Spin-resolved Andreev spectroscopy for probing the Majorana quasiparticles

Tadeusz Domański

M. Curie-Skłodowska Univ., Lublin (Poland)

Maciej M. Maśka

University of Silesia, Katowice (Poland)

Kitaev chain – a paradigm for Majorana modes

p-wave pairing of spinless 1D fermions

Kitaev chain

a paradigm for Majorana modes

p-wave pairing of spinless 1D fermions

$$\hat{H} = t \sum_{i} \left(\hat{c}_{i}^{\dagger} \hat{c}_{i+1} + \text{h.c.} \right) - \mu \sum_{i} \hat{c}_{i}^{\dagger} \hat{c}_{i} + \Delta \sum_{i} \left(\hat{c}_{i}^{\dagger} \hat{c}_{i+1}^{\dagger} + \text{h.c.} \right)$$

Kitaev chain

a paradigm for Majorana modes

p-wave pairing of spinless 1D fermions

$$\hat{H} = t \sum_{i} \left(\hat{c}_{i}^{\dagger} \hat{c}_{i+1} + \text{h.c.} \right) - \mu \sum_{i} \hat{c}_{i}^{\dagger} \hat{c}_{i} + \Delta \sum_{i} \left(\hat{c}_{i}^{\dagger} \hat{c}_{i+1}^{\dagger} + \text{h.c.} \right)$$

This toy-model can be exactly solved in Majorana basis. For $\Delta = t$ one obtains:

Kitaev toy model

/ Phys. Usp. 44, 131 (2001) /

operators $\hat{\gamma}_{1,1}$ and $\hat{\gamma}_{2,N}$ are decoupled from all the rest. This implies

zero-energy modes appearing at the chain edges

Kitaev toy model

/ Phys. Usp. 44, 131 (2001) /

*

In the special case $\Delta=t$ and $|\mu|<2t$

operators $\hat{\gamma}_{1,1}$ and $\hat{\gamma}_{2,N}$ are decoupled from all the rest. This implies

zero-energy modes appearing at the chain edges

★ Similar ideas have been considered for 1D Heisenberg chain of 1/2 spins

F.D.M. Haldane, Phys. Rev. Lett. <u>50</u>, 1153 (1983)

Nobel Prize, 2016

of normal fermions

Normal fermions (e.g. electrons) obey the anticommutation relations

$$egin{array}{lll} \left\{ \hat{c}_i,\hat{c}_j^\dagger
ight\} &=& \delta_{i,j} \ \left\{ \hat{c}_i,\hat{c}_j
ight\} &=& 0 = \left\{ \hat{c}_i^\dagger,\hat{c}_j^\dagger
ight\} \end{array}$$

i,j – any quantum numbers

of normal fermions

Normal fermions (e.g. electrons) obey the anticommutation relations

$$egin{array}{lll} \left\{ \hat{c}_i,\hat{c}_j^\dagger
ight\} &=& \delta_{i,j} \ \left\{ \hat{c}_i,\hat{c}_j
ight\} &=& 0 = \left\{ \hat{c}_i^\dagger,\hat{c}_j^\dagger
ight\} \end{array}$$

i,j – any quantum numbers

ullet $c_j^{(\dagger)}$ can be recast in terms of Majorana operators

$$egin{array}{lll} \hat{c}_j & \equiv & \left(\hat{\gamma}_{j,1} + i\hat{\gamma}_{j,2}
ight)/\sqrt{2} \ \hat{c}_j^\dagger & \equiv & \left(\hat{\gamma}_{j,1} - i\hat{\gamma}_{j,2}
ight)/\sqrt{2} \end{array}$$

'real' and 'imaginary' parts

of normal fermions

Normal fermions (e.g. electrons) obey the anticommutation relations

$$egin{array}{lll} \left\{ \hat{c}_i, \hat{c}_j^\dagger
ight\} &=& \delta_{i,j} \ \left\{ \hat{c}_i, \hat{c}_j
ight\} &=& 0 = \left\{ \hat{c}_i^\dagger, \hat{c}_j^\dagger
ight\} \end{array}$$

i,j – any quantum numbers

ullet $c_j^{(\dagger)}$ can be recast in terms of Majorana operators

$$egin{array}{ll} \hat{\gamma}_{j,1} & \equiv & \left(\hat{c}_j + \hat{c}_j^\dagger
ight)/\sqrt{2} \ i\hat{\gamma}_{j,2} & \equiv & \left(\hat{c}_j - \hat{c}_j^\dagger
ight)/\sqrt{2} \end{array}$$

 $\hat{\gamma}_{i,n}$ correspond to <u>neutral</u> objects

of normal fermions

Normal fermions (e.g. electrons) obey the anticommutation relations

$$egin{array}{lll} \left\{ \hat{c}_i, \hat{c}_j^\dagger
ight\} &=& \delta_{i,j} \ \left\{ \hat{c}_i, \hat{c}_j
ight\} &=& 0 = \left\{ \hat{c}_i^\dagger, \hat{c}_j^\dagger
ight\} \end{array}$$

i,j – any quantum numbers

ullet $c_j^{(\dagger)}$ can be recast in terms of Majorana operators

$$egin{array}{ll} \hat{\gamma}_{j,1} & \equiv & \left(\hat{c}_j + \hat{c}_j^\dagger
ight)/\sqrt{2} \ i\hat{\gamma}_{j,2} & \equiv & \left(\hat{c}_j - \hat{c}_j^\dagger
ight)/\sqrt{2} \end{array}$$

 $\hat{\gamma}_{i,n}$ correspond to $rac{ ext{neutral}}{ ext{objects}}$

Exotic properties

$$\hat{\gamma}_{i,n}^{\dagger} = \hat{\gamma}_{i,n} \ \left\{ \hat{\gamma}_{i,n}, \hat{\gamma}_{j,m}^{\dagger}
ight\} = \delta_{i,j} \delta_{n,m}$$

creation = annihilation !

fermionic antisymmetry

Majoranization – of normal fermions

Normal fermions (e.g. electrons) obey the anticommutation relations

$$egin{array}{lll} \left\{ \hat{c}_i, \hat{c}_j^\dagger
ight\} &=& \delta_{i,j} \ \left\{ \hat{c}_i, \hat{c}_j
ight\} &=& 0 = \left\{ \hat{c}_i^\dagger, \hat{c}_j^\dagger
ight\} \end{array}$$

i,j – any quantum numbers

 $c_i^{(\dagger)}$ can be recast in terms of Majorana operators

$$egin{array}{ll} \hat{\gamma}_{j,1} & \equiv & \left(\hat{c}_j + \hat{c}_j^\dagger
ight)/\sqrt{2} \ i\hat{\gamma}_{j,2} & \equiv & \left(\hat{c}_j - \hat{c}_j^\dagger
ight)/\sqrt{2} \end{array}$$

 $\hat{\gamma}_{i,n}$ correspond to <u>neutral</u> objects

Exotic properties (cd)

$$\hat{\gamma}_{i,n} \; \hat{\gamma}_{i,n} \; = \; 1/2 \ \hat{\gamma}_{i,n}^\dagger \; \hat{\gamma}_{i,n} \; = \; 1/2$$

no Pauli principle!

half 'occupied' & half 'empty'

$$\hat{\gamma}_{i,n}^{\dagger} = \hat{\gamma}_{i,n}$$

creation = annihilation

$$\hat{\gamma}_{i,n}^{\dagger} = \hat{\gamma}_{i,n}$$

⇒ chargeless, spinless, zero-energy objects

$$\hat{\gamma}_{i,n}^{\dagger} = \hat{\gamma}_{i,n}$$

- ⇒ chargeless, spinless, zero-energy objects
 - spatially nonlocal

$$\hat{\gamma}_{i,n}^{\dagger} = \hat{\gamma}_{i,n}$$

- ⇒ chargeless, spinless, zero-energy objects
 - spatially nonlocal
- they always exist in pairs, even though (infinitely) far apart

$$\hat{\gamma}_{i,n}^{\dagger} = \hat{\gamma}_{i,n}$$

- ⇒ chargeless, spinless, zero-energy objects
 - spatially nonlocal
- ⇒ they always exist in pairs, even though (infinitely) far apart
 - fractionality

$$\hat{\gamma}_{i,n}^{\dagger} \; \hat{\gamma}_{i,n} = 1/2$$

creation = annihilation

$$\hat{\gamma}_{i,n}^{\dagger} = \hat{\gamma}_{i,n}$$

- ⇒ chargeless, spinless, zero-energy objects
 - spatially nonlocal
- ⇒ they always exist in pairs, even though (infinitely) far apart
 - fractionality

$$\hat{\gamma}_{i,n}^{\dagger} \; \hat{\gamma}_{i,n} = 1/2$$

⇒ half-empty & half-filled entities

$$\hat{\gamma}_{i,n}^{\dagger}=\hat{\gamma}_{i,n}$$

- ⇒ chargeless, spinless, zero-energy objects
 - spatially nonlocal
- ⇒ they always exist in pairs, even though (infinitely) far apart
 - fractionality

$$\hat{\gamma}_{i,n}^{\dagger} \; \hat{\gamma}_{i,n} = 1/2$$

- **⇒** half-empty & half-filled entities
 - topologically protected

creation = annihilation

$$\hat{\gamma}_{i,n}^{\dagger} = \hat{\gamma}_{i,n}$$

- ⇒ chargeless, spinless, zero-energy objects
 - spatially nonlocal
- > they always exist in pairs, even though (infinitely) far apart
 - fractionality

$$\hat{\gamma}_{i,n}^{\dagger}~\hat{\gamma}_{i,n}=1/2$$

- **⇒** half-empty & half-filled entities
 - topologically protected
- ⇒ should be immune to decoherence

... be cautious about that!

- for Majorana quasiparticles

for Majorana quasiparticles

InSb nanowire between a metal (gold) and a superconductor (Nb-Ti-N)

dI/dV measured at 70 mK for varying magnetic field B indicated:

⇒ a zero-bias enhancement due to Majorana state

V. Mourik, ..., and <u>L.P. Kouwenhoven</u>, Science **336**, 1003 (2012).

/ Kavli Institute of Nanoscience, Delft Univ., Netherlands /

- for Majorana quasiparticles

InSb nanowire between a metal (gold) and a superconductor (Nb-Ti-N)

H. Zhang, ..., and <u>L.P. Kouwenhoven</u>, arXiv:1603.04069 (2016).

/ Kavli Institute of Nanoscience, Delft Univ., Netherlands /

for Majorana quasiparticles

A chain of iron atoms deposited on a surface of superconducting lead

STM measurements provided evidence for:

⇒ Majorana bound states at the edges of a chain.

·Δ_s 0 +Δ Energy

S. Nadj-Perge, ..., and <u>A. Yazdani</u>, Science **346**, 602 (2014).

/ Princeton University, Princeton (NJ), USA /

for Majorana quasiparticles

Self-assembled Fe chain on superconducting Pb(110) surface

AFM combined with **STM** provided evidence for:

⇒ Majorana bound states at the edges of a chain.

R. Pawlak, M. Kisiel et al, npj Quantum Information 2, 16035 (2016).

/ University of Basel, Switzerland /

for Majorana quasiparticles

Wire-like device constructed lithographically

H.J. Suominen et al, arXiv:1703.03699 (2017).

/ University of Copenhagen, Denmark /

Proximity effect

experimental realization (27 Dec 2016)

TOPOLOGICAL MATTER

Majorana bound state in a coupled quantum-dot hybrid-nanowire system

M. T. Deng, ^{1,2} S. Vaitiekėnas, ^{1,3} E. B. Hansen, ¹ J. Danon, ^{1,4} M. Leijnse, ^{1,5} K. Flensberg, ¹ J. Nygård, ¹ P. Krogstrup, ¹ C. M. Marcus ^{1*}

Science **354**, 1557 (2016).

/ Rashba chain + pairing /

/ Rashba chain + pairing /

Scheme of STM configuration

/ Rashba chain + pairing /

Scheme of STM configuration

$$\hat{H} = \hat{H}_{chain} + \hat{H}_{S} + \hat{H}_{tip} + + \hat{V}_{chain-S} + \hat{V}_{chain-tip}$$

We studied this model, focusing on the deep subgap regime $|E| \ll \Delta_{sc}$.

/ Rashba chain + pairing /

Scheme of STM configuration

where

$$\hat{H}_{chain} = \sum_{i,j,\sigma} (t_{ij} - \delta_{ij}\mu) \hat{d}^{\dagger}_{i,\sigma} \hat{d}_{j,\sigma} + \hat{H}_{Rashba} + \hat{H}_{Zeeman}$$

M. Maśka, A. Gorczyca-Goraj, J. Tworzydło and T. Domański, Phys. Rev. B 95, 045429 (2017).

Mutation of Andreev states into zero-energy (Majorana) mode

M. Maśka, A. Gorczyca-Goraj, J. Tworzydło and T. Domański, Phys. Rev. B 95, 045429 (2017).

Spectrum with the edge Majorana quasiparticles

Spatial variation of the induced pairings $\Delta_{\sigma,\sigma'} = \left\langle \hat{d}_{i,\sigma} \hat{d}_{i+1,\sigma}
ight
angle$

M. Maśka, A. Gorczyca-Goraj, J. Tworzydło and T. Domański, Phys. Rev. B 95, 045429 (2017).

Diagonal spectral functions $ho_{i\sigma}(\omega) = -rac{1}{\pi} { m Im} \left\langle \hat{d}_{i,\sigma} \hat{d}_{i,\sigma}^\dagger ight angle$

Off-diagonal spectral functions $\mathcal{F}_{i\sigma}(\omega) = -rac{1}{\pi} \mathrm{Im} \left\langle \hat{d}_{i,\sigma} \hat{d}_{i+1,\sigma} ight angle$

Idea of the Selective-Equal-Spin-Andreev-Reflection (SESAR)

Probabilities of the Andreeev scattering for various polarizations.

FIG. 4. The spatially resolved transmittances $T_i^{\gamma}(\omega)$ obtained at low energies ($|\omega| \ll \Delta$) for the nonmagnetic $\gamma = 0$ (panel A) and the spin-polarized Andreev reflections $\gamma = \uparrow$ (panel B) and $\gamma = \downarrow$ (panel C).

Differential conductance of the SESAR spectroscopy for $\sigma = \uparrow$.

Differential conductance of the SESAR spectroscopy for $\sigma = \downarrow$.

- concerning the spin-polarized Majoranas

concerning the spin-polarized Majoranas

spin-polarization is inherent to the Rashba chain

concerning the spin-polarized Majoranas

- spin-polarization is inherent to the Rashba chain
- → due to the spin-orbit and Zeeman interactions

- concerning the spin-polarized Majoranas
- spin-polarization is inherent to the Rashba chain
- → due to the spin-orbit and Zeeman interactions
 - polarization of Majoranas can be probed by SESAR

- concerning the spin-polarized Majoranas
- spin-polarization is inherent to the Rashba chain
- → due to the spin-orbit and Zeeman interactions
 - polarization of Majoranas can be probed by SESAR
- owing to the inter-site pairing

- concerning the spin-polarized Majoranas
- spin-polarization is inherent to the Rashba chain
- → due to the spin-orbit and Zeeman interactions
 - polarization of Majoranas can be probed by SESAR
- owing to the inter-site pairing
 - Majoranas can be extracted from all the in-gap qps

- concerning the spin-polarized Majoranas
- spin-polarization is inherent to the Rashba chain
- → due to the spin-orbit and Zeeman interactions
 - polarization of Majoranas can be probed by SESAR
- owing to the inter-site pairing
 - Majoranas can be extracted from all the in-gap qps
- via the spin current conductance

- concerning the spin-polarized Majoranas
- spin-polarization is inherent to the Rashba chain
- → due to the spin-orbit and Zeeman interactions
 - polarization of Majoranas can be probed by SESAR
- ⇒ owing to the inter-site pairing
 - Majoranas can be extracted from all the in-gap qps
- ⇒ via the spin current conductance

http://kft.umcs.lublin.pl/doman/lectures

general remarks about Majorana qps

general remarks about Majorana qps

creation = annihilation

$$\hat{\gamma}_{i,n}^{\dagger} = \hat{\gamma}_{i,n}$$

general remarks about Majorana qps

creation = annihilation

$$\hat{\gamma}_{i,n}^{\dagger}=\hat{\gamma}_{i,n}$$

⇒ chargeless, spinless, zero-energy objects

- general remarks about Majorana qps
- creation = annihilation

$$\hat{\gamma}_{i,n}^{\dagger}=\hat{\gamma}_{i,n}$$

- ⇒ chargeless, spinless, zero-energy objects
 - spatially nonlocal

- general remarks about Majorana qps
- creation = annihilation

$$\hat{\gamma}_{i,n}^{\dagger}=\hat{\gamma}_{i,n}$$

- ⇒ chargeless, spinless, zero-energy objects
 - spatially nonlocal
- ⇒ they always exist in pairs, even though (infinitely) far apart

general remarks about Majorana qps

creation = annihilation

$$\hat{\gamma}_{i,n}^{\dagger}=\hat{\gamma}_{i,n}$$

- ⇒ chargeless, spinless, zero-energy objects
 - spatially nonlocal
- ⇒ they always exist in pairs, even though (infinitely) far apart
 - fractionality

$$\hat{\gamma}_{i,n}^{\dagger} \; \hat{\gamma}_{i,n} = 1/2$$

- general remarks about Majorana qps
- creation = annihilation

$$\hat{\gamma}_{i,n}^{\dagger} = \hat{\gamma}_{i,n}$$

- ⇒ chargeless, spinless, zero-energy objects
 - spatially nonlocal
- ⇒ they always exist in pairs, even though (infinitely) far apart
 - fractionality

$$\hat{\gamma}_{i,n}^{\dagger} \; \hat{\gamma}_{i,n} = 1/2$$

⇒ half-empty & half-filled entities

- general remarks about Majorana qps
- creation = annihilation

$$\hat{\gamma}_{i,n}^{\dagger}=\hat{\gamma}_{i,n}$$

- ⇒ chargeless, spinless, zero-energy objects
 - spatially nonlocal
- ⇒ they always exist in pairs, even though (infinitely) far apart
 - fractionality

$$\hat{\gamma}_{i,n}^{\dagger} \; \hat{\gamma}_{i,n} = 1/2$$

- → half-empty & half-filled entities
 - topologically protected

- general remarks about Majorana qps
- creation = annihilation

$$\hat{\gamma}_{i,n}^{\dagger}=\hat{\gamma}_{i,n}$$

- ⇒ chargeless, spinless, zero-energy objects
 - spatially nonlocal
- > they always exist in pairs, even though (infinitely) far apart
 - fractionality

$$\hat{\gamma}_{i,n}^{\dagger} \ \hat{\gamma}_{i,n} = 1/2$$

- **⇒** half-empty & half-filled entities
 - topologically protected
- → immune to decoherence ... only in the topological sc phase !