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MOTIVATION

The boundary modes (localized, chiral or Hinge states) of

topological superconductors realized in different dimensions
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can be detected, using the charge tunneling spectroscopies (with
attachment of external electrodes) in nonequilibrium conditions.



HYBRID STRUCTURES

Topological superconductors are connected to other
(topologically trivial) objects:

—> through some interface

—> which affects the edge modes.
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Topological superconductors are connected to other
(topologically trivial) objects:

—> through some interface

—> which affects the edge modes.

The simplest situation could captured by:

—> single-level impurity + Majorana mode(s).



EARLY PROPOSALS

Hybrid structure: quantum dot + topological superconductors
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MAJORANA MODE LEAKAGE ONTO QD

Hybrid structure: quantum dot + topological superconductor

Idea: Majorana mode is partly transferred onto quantum dot
where it can be detected by tunneling spectroscopy

M. Leijnse and K. Flensberg, Phys. Rev. B 84, 140501(R) (2011).



EVIDENCE FOR MAJORANA LEAKAGE

Setup: Epitaxial Al shell (blue) grown on two facets of the hexa-
gonal InAs core (cyan), with a thickness of ~ 10 nm.
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Data: Transport measurements have been collected, varying
the magnetic field oriented parallelly to the nanowire.

M.T. Deng et al, Science 354, 1557 (2016).




EVIDENCE FOR MAJORANA LEAKAGE

Panel (A): Tunneling spectrum for resonant dot-wire coupling obtained
at ng = —8.5 V, Vg1 = 22 V, and ng = Vg3 = —10V.

Panel (B): Differential conductance at various values of the magnetic field.
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M.T. Deng et al, Science 354, 1557 (2016).



GATE-CONTROLLED BOUND STATES

Hybrid structure: trivial + topological segments of hanowire

Issue: bound states of trivial segment attached to topological sc
A. Ptok, A. Kobiatka, T. Domanski, Phys. Rev. B 96, 195430 (2017).



GATE-CONTROLLED BOUND STATES

Hybrid structure: trivial + topological segments of hanowire

Variation the trivial (Andreev) & topological (Majorana) states
vs the gate potential V, for several spin-orbit couplings .
A. Ptok, A. Kobiatka, T. Domanski, Phys. Rev. B 96, 195430 (2017).



What about the correlations ?

/ due to the Coulomb repulsion /



CORRELATIONS VS LEAKAGE

Hybrid structure: Anderson impurity + topological superconductor

< == == -
-*

T. Domanski et al, (2024).

Question: Does the Coulomb repulsion affect the Majorana
mode(s) leakage ?



CORRELATIONS VS LEAKAGE

Hybrid structure: Anderson impurity + topological superconductor
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T. Domanski et al, (2024).

Question: Does the Coulomb repulsion affect the Majorana
mode(s) leakage ? Is there any competition ?
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For microscopic considerations we used the Anderson-type model
2 & 37 A a & : o &
H = Hgp + A(d|f1 + Thd}) + i€
where the correlated quantum dot is described by
Hgop = E eddj;d,, + Ugnying
(o2
recasting the Majorana operators in terms of conventional fermions
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Quasiparticle states of the quantum dot can be determined analytically.



SPIN-SENSITIVE LEAKAGE

Hybrid structure: Anderson impurity + topological nanowire
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Hybrid structure: Anderson impurity + topological nanowire
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Hybrid structure: Anderson impurity + topological nanowire
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SPIN-SENSITIVE LEAKAGE

Hybrid structure: Anderson impurity + topological nanowire
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Spectrum of spin-1 electrons which are not directly coupled

to the Majorana mode. Majorana features are missing.



Short topological nhanowire

/ overlapping Majorana modes /



OVERLAPPING MAJORANA MODES, ¢ # 0

Hybrid structure: quantum impurity + short topological nanowire
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Quasiparticle spectrum of the quantum dot obtained for ¢, # 0.
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Hybrid structure: quantum impurity + short topological nanowire
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Quasiparticle spectrum of the quantum dot obtained for ¢, # 0.

Notice: bowtie features near the crossing points.
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Hybrid structure: Anderson impurity + short topological nanowire
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Hybrid structure: Anderson impurity + short topological nanowire
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Quasiparticle spectrum of spin-| electrons obtained for ey # 0.

Appearance of two bowtie features inside the topological gap.
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Hybrid structure: Anderson impurity + short topological nanowire
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Hybrid structure: Anderson impurity + short topological nanowire
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Quasiparticle spectrum of spin-1 electrons obtained for ey, # 0.

Majorana quasiparticles are completely absent.



Kondo vs Majorana

(means to distinguish them)



MAJORANA-KONDO INTERPLAY

Topological nanowire + quantum dot + metallic electrode
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Spin-| spectrum: Kondo peak is strongly reshaped by Majorana

NRG results obtained by K.P. Wéjcik (2024) in agreement with E. Prada et al, PRB (2014).



MAJORANA-KONDO INTERPLAY

Topological nanowire + quantum dot + metallic electrode
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Spin-1 spectrum: Kondo peak is nearly unaffected by Majorana

NRG results obtained by K.P. Wéjcik (2024) in agreement with E. Prada et al, PRB (2014).



MAJORANA SIGNATURES IN AC-CONDUCTANCE

Quantum dot coupled to the topological nanowire under ac-voltage
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Question:
Can we resolve Majorana and Kondo states in ac-response ?

K.P. Wojcik, T. Domanski, . Weymann, Phys. Rev. B 109, 075432 (2024).



DYNAMICAL FEATURES

The frequency dependent conductance of ac-driven junction
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Spin-resolved conductances: Signatures of the Coulomb peak and
the Kondo effect can be clearly distinguished at finite-frequencies.



Time - resolved effects
(related with Majorana modes)



RELOCATION OF MAJORANAS

Hybrid structure: switching on/off topological phase

Slow movement of Majoranas
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Issue: gate-imposed relocation of the Majorana mode

B. Pandey, L. Mohanta and E. Dagotto, Phys. Rev. B 107, L060304 (2023).



RELOCATION OF MAJORANAS

Hybrid structure: slow Majorana relocation 12 — 6
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RELOCATION OF MAJORANAS

Hybrid structure: fast Majorana relocation 12 — 6
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What are typical time-scales ?

/ for transferring Majorana modes /



TIME-RESOLVED LEAKAGE OF MAJORANA MODE

Hybrid structure: quantum dot attached to topological nanowire
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How much time does it take to transfer the Majorana mode on QD ?

Question:

J. Baranski, M. Baranska, T. Zienkiewicz, R. Taranko, T.Domanski, PRB 103, 235416 (2021).




TIME-RESOLVED LEAKAGE OF MAJORANA MODE

Transient effects:
—> att = 0 QD is coupled to the external N and S electrodes,
—> at t = 10 topological nanowire is attached to N-QD-S setup.
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(Majorana) states manifested in the differential conductance.



TIME-RESOLVED LEAKAGE OF MAJORANA MODE

G[26%/h]

G[2e?/h]

Time-dependent zero-bias conductance
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Majorana zero-bias feature establishes in about nhanoseconds.

J. Baranski, M. Baranska, T. Zienkiewicz, R. Taranko, T.Domanski, PRB 103, 235416 (2021).



Are there distant cross-correlations ?

/ transmitted via Majorana modes /



DYNAMICAL CROSS-CORRELATIONS

Two quantum dots interconnected via topological superconductor
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Question: Is any nonlocal communication transmitted between
QD; and QD, through the Majorana boundary modes ?

R. Taranko, K. Wrze$niewski, I. Weymann, T. Domanski, Phys. Rev. B 110, 035413 (2024).



STEADY-LIMIT CONDUCTANCE
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Differential conductance G(V,t — oo) versus bias V for several
couplings A between QD; , and topological superconductor.

R. Taranko, K. Wrzesniewski, I. Weymann, T. Domanski, Phys. Rev. B 110, 035413 (2024).



TIME-RESOLVED CONDUCTANCE

Time-dependent conductance of the biased N-QD;-S junction
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Signatures of the (trivial) molecular bound states and

(topological) Majorana mode obtained fore; = 0, £, = 2.
R. Taranko, K. Wrze$niewski, I. Weymann, T. Domanski, Phys. Rev. B 110, 035413 (2024).




NONLOCAL CROSS-CORRELATIONS

Evolution of the interdot electron pairing Cy,(t) = <Eluliz¢ >

0.1 w w w \ : ‘ ‘
Cio® ol €6=0, &,5=0

0.1 f1670—=¢5=1
| 82(5=0

/\ €5=1, £5=0
Ao\ Py
w V V v

0 10 20 30 ([1/r,]50 60 70 80

The nonlocal electron pairing persists only over a short transient
time-scale. It could be detected by crossed Andreev refelections.

R. Taranko, K. Wrzesniewski, I. Weymann, T. Domanski, Phys. Rev. B 110, 035413 (2024).
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CONCLUSIONS: PART 1

The uncorrelated/correlated quantum dots coupled
via the (non-overlapping) Majorana modes:

—, are distantly cross-correlated only briefly
after attaching them to topological sc,

= beyond this transient region they do not
show any mutual interdependence

— charge teleportation and/or other nonlocal
phenomena would be absent



Further perspectives



MINIMAL KITAEV CHAIN

Effective triplet pairing has been recently realized using two quantum

dots interconnected by superconductor (Poor Man’s Majorana states)
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T. Dvir, ... & L.P. Kouwenhoven, Nature 614, 445 (2023).



MINIMAL KITAEV CHAIN

Two spin-polarized quantum dots in an InSb nanowire strongly

coupled by elastic co-tunneling and crossed Andreev reflection

T. Dvir, ... & L.P. Kouwenhoven, Nature 614, 445 (2023).




QUASIPARTICLE SPECTRUM OF QUANTUM DOTS

Issue: Molecular spectrum of the quantum dots connected
via the overlapping Majorana modes

G. Gorski, K.P. Wojcik, J. Baranski, . Weymann & T. Domanski, Sci. Rep. 14, 13848 (2024).



QUASIPARTICLE SPECTRUM OF QUANTUM DOTS
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The same quasiparticle states are present in both quantum

dots , however, with very different spectral weights.
G. Gorski, K.P. Wojcik, J. Baranski, . Weymann & T. Domanski, Sci. Rep. 14, 13848 (2024).



QUANTUM ENTANGLEMENT OF DOUBLE DOTS

Setup: Quantum dots interconnected via short topological nanowire

o

Scientific issue:
Entanglement of QD’s quantified by their fermionic negativity

C. Jasiukiewicz, A. Sinner, |. Weymann, T. Domanski & L. Chotorlishvili, (2024)

/to be submitted/.



QUANTUM ENTANGLEMENT OF DOUBLE DOTS

Setup: Quantum dots interconnected via short topological nanowire
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Logarithmic negativity versus the energy levels QD’s obtained for ey # 0.
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FINAL CONCLUSIONS

Topological superconducting hybrid structures allow
to confront the Majorana quasiparticles with:

—> Coulomb blockade,
—> many-body Kondo state,
—> conventional (Andreev) modes.

Short topological sc hybridized with normal regions can
induce molecular modes, revealing their entanglement.
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