \to \infty$:

* bosons acquire a finite mass

In a course of transformation all parameters of the Hamiltonian become renormalized and at the fixed point $l \to \infty$:

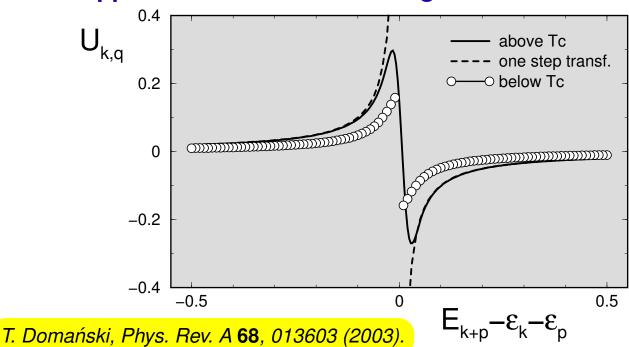
* fermion states are depleted near the Fermi surface

In a course of transformation all parameters of the Hamiltonian become renormalized and at the fixed point $l \to \infty$:

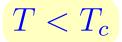
- * bosons acquire a finite mass
- * fermion states are depleted near the Fermi surface
- there appears a resonant scattering between fermions

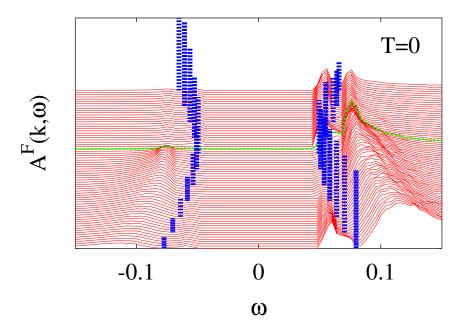
In a course of transformation all parameters of the Hamiltonian become renormalized and at the fixed point $l \to \infty$:

- * bosons acquire a finite mass
- ★ fermion states are depleted near the Fermi surface
- there appears a resonant scattering between fermions

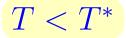


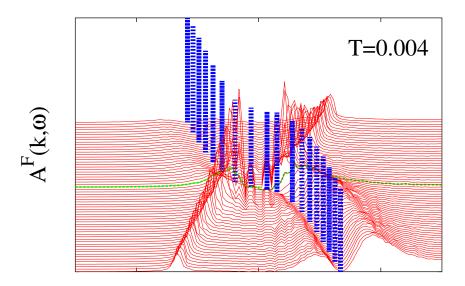
c) The single particle spectrum



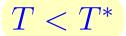


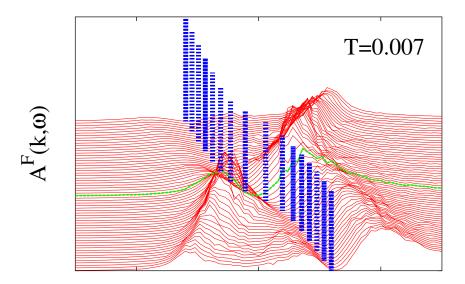
Below the critical temperature T_c there exist two branches of the excitations at energies $\omega = \pm \sqrt{(\varepsilon_{\mathbf{k}} - \mu)^2 + \Delta_{sc}^2}$ (like in the BCS theory).



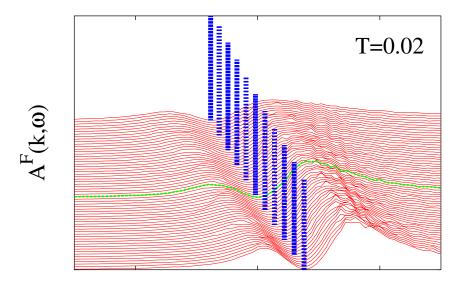


Pasing through T_c the Bogoliubov-type spectrum survives but one branch (the shaddow) gets damped. Physically it means that fermion pairs no longer have an infinite life-time.





Pasing through T_c the Bogoliubov-type spectrum survives but one branch (the shaddow) gets damped. Physically it means that fermion pairs no longer have an infinite life-time.



For temperatures far above T_c the Bogoliubov modes are completely gone. There remains only one well established single quasiparticle peak without a gaped dispersion.

Investigating the correlation function of the fermion pairs

$$\left\langle \sum_{\mathbf{k}} c_{\mathbf{k}\downarrow}(au) c_{\mathbf{q}-\mathbf{k}\uparrow} \ (au) \ \sum_{\mathbf{k'}} c_{\mathbf{q}-\mathbf{k'}\uparrow}^{\dagger} \ (au') c_{\mathbf{k'}\downarrow}^{\dagger}(au')
ight
angle$$

Investigating the correlation function of the fermion pairs

$$\left\langle \sum_{\mathbf{k}} c_{\mathbf{k}\downarrow}(au) c_{\mathbf{q}-\mathbf{k}\uparrow} \ (au) \ \sum_{\mathbf{k'}} c_{\mathbf{q}-\mathbf{k'}\uparrow}^{\dagger} \ (au') c_{\mathbf{k'}\downarrow}^{\dagger}(au')
ight
angle$$

we found that the corresponding spectral function

$$\mathcal{N}_{\mathrm{q}} \; \delta \left(\omega - ilde{E}_{\mathrm{q}}
ight) + \mathcal{A}_{\mathrm{k}}^{inc} \left(\omega
ight)$$

consists of:

Investigating the correlation function of the fermion pairs

$$\left\langle \sum_{\mathbf{k}} c_{\mathbf{k}\downarrow}(au) c_{\mathbf{q}-\mathbf{k}\uparrow} \ (au) \ \sum_{\mathbf{k'}} c_{\mathbf{q}-\mathbf{k'}\uparrow}^{\dagger} \ (au') c_{\mathbf{k'}\downarrow}^{\dagger}(au')
ight
angle$$

we found that the corresponding spectral function

$$\mathcal{N}_{\mathrm{q}} \; \delta \left(\omega - ilde{E}_{\mathrm{q}}
ight) + \mathcal{A}_{\mathrm{k}}^{inc} \left(\omega
ight)$$

consists of:

 \star the quasiparticle peak at $\omega = ilde{E}_{
m q}$

Investigating the correlation function of the fermion pairs

$$\left\langle \sum_{\mathbf{k}} c_{\mathbf{k}\downarrow}(au) c_{\mathbf{q}-\mathbf{k}\uparrow} \ (au) \ \sum_{\mathbf{k'}} c_{\mathbf{q}-\mathbf{k'}\uparrow}^{\dagger} \ (au') c_{\mathbf{k'}\downarrow}^{\dagger}(au')
ight
angle$$

we found that the corresponding spectral function

$$\mathcal{N}_{\mathrm{q}} \; \delta \left(\omega - ilde{E}_{\mathrm{q}}
ight) + \mathcal{A}_{\mathrm{k}}^{inc} \left(\omega
ight)$$

consists of:

- \star the quasiparticle peak at $\omega = ilde{E}_{
 m q}$
- \star and the incoherent background $\mathcal{A}_{\mathbf{k}}^{inc}(\omega)$.

Investigating the correlation function of the fermion pairs

$$\left\langle \; \sum_{f k} c_{{f k}\downarrow}(au) c_{{f q}-{f k}\uparrow} \; \; (au) \; \; \sum_{f k'} c_{{f q}-{f k'}\uparrow}^{\dagger} \; \; (au') c_{{f k'}\downarrow}^{\dagger}(au')
ight
angle$$

we found that the corresponding spectral function

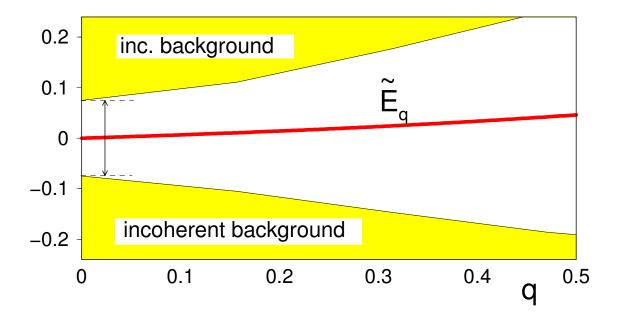
$$\mathcal{N}_{\mathrm{q}} \; \delta \left(\omega - ilde{E}_{\mathrm{q}}
ight) + \mathcal{A}_{\mathrm{k}}^{inc} \left(\omega
ight)$$

consists of:

- \star the quasiparticle peak at $\omega = ilde{E}_{
 m q}$
- \star and the incoherent background $\mathcal{A}_{\mathrm{k}}^{inc}(\omega)$.

T. Domański and J. Ranninger, Phys. Rev. B 70, 184513 (2004).

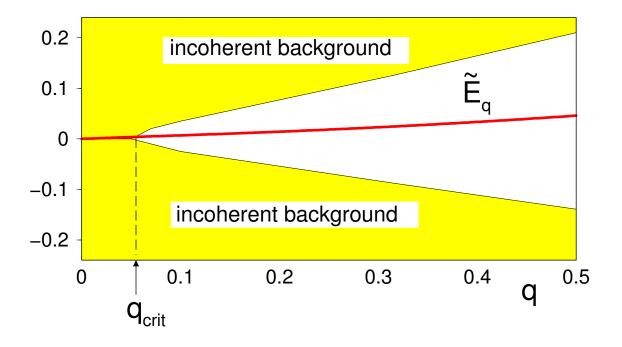
The pair spectrum for $T < T_c$



The quasiparticle peak is well separated from the incoherent background and, in the limit $\mathbf{q} \to \mathbf{0}$, has a characteristic dispersion $\tilde{E}_{\mathbf{q}} = c \ |\mathbf{q}|$. This <u>Goldstone mode</u> is a hallmark of the symmetry broken state.

Such a unique situation could be observed in the case of ultracold fermion atoms, otherwise the Coulomb repulsions lift this mode to the high plasmon frequency.

The pair spectrum for $T^st > T > T_c$

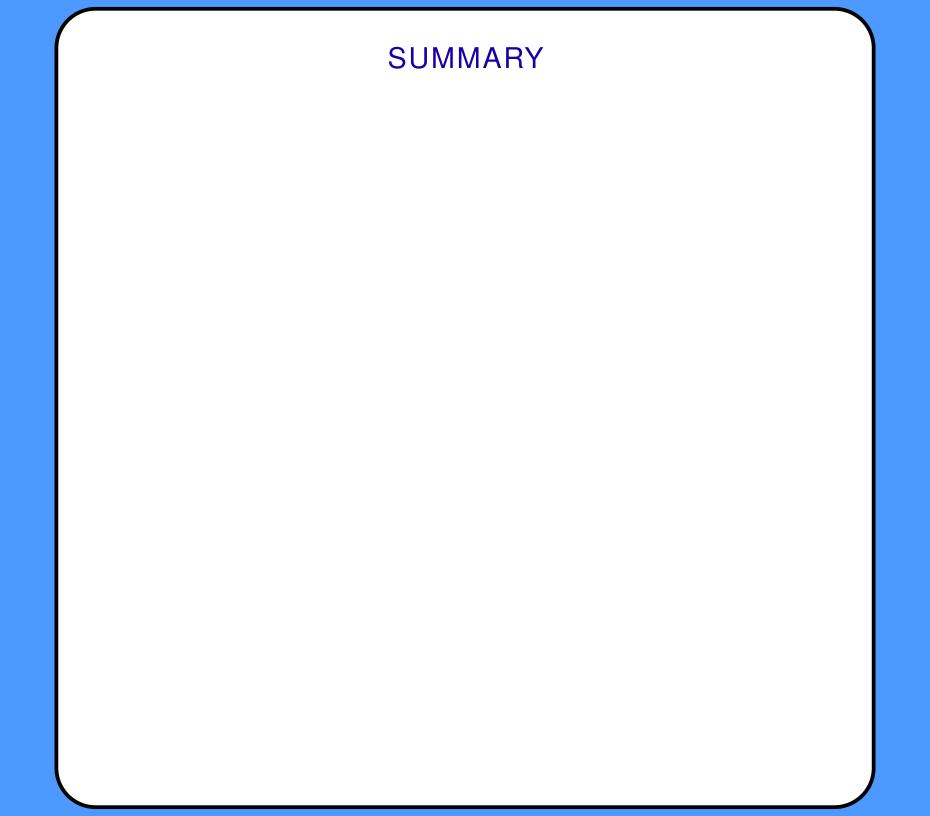


Above the transition temperature (for $T > T_c$):

the qusiparticle peak overlaps at small momenta with the incoherent background,

 \bigstar for $\mathbf{q} o \mathbf{0}$ the Goldstone mode disappears,

 \star remnant of the Goldstone mode is seen above \mathbf{q}_{crit} .



Formation of the fermion pairs is usually accompanied by appearance of superfluidity/superconductivity.

Formation of the fermion pairs is usually accompanied by appearance of superfluidity/superconductivity.

Existence of fermion pairs leads to a (partial) depletion of the single particle states near the Fermi energy.

Formation of the fermion pairs is usually accompanied by appearance of superfluidity/superconductivity.

Existence of fermion pairs leads to a (partial) depletion of the single particle states near the Fermi energy.

Strong quantum fluctuations may partly suppress the long-range coherence (ordering) while fermion pairs are preserved.

Formation of the fermion pairs is usually accompanied by appearance of superfluidity/superconductivity.

Existence of fermion pairs leads to a (partial) depletion of the single particle states near the Fermi energy.

Strong quantum fluctuations may partly suppress the long-range coherence (ordering) while fermion pairs are preserved.

Quantum fluctuation phenomena are typical for all superconductors/superfluids besides the extremely large Cooper pairs.