MAJORANA QUASIPARTICLES IN NANOSCOPIC

HYBRID STRUCTURES

T. Domański

M. Curie-Skłodowska University (Lublin)

MagTop, Warsaw (26 Feb. 2019)

Superconductivity in systems of dimensionality reduced to:

Superconductivity in systems of dimensionality reduced to:

- \downarrow
- dim = 0

in-gap bound states(Shiba/Andreev qps)

Superconductivity in systems of dimensionality reduced to:

• dim = 0

in-gap bound states(Shiba/Andreev qps)

 1 ≤ dim ≤ 2 topological phases(Majorana qps)

Finite-size (nanoscopic) objects, like:

Finite-size (nanoscopic) objects, like:

etc.

existing inside or on surfaces of superconducting materials

Finite-size (nanoscopic) objects, like:

etc.

existing inside or on surfaces of superconducting materials

can acquire the electron pairing via proximity effect.

IN-GAP STATES

Spectrum of an uncorrelated impurity coupled to superconductor:

Spectrum of an uncorrelated impurity coupled to superconductor:

Bound states appearing in the subgap region $E \in \langle -\Delta, \Delta \rangle$.

Spectrum of an uncorrelated impurity coupled to superconductor:

Bound states appearing in the subgap region $E \in \langle -\Delta, \Delta \rangle$. Yu-Shiba-Rusinov (Andreev) quasiparticles

TOPOGRAPHY AND SPATIAL EXTENT

Empirical data obtained from STM measurements for NbSe₂

a) bound states extending to 10 nm

b) alternating particle-hole oscillations

G.C. Menard et al., Nature Phys. 11, 1013 (2015).

TOPOGRAPHY AND SPATIAL EXTENT

Empirical data obtained from STM measurements for NbSe₂

a) bound states extending to 10 nm

b) alternating particle-hole oscillations

G.C. Menard et al., Nature Phys. 11, 1013 (2015).

A. Ptok, Sz. Głodzik and T. Domański, Phys. Rev. B 96, 184425 (2017).

Nanochain of magnetic impurities embedded in superconductor:

T.-P. Choy, J.M. Edge, A.R. Akhmerov, and C.W.J. Beenakker, Phys. Rev. B <u>84</u>, 195442 (2011).

Nanochain of magnetic impurities embedded in superconductor:

Nanochain of magnetic impurities embedded in superconductor:

arrange the in-gap bound states into Shiba-band(s).

M.H. Christensen ... J. Paaske, Phys. Rev. B 94, 144509 (2016).

This nanochain self-tunes to its topological phase (topofilia)

A. Gorczyca-Goraj, T. Domański & M.M. Maśka, arXiv:1902.1902.06750.

This nanochain self-tunes to its topological phase (topofilia)

A. Gorczyca-Goraj, T. Domański & M.M. Maśka, arXiv:1902.1902.06750. Details will be given in the next lecture by Maciek Maśka

Itinerant 1D fermions with intersite (p-wave) pairing

$$\hat{H} = t \sum_{i} \left(\hat{c}_{i}^{\dagger} \hat{c}_{i+1} + \text{h.c.} \right) - \mu \sum_{i} \hat{c}_{i}^{\dagger} \hat{c}_{i} + \Delta \sum_{i} \left(\hat{c}_{i}^{\dagger} \hat{c}_{i+1}^{\dagger} + \text{h.c.} \right)$$

Itinerant 1D fermions with intersite (p-wave) pairing

$$\hat{H} = t \sum_{i} \left(\hat{c}_{i}^{\dagger} \hat{c}_{i+1} + \text{h.c.} \right) - \mu \sum_{i} \hat{c}_{i}^{\dagger} \hat{c}_{i} + \Delta \sum_{i} \left(\hat{c}_{i}^{\dagger} \hat{c}_{i+1}^{\dagger} + \text{h.c.} \right)$$

This toy-model can be recast in the Majorana basis

$$egin{array}{rll} \hat{\gamma}_{j,1} &\equiv& rac{1}{\sqrt{2}}\left(\hat{c}_{j}+\hat{c}_{j}^{\dagger}
ight) \ \hat{\gamma}_{j,2} &\equiv& rac{1}{i\sqrt{2}}\left(\hat{c}_{j}-\hat{c}_{j}^{\dagger}
ight) \end{array}$$

Itinerant 1D fermions with intersite (p-wave) pairing

$$\hat{H} = t \sum_{i} \left(\hat{c}_{i}^{\dagger} \hat{c}_{i+1} + \text{h.c.} \right) - \mu \sum_{i} \hat{c}_{i}^{\dagger} \hat{c}_{i} + \Delta \sum_{i} \left(\hat{c}_{i}^{\dagger} \hat{c}_{i+1}^{\dagger} + \text{h.c.} \right)$$

This toy-model can be recast in the Majorana basis

$$egin{array}{rl} \hat{\gamma}_{j,1} &\equiv& rac{1}{\sqrt{2}}\left(\hat{c}_{j}+\hat{c}_{j}^{\dagger}
ight) \ \hat{\gamma}_{j,2} &\equiv& rac{1}{i\sqrt{2}}\left(\hat{c}_{j}-\hat{c}_{j}^{\dagger}
ight) \end{array}$$

Yu. Kitaev, Phys. Usp. 44, 131 (2001).

In particular, for $\Delta = t$ and when $|\mu|$ is inside the band two operators $\hat{\gamma}_{1,1}$ and $\hat{\gamma}_{2,N}$ *decouple* from all the rest

inducing the zero-energy modes at the chain edges.

In particular, for $\Delta = t$ and when $|\mu|$ is inside the band two operators $\hat{\gamma}_{1,1}$ and $\hat{\gamma}_{2,N}$ *decouple* from all the rest

inducing the zero-energy modes at the chain edges. They can be regarded as *fractions* of non-local fermion

$$\hat{c}_{nonlocal} \equiv \left(\hat{\gamma}_{1,1} + i\hat{\gamma}_{N,2}\right)/\sqrt{2} \\ \hat{c}_{nonlocal}^{\dagger} \equiv \left(\hat{\gamma}_{1,1} - i\hat{\gamma}_{N,2}\right)/\sqrt{2}$$

as manifested by a number of unique phenomena.

Topological superconductivity can be also driven by the spin-orbit Rashba interaction combined with the external magnetic field.

R. Lutchyn, J. Sau, S. Das Sarma, Phys. Rev. Lett. 105, 077001 (2010).Y. Oreg, G. Refael, F. von Oppen, Phys. Rev. Lett. 105, 177002 (2010).

EVOLUTION FROM TRIVIAL TO TOPOLOGICAL PHASE

A pair of the Shiba (Andreev) states evolve into the Majorana qps

Mutation of the trivial bound states into the nontrivial Majorana modes

M.M. Maśka, A. Gorczyca-Goraj, J. Tworzydło, T. Domański, PRB 95, 045429 (2017).

SPATIAL PROFILE OF MAJORANA QPS

Majorana qps are exponentially localized at the edges

R. Aguado, Riv. Nuovo Cim. 40, 523 (2017).

EXAMPLES OF EMPIRICAL REALIZATION: 1

Differential conductance dI/dV obtained for InSb nanowire at 70 mK upon varying a magnetic field.

V. Mourik, ..., and L.P. Kouwenhoven, Science 336, 1003 (2012).

/ Technical Univ. Delft, Netherlands /

EXAMPLES OF EMPIRICAL REALIZATION: 2

STM measurements for the nanochain of Fe atoms self-organized on a surface of superconducting Pb.

S. Nadj-Perge, ..., and <u>A. Yazdani</u>, Science **346**, 602 (2014). / **Princeton University, USA** /

EXAMPLES OF EMPIRICAL REALIZATION: 3

Results for the litographically obtained Al nanowire

F. Nichele, ..., and Ch. Marcus, Phys. Rev. Lett. 119, 136803 (2017).

/ Niels Bohr Institute, Copenhagen, Denmark /

Andreev vs Majorana states

KITAEV CHAIN + NORMAL SITE

E. Vernek et al., Phys. Rev. B 89, 165314 (2014).

KITAEV CHAIN + NORMAL SITE

Subtle leakage of a Majorana mode into a quantum dot

E. Vernek et al., Phys. Rev. B 89, 165314 (2014).

LEAKAGE OF MAJORANAS ON QUANTUM DOT

'Coalescence' of the Andreev into Majorana qps

M.T. Deng, ..., and <u>Ch. Marcus</u>, Science 354, 1557 (2016).

/ Niels Bohr Institute, Copenhagen, Denmark /

TRIVIAL VS MAJORANA BOUND STATES

Schematics of a quantum dot – nanowire hybrid structure.

A. Ptok, A. Kobiałka & T. Domański, Phys. Rev. 96, 195403 (2017).

DISTINGUISHING ANDREEV FROM MAJORANA QPS

QD spectrum vs gate potential V_g for several magnetic fields h.

A. Ptok, A. Kobiałka & T. Domański, Phys. Rev. 96, 195403 (2017).

DISTINGUISHING ANDREEV FROM MAJORANA QPS

QD spectrum vs gate potential V_g for various spin-orbit couplings λ .

A. Ptok, A. Kobiałka & T. Domański, Phys. Rev. 96, 195403 (2017).

DISTINGUISHING ANDREEV FROM MAJORANA QPS

DISTINGUISHING ANDREEV FROM MAJORANA QPS

D. Chevallier, ... and J. Klinovaja, Phys. Rev. B 97, 04504 (2018).

ANDREEV VS MAJORANA: CONCLUSIONS

• Low energy features are very distinct:

- Low energy features are very distinct:
- \Rightarrow avoided-crossing behavior of Andreev/Shiba qps
- \Rightarrow leakage of the zero-energy Majorna qps

- Low energy features are very distinct:
- \Rightarrow avoided-crossing behavior of Andreev/Shiba qps
- \Rightarrow leakage of the zero-energy Majorna qps
- Misinterpretation:
- \Rightarrow coalescence of Andreev into Majorna qps

Kondo vs Majorana

KONDO AND MAJORANA PHYSICS

STM-type setup for probing the Kondo – Majorana – pairing effects.

POSSIBLE EXPERIMENTAL REALISATION

Deposition of individual atoms on superconducting surface

H. Kim, ..., and R. Wiesendanger, Science Adv. 4, eaar5251 (2018).

SUBGAP KONDO PHYSICS

Spectrum of a quantum dot in absence of the Majoranas.

Results obtained for $t_m = 0$

KONDO VS MAJORANA

Spectrum of a quantum dot in its Kondo regime.

Results obtained for \uparrow spin, assuming $t_m = 0.2\Gamma_N$

KONDO VS MAJORANA

Spectrum of the correlated QD in its Kondo regime.

Results obtained for \downarrow spin, assuming $\underline{t_m} = 0.2\Gamma_N$

SPIN-RESOLVED NRG DATA

SPIN-RESOLVED NRG DATA

 ω/Γ_N

 ω/Γ_N

4 6

• influence of the Majorana on Kondo states:

- influence of the Majorana on Kondo states:
- \Rightarrow constructive for \downarrow electrons
- \Rightarrow destructive for \uparrow electrons

- influence of the Majorana on Kondo states:
- \Rightarrow constructive for \downarrow electrons
- \Rightarrow destructive for \uparrow electrons
- empirical observability via:
- \Rightarrow selective equal spin Andreev reflections (SESAR)

Localized Majorana modes in dim=2

Two-dimensional electron gas of InAs epitaxially covered by a thin Al layer

Width: $W_1 = 80 \text{ nm}$

Length:

 $L_1 = 1.6 \ \mu m$

A. Fornieri, ..., Ch. Marcus and F. Nichele, arXiv:1809.03037 (9 Sept 2018).

/ Niels Bohr Institute (Copenhagen, Denmark) /

Majorana qps at the ends of 2DEG depend on the phase-difference Φ

A. Fornieri, ..., <u>Ch. Marcus</u> and F. Nichele, arXiv:1809.03037 (9 Sept 2018). / Niels Bohr Institute (Copenhagen, Denmark) /

Two-dimensional HgTe quantum well coupled to thin Al film

H. Ren, ..., <u>L.W. Molenkamp</u>, B.I. Halperin, A. Yacoby, arXiv:1809.03076 (10 Sept 2018).

/ Würzburg Univ. (Germany) + Harvard Univ. (USA) /

Tuning between the trivial and topological superconducting state by phase difference ϕ and in-plane magnetic field

H. Ren, ..., L.W. Molenkamp, B.I. Halperin, A. Yacoby, arXiv:1809.03076 (10 Sept 2018).

/ Harvard Univ. (USA) + Würzburg Univ. (Germany) /

Edge modes of dim=2 systems

TWO-DIMENSIONAL MAGNETIC STRUCTURES

Magnetic island of Co atoms deposited on the superconducting Pb surface

Diameter of island: 5 - 10 nm

G. Ménard, ..., and <u>P. Simon</u>, Nature Commun. **8**, 2040 (2017). / **P. & M. Curie University (Paris, France)** /

EVIDENCE FOR DELOCALIZED MAJORANA MODES

Majorana modes propagating along magnetic islands

G. Ménard, ..., and <u>P. Simon</u>, Nature Commun. **8**, 2040 (2017). / P. & M. Curie University (Paris, France) /

PROPAGATING MAJORANA EDGE MODES

Magnetic island of Fe atoms deposited on the superconducting Re surface

Chern number: C = 20

A. Palacio-Morales, ..., and <u>R. Wiesendanger</u>, arXiv:1809.04503 (preprint). / University of Hamburg (Germany) /

PROPAGATING MAJORANA EDGE MODES

Real space maps of the tunneling conductance (top panel) and deconvoluted DOS (bottom panel) obtained for various energies (as indicated) in the subgap regime ($\Delta = 240 \mu eV$).

A. Palacio-Morales, ..., and R. Wiesendanger, arXiv:1809.04503 (preprint).

/ University of Hamburg (Germany) /

Mixed – dimensionality structures

CAN MAJORANA QPS BE DECONFINED ?

Our project: Majorana qps of the 1D–2D hybrid structure

A. Kobiałka, T. Domański & A. Ptok, arXiv:1808.05281

Constituents of our hybrid-system belong to different homotopy groups:

Constituents of our hybrid-system belong to different homotopy groups:

dim=1 \Rightarrow homotopy group Z_2

featured by the Berry phase ± 1 around the Brillouin zone

Constituents of our hybrid-system belong to different homotopy groups:

dim=1 \implies homotopy group Z_2

featured by the Berry phase ± 1 around the Brillouin zone

dim=2 \Rightarrow homotopy group Z

which can be characterized by the Chern number, that is also equivalent to the Thouless–Kohmoto–Nightingale–den Nijs number.

Constituents of our hybrid-system belong to different homotopy groups:

dim=1 \implies homotopy group Z_2

featured by the Berry phase ± 1 around the Brillouin zone

dim=2 \Rightarrow homotopy group Z

which can be characterized by the Chern number, that is also equivalent to the Thouless–Kohmoto–Nightingale–den Nijs number.

For details, concerning the topological criteria see e.g.

- A. Kitaev, AIP Conf. Proc. <u>1134</u>, 22 (2009);
- M.Z. Hasan & C.L. Kane, Rev. Mod. Phys. <u>82</u>, 3045 (2010);
- X.-L. Qi & S.-C. Zhang, Rev. Mod. Phys. <u>83</u>, 1057 (2011).

TRIVIAL VS MAJORANA MODES

Majorana/Andreev quasiparticles of a wire-plaquette hybrid

Both regions are assumed to be in topological sc phase.

A. Kobiałka, T. Domański & A. Ptok, arXiv:1808.05281

HOW TO DETECT (DE)LOCALIZED MAJORANA QPS

Maps of the tunneling SESAR conductance at zero-bias.

Both regions are assumed to be in topological sc phase.

A. Kobiałka, T. Domański & A. Ptok, arXiv:1808.05281

SIMILAR IDEAS: DEFECTS IN MAGNETIC ISLAND

Localized Majorana at point-like defect, coexisting with itinerant

Majorana edge mode (observed in Co-Si island on disordered Pb)

SIMILAR IDEAS: ISLAND + NONOWIRE

Itinerant Majorana mode leaking into side-attached nanowire.

E. Mascot, S. Cocklin, S. Rachel, and D.K. Morr, arXiv:1811.06664 Univ. of Illinois at Chicago (USA)

SIMILAR IDEAS: ISLAND + NONOWIRE

Majorana modes leaking to the side-attached nanowires.

PERSPECTIVES: SKYRMIONS IN SUPERCONDUCTORS

Creation of topological phase through skyrmions.

E. Mascot, S. Cocklin, S. Rachel, and D.K. Morr, arXiv:1811.06664 Univ. of Illinois at Chicago (USA)

DIMENSIONAL HYBRIDS: CONCLUSIONS

 \Rightarrow leakage of Majorana qps

- \Rightarrow leakage of Majorana qps
- \Rightarrow (de)localisation of Majorana qps

- \Rightarrow leakage of Majorana qps
- \Rightarrow (de)localisation of Majorana qps
- \Rightarrow creation of chiral edge modes

- \Rightarrow leakage of Majorana qps
- \Rightarrow (de)localisation of Majorana qps
- \Rightarrow creation of chiral edge modes
- \Rightarrow identifiction of topological invariants

- \Rightarrow leakage of Majorana qps
- \Rightarrow (de)localisation of Majorana qps
- \Rightarrow creation of chiral edge modes
- \Rightarrow identifiction of topological invariants

Would it help to realise braiding of Majorana qps?

ACKNOWLEDGEMENTS

- Majorana quasiparticles
- ⇒ A. Kobiałka (Lublin), A. Ptok (Kraków),
 - M. Maśka & A. Gorczyca-Goraj (Katowice),
 - J. Tworzydło (Warszawa), N. Sedlmayr (Rzeszów).
- Shiba qps in topological phases
- \Rightarrow Sz. Głodzik (Lublin)
- Subgap Kondo effect
- ⇒ I. Weymann (Poznań), G. Górski (Rzeszów),
 - T. Novotný, M. Žonda & V. Janiš (Prague).
- Nonlocal Andreev processes
- 🔿 K.I. Wysokiński (Lublin), G. Michałek & B.R. Bułka (Poznań)
- Dynamics of in-gap states
- ⇒ R. Taranko, B. Baran & T. Kwapiński (Lublin)

SPIN-POLARIZED SPECTROSCOPY

STM-type measurements for probing the Majorana qps

S. Jeon, ... and A. Yazdani, Science 358, 772 (2017).

/ Princeton University, USA /

SELECTIVE EQUAL SPIN ANDREEV REFLECTIONS

Microscopic idea of the SESAR mechanism

M. Maśka and T. Domański, Scientific Reports 7, 16193 (2017).