Nonequilibrium phenomena on interfaces with topological superconductors

MagTop Focused Expert Meeting Warsaw, 23/10/2024

MOTIVATION

The boundary modes (localized, chiral or Hinge states) of

topological superconductors realized in different dimensions

MOTIVATION

The boundary modes (localized, chiral or Hinge states) of

topological superconductors realized in different dimensions

can be detected, using the charge tunneling spectroscopies (with attachment of external electrodes) in nonequilibrium conditions.

Topological superconductors are connected to other (topologically trivial) objects:

- ⇒**through some interface**
- ⇒**which affects the edge modes.**

Topological superconductors are connected to other (topologically trivial) objects:

- ⇒**through some interface**
- ⇒**which affects the edge modes.**

The simplest situation could captured by:

⇒**single-level impurity + Majorana mode(s).**

Hybrid structure: quantum dot + topological superconductors

Hybrid structure: quantum dot + topological superconductors

PHYSICAL REVIEW B 84, 140501(R) (2011).

Scheme to measure Majorana fermion lifetimes using a quantum dot

Martin Leijnse and Karsten Flensberg Nano-Science Center & Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark (Received 30 August 2011; published 3 October 2011)

Hybrid structure: quantum dot + topological superconductors

PHYSICAL REVIEW B 84, 140501(R) (2011).

Scheme to measure Majorana fermion lifetimes using a quantum dot

Martin Leijnse and Karsten Flensberg

Nano-Science Center & Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark (Received 30 August 2011; published 3 October 2011)

PHYSICAL REVIEW B 84, 201308(R) (2011)

Detecting a Majorana-fermion zero mode using a quantum dot

Dong E. Liu and Harold U. Baranger Department of Physics, Duke University, Box 90305, Durham, North Carolina 27708-0305, USA (Received 22 July 2011; revised manuscript received 13 September 2011; published 16 November 2011)

Hybrid structure: quantum dot + topological superconductors

PHYSICAL REVIEW B 84, 140501(R) (2011).

Scheme to measure Majorana fermion lifetimes using a quantum dot

Martin Leijnse and Karsten Flensberg

Nano-Science Center & Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark (Received 30 August 2011; published 3 October 2011)

PHYSICAL REVIEW B 84, 201308(R) (2011).

Detecting a Majorana-fermion zero mode using a quantum dot

Dong E. Liu and Harold U. Baranger Department of Physics, Duke University, Box 90305, Durham, North Carolina 27708-0305, USA (Received 22 July 2011; revised manuscript received 13 September 2011; published 16 November 2011)

PHYSICAL REVIEW B 89, 165314 (2014) ပ္စ္ Subtle leakage of a Majorana mode into a quantum dot

E. Vernek, $1,2$ P. H. Penteado, 2 A. C. Seridonio, 3 and J. C. Egues² ¹Instituto de Física, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais 38400-902, Brazil ²Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo 13560-970, Brazil ³Departamento de Física e Ouímica. Universidade Estadual Paulista, Ilha Solteira, São Paulo 15385-000, Brazil (Received 15 August 2013; revised manuscript received 10 April 2014; published 30 April 2014)

MAJORANA MODE LEAKAGE ONTO QD

Hybrid structure: quantum dot + topological superconductor

Idea: Majorana mode is partly transferred onto quantum dot where it can be detected by tunneling spectroscopy

M. Leijnse and K. Flensberg, Phys. Rev. B 84, 140501(R) (2011).

EVIDENCE FOR MAJORANA LEAKAGE

Setup: Epitaxial Al shell (blue) grown on two facets of the hexagonal InAs core (cyan), with a thickness of ∼ **10 nm.**

Data: Transport measurements have been collected, varying the magnetic field oriented parallelly to the nanowire.

M.T. Deng et al, Science 354, 1557 (2016).

EVIDENCE FOR MAJORANA LEAKAGE

Panel (A): Tunneling spectrum for resonant dot-wire coupling obtained at $V_{bc} = -8.5$ **V,** $V_{c1} = 22$ **V, and** $V_{c2} = V_{c3} = -10$ **V.**

Panel (B): Differential conductance at various values of the magnetic field.

M.T. Deng et al, Science 354, 1557 (2016).

GATE-CONTROLLED BOUND STATES

Hybrid structure: trivial + topological segments of nanowire

Issue: bound states of trivial segment attached to topological sc

A. Ptok, A. Kobiałka, T. Domanski, Phys. Rev. B 96 ´ , 195430 (2017).

GATE-CONTROLLED BOUND STATES

Hybrid structure: trivial + topological segments of nanowire

Variation the trivial (Andreev) & topological (Majorana) states vs the gate potential V_g for several spin-orbit couplings λ . **A. Ptok, A. Kobiałka, T. Domanski, Phys. Rev. B 96 ´ , 195430 (2017).**

What about the correlations ? / due to the Coulomb repulsion /

CORRELATIONS VS LEAKAGE

Hybrid structure: Anderson impurity + topological superconductor

Question: Does the Coulomb repulsion affect the Majorana mode(s) leakage ?

CORRELATIONS VS LEAKAGE

Hybrid structure: Anderson impurity + topological superconductor

Question: Does the Coulomb repulsion affect the Majorana mode(s) leakage ? Is there any competition ?

$$
\hat{H} = \hat{H}_{QD} + \lambda(\hat{d}_{\downarrow}^{\dagger}\hat{\eta}_1 + \hat{\eta}_1\hat{d}_{\downarrow}) + i\epsilon_m\hat{\eta}_1\hat{\eta}_2
$$

$$
\hat{H}=\hat{H}_{QD}+\lambda(\hat{d}_{\downarrow}^{\dagger}\hat{\eta}_{1}+\hat{\eta}_{1}\hat{d}_{\downarrow})+i\epsilon_{m}\hat{\eta}_{1}\hat{\eta}_{2}
$$

where the correlated quantum dot is described by

$$
\hat{H}_{QD}=\sum_{\sigma}\varepsilon_d\hat{d}_{\sigma}^{\dagger}\hat{d}_{\sigma}+U_d\hat{n}_{\uparrow}\hat{n}_{\downarrow}
$$

$$
\hat{H}=\hat{H}_{QD}+\lambda(\hat{d}_{\downarrow}^{\dagger}\hat{\eta}_{1}+\hat{\eta}_{1}\hat{d}_{\downarrow})+i\epsilon_{m}\hat{\eta}_{1}\hat{\eta}_{2}
$$

where the correlated quantum dot is described by

$$
\hat{H}_{QD} = \sum_{\sigma} \varepsilon_d \hat{d}_{\sigma}^{\dagger} \hat{d}_{\sigma} + U_d \hat{n}_{\uparrow} \hat{n}_{\downarrow}
$$

recasting the Majorana operators in terms of conventional fermions

$$
\hat{\eta}_1 = \frac{1}{\sqrt{2}}(\hat{f}^\dagger + \hat{f})
$$

$$
\hat{H}=\hat{H}_{QD}+\lambda(\hat{d}_{\downarrow}^{\dagger}\hat{\eta}_{1}+\hat{\eta}_{1}\hat{d}_{\downarrow})+i\epsilon_{m}\hat{\eta}_{1}\hat{\eta}_{2}
$$

where the correlated quantum dot is described by

$$
\hat{H}_{QD} = \sum_{\sigma} \varepsilon_d \hat{d}_{\sigma}^{\dagger} \hat{d}_{\sigma} + U_d \hat{n}_{\uparrow} \hat{n}_{\downarrow}
$$

recasting the Majorana operators in terms of conventional fermions

$$
\hat{\eta}_1 = \frac{1}{\sqrt{2}}(\hat{f}^\dagger + \hat{f}) \quad \text{and} \quad \hat{\eta}_2 = \frac{i}{\sqrt{2}}(\hat{f}^\dagger - \hat{f})
$$

$$
\hat{H}=\hat{H}_{QD}+\lambda(\hat{d}_{\downarrow}^{\dagger}\hat{\eta}_{1}+\hat{\eta}_{1}\hat{d}_{\downarrow})+i\epsilon_{m}\hat{\eta}_{1}\hat{\eta}_{2}
$$

where the correlated quantum dot is described by

$$
\hat{H}_{QD} = \sum_{\sigma} \varepsilon_d \hat{d}_{\sigma}^{\dagger} \hat{d}_{\sigma} + U_d \hat{n}_{\uparrow} \hat{n}_{\downarrow}
$$

recasting the Majorana operators in terms of conventional fermions

$$
\hat{\eta}_1 = \frac{1}{\sqrt{2}}(\hat{f}^\dagger + \hat{f}) \quad \text{and} \quad \hat{\eta}_2 = \frac{i}{\sqrt{2}}(\hat{f}^\dagger - \hat{f})
$$

Quasiparticle states of the quantum dot can be determined analytically.

Short topological nanowire / overlapping Majorana modes /

Hybrid structure: quantum impurity + short topological nanowire

Quasiparticle spectrum of the quantum dot obtained for $\epsilon_M \neq 0$.

Hybrid structure: quantum impurity + short topological nanowire

Quasiparticle spectrum of the quantum dot obtained for $\epsilon_M \neq 0$. **Notice: bowtie features near the crossing points.**

Hybrid structure: Anderson impurity + short topological nanowire

Quasiparticle spectrum of spin- \downarrow electrons obtained for $\epsilon_M \neq 0$.

$\overline{OVERLAPPING MAJORANA MODES, \epsilon_M \neq 0}$

Hybrid structure: Anderson impurity + short topological nanowire

Quasiparticle spectrum of spin- \downarrow electrons obtained for $\epsilon_M \neq 0$.

Appearance of two bowtie features inside the topological gap.

Hybrid structure: Anderson impurity + short topological nanowire

Quasiparticle spectrum of spin- \uparrow electrons obtained for $\epsilon_M \neq 0$.

Hybrid structure: Anderson impurity + short topological nanowire

Quasiparticle spectrum of spin- \uparrow electrons obtained for $\epsilon_M \neq 0$. **Majorana quasiparticles are completely absent.**

Kondo vs Majorana (means to distinguish them)

MAJORANA-KONDO INTERPLAY

Topological nanowire + quantum dot + metallic electrode

Spin-↓ **spectrum: Kondo peak is strongly reshaped by Majorana NRG results obtained by K.P. Wójcik (2024) in agreement with E. Prada et al, PRB (2014).**

MAJORANA-KONDO INTERPLAY

Topological nanowire + quantum dot + metallic electrode

Spin-↑ **spectrum: Kondo peak is nearly unaffected by Majorana NRG results obtained by K.P. Wójcik (2024) in agreement with E. Prada et al, PRB (2014).**

MAJORANA SIGNATURES IN AC-CONDUCTANCE

Quantum dot coupled to the topological nanowire under ac-voltage

Question:

Can we resolve Majorana and Kondo states in ac-response ?

K.P. Wójcik, T. Domanski, I. Weymann, Phys. Rev. B 109 ´ , 075432 (2024).

DYNAMICAL FEATURES

The frequency dependent conductance of *ac***-driven junction**

Spin-resolved conductances: Signatures of the Coulomb peak and the Kondo effect can be clearly distinguished at finite-frequencies.

Time - resolved effects (related with Majorana modes)

Hybrid structure: switching on/off topological phase

Issue: gate-imposed relocation of the Majorana mode

B. Pandey, L. Mohanta and E. Dagotto, Phys. Rev. B 107, L060304 (2023).

RELOCATION OF MAJORANAS

Hybrid structure: slow Majorana relocation 12 −→ **6**

RELOCATION OF MAJORANAS

Hybrid structure: fast Majorana relocation 12 −→ **6**

What are typical time-scales ? / for transferring Majorana modes /

TIME-RESOLVED LEAKAGE OF MAJORANA MODE

Hybrid structure: quantum dot attached to topological nanowire

Question:

How much time does it take to transfer the Majorana mode on QD ?

J. Baranski, M. Bara ´ nska, T. Zienkiewicz, R. Taranko, T.Doma ´ nski, PRB 103 ´ , 235416 (2021).

TIME-RESOLVED LEAKAGE OF MAJORANA MODE

Transient effects:

 \Rightarrow at $t = 0$ QD is coupled to the external N and S electrodes,

 \Rightarrow at $t = 10$ topological nanowire is attached to N-QD-S setup.
50

Gradual development of the trivial (Andreev) and topological (Majorana) states manifested in the differential conductance.

TIME-RESOLVED LEAKAGE OF MAJORANA MODE

Time-dependent zero-bias conductance

Majorana zero-bias feature establishes in about nanoseconds.

J. Baranski, M. Bara ´ nska, T. Zienkiewicz, R. Taranko, T.Doma ´ nski, PRB 103 ´ , 235416 (2021).

Are there distant cross-correlations ? / transmitted via Majorana modes /

DYNAMICAL CROSS-CORRELATIONS

Two quantum dots interconnected via topological superconductor

Question: Is any nonlocal communication transmitted between QD¹ **and QD**² **through the Majorana boundary modes ?**

R. Taranko, K. Wrzesniewski, I. Weymann, T. Doma ´ nski, Phys. Rev. B 110 ´ , 035413 (2024).

STEADY-LIMIT CONDUCTANCE

Differential conductance $G(V, t \to \infty)$ versus bias *V* for several **couplings** λ **between QD**1,² **and topological superconductor.**

R. Taranko, K. Wrzesniewski, I. Weymann, T. Doma ´ nski, Phys. Rev. B 110 ´ , 035413 (2024).

TIME-RESOLVED CONDUCTANCE

Time-dependent conductance of the biased N-QD1**-S junction**

Signatures of the (trivial) molecular bound states and (topological) Majorana mode obtained for $\varepsilon_1 = 0$, $\varepsilon_2 = 2$. **R. Taranko, K. Wrzesniewski, I. Weymann, T. Doma ´ nski, Phys. Rev. B 110 ´ , 035413 (2024).**

NONLOCAL CROSS-CORRELATIONS

 $\mathsf{Evolution\ of\ the\ interdot{d}ot electron\ pairing\ } C_{12}(t)=\left\langle \hat{d}_{1\downarrow}\hat{d}_{2\uparrow}\ \right\rangle$

The nonlocal electron pairing persists only over a short transient time-scale. It could be detected by crossed Andreev refelections.

R. Taranko, K. Wrzesniewski, I. Weymann, T. Doma ´ nski, Phys. Rev. B 110 ´ , 035413 (2024).

⇒**are distantly cross-correlated only briefly after attaching them to topological sc,**

⇒**are distantly cross-correlated only briefly after attaching them to topological sc,**

⇒**beyond this transient region they do not show any mutual interdependence**

- ⇒**are distantly cross-correlated only briefly after attaching them to topological sc,**
- ⇒**beyond this transient region they do not show any mutual interdependence**
- ⇒**charge teleportation and/or other nonlocal phenomena would be absent**

Further perspectives

Effective triplet pairing has been recently realized using two quantum dots interconnected by superconductor (Poor Man's Majorana states)

T. Dvir, ... & L.P. Kouwenhoven, Nature 614, 445 (2023).

MINIMAL KITAEV CHAIN

Two spin-polarized quantum dots in an InSb nanowire strongly coupled by elastic co-tunneling and crossed Andreev reflection

T. Dvir, ... & L.P. Kouwenhoven, Nature 614, 445 (2023).

QUASIPARTICLE SPECTRUM OF QUANTUM DOTS

Issue: Molecular spectrum of the quantum dots connected via the overlapping Majorana modes

G. Górski, K.P. Wójcik, J. Baranski, I. Weymann & T. Doma ´ nski, Sci. Rep. 14 ´ , 13848 (2024).

QUASIPARTICLE SPECTRUM OF QUANTUM DOTS

The same quasiparticle states are present in both quantum dots , however, with very different spectral weights. G. Górski, K.P. Wójcik, J. Baranski, I. Weymann & T. Doma ´ nski, Sci. Rep. 14 ´ , 13848 (2024).

QUANTUM ENTANGLEMENT OF DOUBLE DOTS

Setup: Quantum dots interconnected via short topological nanowire

Scientific issue:

Entanglement of QD's quantified by their fermionic negativity

C. Jasiukiewicz, A. Sinner, I. Weymann, T. Domanski & L. Chotorlishvili, (2024) ´

/to be submitted/.

QUANTUM ENTANGLEMENT OF DOUBLE DOTS

Setup: Quantum dots interconnected via short topological nanowire

Logarithmic negativity versus the energy levels QD's obtained for $\varepsilon_M \neq 0$.

Topological superconducting hybrid structures allow to confront the Majorana quasiparticles with:

Topological superconducting hybrid structures allow to confront the Majorana quasiparticles with:

⇒**Coulomb blockade,**

Topological superconducting hybrid structures allow to confront the Majorana quasiparticles with:

- ⇒**Coulomb blockade,**
- ⇒**many-body Kondo state,**

Topological superconducting hybrid structures allow to confront the Majorana quasiparticles with:

- ⇒**Coulomb blockade,**
- ⇒**many-body Kondo state,**
- ⇒**conventional (Andreev) modes.**

Topological superconducting hybrid structures allow to confront the Majorana quasiparticles with:

- ⇒**Coulomb blockade,**
- ⇒**many-body Kondo state,**
- ⇒**conventional (Andreev) modes.**

Short topological sc hybridized with normal regions can induce molecular modes, revealing their entanglement.

Topological superconducting hybrid structures allow to confront the Majorana quasiparticles with:

- ⇒**Coulomb blockade,**
- ⇒**many-body Kondo state,**
- ⇒**conventional (Andreev) modes.**

Short topological sc hybridized with normal regions can induce molecular modes, revealing their entanglement.

http://kft.umcs.lublin.pl/doman/lectures