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Very often formation of the fermion pairs goes hand in hand with

superconductivity/superfluidity but it needs not be the rule.
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,σ′ ĉk+ q

2
,σ′ ĉk′−q
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The real space representation:
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with attractive potential Vi,j < 0
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Path integral formulation

Thermodynamic properties such as the total energy, specific heat,

pressure etc can be derived from the partition function defined as

Z = Tr
{

e−βĤ
}

where β = 1/kBT .

It is convenient to express the partition unction Z in terms

of the path integrals over Grassmann variables

Z =

∫

D[c, c∗] e−S
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To illustrate the main idea let us consider a single fermion problem

Ĥ = Ĥ[ĉ†, ĉ]

and introduce the coherent fermion states defined as

|c〉 = e−c ĉ† |0〉
〈c∗| = |0〉 e−ĉ c∗

Formally they are eigenvectors of ĉ and ĉ† operators

ĉ |c〉 = c |c〉
〈c∗| ĉ† = 〈c∗| c∗

with c and c∗ being their eigenvalues (Grassmann numbers).
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Grassmann algebra (continued)

From the completness relation
∫

dc∗ dc e−c∗ c |c〉 〈c∗| = 1

we determine the trace using

Tr
{

Â
}

= −
∫

dc∗ dc e−c∗ c 〈c∗| Â |c〉 .

In this way the partition function can be expressed as

Z = −
∫

dc∗
N dc1 e−c∗

N c1
〈

c∗
N

∣

∣ e−βĤ |c1〉 .
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Time slicing

We now expand the exponential into a sequence

e−βĤ =
(

e−∆τ Ĥ
)N

of the discretized imaginary time τ ∈ 〈0, β〉 where ∆τ = β/N .

we finally obtain

Z =

∫

ΠN
j=1dc∗

j dcj e−S

S =
N
∑

j=1

[

c∗
j

cj+1 − cj

∆τ
+ H[c∗

j , cj ]

]

∆τ
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The functional integral

In the extreme limit
N −→ ∞

we formally obtain

Z =

∫

D[c∗, c] e−S

S =

∫ β

0

dτ (c∗(τ) ∂τ c(τ) + H[c∗(τ), c(τ)])

where D[c∗, c] ≡ ΠN
j=1

dc∗j dcj

Grassmann variables obey the anti-periodic boundary conditions

c(τ + β) = −c(τ), c∗(τ + β) = −c∗(τ)
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We now apply the path integral formalism to the BCS model

Ĥ =
∑

k,σ

ξk ĉ
†
kσĉkσ − g Â†Â

with the pair operators defined by

Â =
∑

k

ĉ−k↓ck↑ Â† =
∑

k

c
†
k↑ ĉ

†
−k↓

and the pairing potentialVk,k′ ≡ −g.

The partition function Z =
∫

D[c∗, c]e−S contains the action

S =

∫ β

0

dτ
∑

kσ

c∗
kσ(τ) (∂τ + ξk) ckσ(τ) − gA∗(τ)A(τ)
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Hubbard-Stratonovich transformation

It is convenient to use the following identity
∫

D[∆∗, ∆]exp

{

− 1

g

∫ β

0

dτ∆∗(τ)∆(τ)

}

= 1

which is also valid if one imposes the shift

∆ −→ ∆ + gA ∆∗ −→ ∆∗ + gA∗

Substituting it to the partition function Z =
∫

D[∆∗, ∆, c∗, c] e−S

S =

∫ β

0

dτ
∑

kσ

c∗
kσ (∂τ + ξk) ckσ + ∆A∗ + ∆∗A +

1

g
∆∗∆

we obtain the action which becomes quadratic in the fermion fields !
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Integration over the fermion fields

The path integral can be now carried out exactly with respect

to the Grassmann variables ckσ and c∗kσ giving

Z =

∫

D[∆∗, ∆] e−Seff [∆∗,∆]

The effective action of the pairing (boson) field is given by

Seff [∆∗, ∆] =

∫ β

0

dτ

(

∆∗(τ)∆(τ)

g
+
∑

k

Tr ln (∂τ + hk)

)

where

hk =





ξk ∆(τ)

∆∗(τ) −ξk




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where ωn = (2n + 1)πβ−1 is the Matsubara frequency.
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The saddle-point approximation

This problem can be solved exactly either if the pairing field ∆(τ) is

uniform or almost uniform (including the small Gaussian corrections).

The partition function is related with the Free energy via Z = e−βF ,

so we finally get

F = − 1

β

∑

k,n

ln
(

ω2
n + ξ2

k + |∆|2)+
|∆|2

g

Minimizing F with respect to ∆∗ we obtain the BCS gap equation

∆ = g
∑

k

∆

2Ek

tanh

(

βEk

2

)

where Ek =
√

ξ2

k + |∆|2.
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On purely phenomenologial grounds Landau proposed to express F

as a functional of the order parameter

F [∆∗, ∆] = −a (Tc − T )2 |∆|2 + b|∆|4
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The minimum occurs at ∆ = 0.
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The minimum moves to |∆|2 = a
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(T − Tc).



Physical meaning of the saddle-point

Minimization of the Free energy with respect to ∆ is equivalent to

a concept of the symmetry breaking introduced in 1937 by Landau.

On purely phenomenologial grounds Landau proposed to express F

as a functional of the order parameter

F [∆∗, ∆] = −a (Tc − T )2 |∆|2 + b|∆|4



One can also include some fluctuations around the saddle-point.
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Correlation functions

Various dynamical quantities such as the correlation functions can be

derived using the generating functional

G[χ, χ∗] = log

[

Z−1

∫

D[c∗, c]e
−(S+

∑

k,σ
c∗
kσχkσ+χ∗

kσckσ)
]

with χkσ and χ∗
kσ being the source fields.

For instance, the two-point Green’s function is

δ

δχ∗
kσ

δ

δχkσ

G[χ, χ∗]|χ=0,χ∗=0

A more specific discussion can be found e.g. in

V.N. Popov,

Functional integrals and collective excitations, Cambridge Univ. Press (1987);

J.W. Negele and H. Orland,

Quantum many-particle systems, Perseus Books (1998).
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The RG idea

Physically the most relevant degrees of freedom are located near

the Fermi surface hence we can adopt the following scheme:

Z =
∫

D<Λ[c∗, c]
∫

D>Λ[c∗, c] e−S[c∗,c]

It is then useful to introduce the renormalized action SΛ[c∗, c]

e−SΛ[c∗,c] =
∫

D>Λ[c∗, c] e−S[c∗,c]

so that the generating functional becomes

G[χ, χ∗] = log

[

Z−1

∫

D<Λ[c∗, c]e
−SΛ−

∫

<Λ

k
c∗
kσχkσ+ckσχ∗

kσ

]



Mode elimination in the momentum space:

Fast modes (i.e. fermion fields outside the shell of width 2Λ)

are integrated out and the leftover contains only slow modes
which are relevant for the physically observed properties.



Nobel Prize in Physics 1982

Kenneth Wilson
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Remarks on the RG scheme

Upon a succesive decrease of the energy cut-off Λ

toward the Fermi energy the high energy excitations

are integrated out. This leads simultaneously to:

⇒ the Λ-dependent scaling of such quantities like
the interaction potentials, quasiparticle masses, etc

⇒ position of the Fermi surface might drift

⇒ topology of the Fermi surface might deform

⇒ and sometimes even the Fermi surface itself
might completely break down !

In case of the symmetry broken phases the scaling
procedure is additionally complicated due to a lower
boundary (the energy gap |∆|).



The conventional RG techniques are blind with respect

to the symmetry-broken states which are separated

by energy barrier from the symmetric state.

R. Gersch, J. Reiss and C. Honerkamp, Progr. Theor. Phys. (2006).
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RG ideas to deal with symmetrry broken states

1. A small symmetry-breaking component ∆(Λ0) is imposed

at a certain initial condition Λ0. Its physical meaning establishes

from the flow to the asymptotic fixed point

∆ = lim
Λ→0

∆(Λ)

M. Salmhofer et al, Progr. Theor. Phys. 112, 943 (2004).

2. One introduceds the collective boson fields Φ, Φ∗ via the

Hubbard- Stratonovich transformation. Some effective Fermi-Bose

theory is then developed using the functional RG equations.

S = S0[c, c∗] + S0[Φ, Φ∗] + SI [c, c∗, Φ, Φ∗]

F. Schütz, L. Bartosch, P. Kopietz, Phys. Rev. B 72, 035107 (2005).



Continuous unitary transformation

Instead of integrating out the fast modes (high energy sector) one

constructs the canonical transformation Ĥ(l) = Û(l)ĤÛ†(l)

such that:

• Hamiltonian is diagonalized in a series of infinitesimal steps

Ĥ −→ ... −→ Ĥ(l) −→ ... −→ Ĥ(∞)

with l being a continuous parameter

• evolution of the Hamiltonian is governed by the flow equation

∂lĤ(l) =
[

η̂(l), Ĥ(l)
]

where formally η̂(l) = −Û(l) ∂lÛ
†(l).

F. Wegner, Annalen der Physik 3, 77 (1994).



Comparison to the usual RG method

Similarities:

• diagonalization of the high energy states occurs mainly

during the first part of the transformation

• the low energy states are diagonalized at the very end

of transformation

Roughly speaking, one can draw the following relation

to the Wilson’s numerical RG method:

1√
l
↔ Γ

Differences:

Throughout the continuous canonical transformation one keeps track

of the slow and high energy modes, therefore their mutual feedback

effects can be analyzed.



Practical choice

For Hamiltonians with the following structure

Ĥ = Ĥ0 + Ĥ1

one can choose

η̂(l) =
[

Ĥ0(l), Ĥ1(l)
]

and then

liml→∞ Ĥ1(l) = 0

Other possible ways for constructing the generating operator η̂ have been
discussed by various authors. For a detailed information see for instance:
S. Kehrein, Springer Tracts in Modern Physics 217, (2006);
F. Wegner, J. Phys. A: Math. Gen. 39, 8221 (2006).
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†
−k↓ + ∆∗
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Renormalization of ∆k(l) and ξk(l) during the flow.
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a) Outline of the procedure

In order to study the many-body effects we construct

the continuous canonical transformation e
ˆS(l)Ĥe−Ŝ(l)

which decouples the boson from fermion parts.

Hamiltonian at l = ∞

ĤF (∞) + ĤB(∞)



The boson-fermion coupling vk,q(l) during the flow.
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T. Domański, J. Ranninger, Phys. Rev. B 63, 134505 (2001).



Flow of the boson-fermion coupling element v−k,k(l).
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c) The single particle spectrum



Bogoliubov-like spectrum

T < Tc

-0.1 0 0.1

A
F (k

,ω
)

ω

T=0

Below the critical temperature Tc there exist two branches
of the excitations at energies ω = ±

√

(εk − µ)2 + ∆2
sc

(like in the BCS theory).

T. Domański and J. Ranninger, Phys. Rev. Lett. 91, 255301 (2003).
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Pasing through Tc the Bogoliubov-type spectrum survives
but one branch (the shaddow) gets damped. Physically it
means that fermion pairs no longer have an infinite life-time.

T. Domański and J. Ranninger, Phys. Rev. Lett. 91, 255301 (2003).
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Pasing through Tc the Bogoliubov-type spectrum survives
but one branch (the shaddow) gets damped. Physically it
means that fermion pairs no longer have an infinite life-time.

T. Domański and J. Ranninger, Phys. Rev. Lett. 91, 255301 (2003).



Bogoliubov-like spectrum

T > T
∗

A
F (k

,ω
)

T=0.02

For temperatures far above Tc the Bogoliubov modes are
completely gone. There remains only one well established
single quasiparticle peak without a gaped dispersion.

T. Domański and J. Ranninger, Phys. Rev. Lett. 91, 255301 (2003).
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The pair spectrum for T < Tc
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The quasiparticle peak is well separated from the incoherent
background and, in the limit q → 0, has a characteristic
dispersion Ẽq = c |q|. This Goldstone mode is a hallmark
of the symmetry broken state.

Such a unique situation could be observed in the case of ultracold fermion atoms,

otherwise the Coulomb repulsions lift this mode to the high plasmon frequency.



The pair spectrum for T ∗ > T > Tc
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Above the transition temperature (for T > Tc):

? the qusiparticle peak overlaps at small momenta
with the incoherent background,

? for q → 0 the Goldstone mode disappears,

? remnant of the Goldstone mode is seen above qcrit.
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SUMMARY

Formation of the fermion pairs is usually accompanied

by appearance of superfluidity/superconductivity.

Existence of fermion pairs leads to a (partial) depletion of

the single particle states near the Fermi energy.

Strong quantum fluctuations may partly suppress the

long-range coherence (ordering) while fermion pairs are

preserved.

Quantum fluctuation phenomena are typical for all

superconductors/superfluids besides the extremely large

Cooper pairs.


