Lviv, 7 IV 2011

Residual diamagnetism driven by the superconducting fluctuations

T. Domański

M. Curie-Skłodowska University, Lublin, Poland

http://kft.umcs.lublin.pl/doman/lectures

★ Preliminaries

/ Cooper pairing & Higgs mechanism /

★ Preliminaries

/ Cooper pairing & Higgs mechanism /

Motivation

/ pre-pairing for BE condensation /

Preliminaries

/ Cooper pairing & Higgs mechanism /

Motivation

/ pre-pairing for BE condensation /

Technical remarks

★ Preliminaries

/ Cooper pairing & Higgs mechanism /

Motivation

/ pre-pairing for BE condensation /

Technical remarks

★ Results

★ Preliminaries

/ Cooper pairing & Higgs mechanism /

Motivation

/ pre-pairing for BE condensation /

< Technical remarks

★ Results

 \Rightarrow Bogoliubov quasiparticles above T_c

★ Preliminaries

/ Cooper pairing & Higgs mechanism /

Motivation

/ pre-pairing for BE condensation /

< Technical remarks

★ Results

- Bogoliubov quasiparticles above T_c

 \Rightarrow Diamagnetism above T_c

★ Preliminaries

/ Cooper pairing & Higgs mechanism /

Motivation

/ pre-pairing for BE condensation /

Technical remarks

★ Results

- Bogoliubov quasiparticles above T_c
- Diamagnetism above T_c

Preliminaries

Superconducting state

- properties

Superconducting state – properties

X

Superconducting state

- properties

ideal d.c. conductance

X

Superconducting state– propertiesideal d.c. conductance

ideal diamagnetism

X

/perfect screening of the external magnetic field/

Pairing mechanism can be driven by:

Pairing mechanism can be driven by:

1. exchange of phonons

/ classical superconductors, MgB₂, ... /

Pairing mechanism can be driven by:

1. exchange of phonons

/ classical superconductors, MgB₂, ... /

2. exchange of magnons

/ heavy fermion compounds /

Pairing mechanism can be driven by:

1. exchange of phonons

/ classical superconductors, MgB₂, ... /

2. exchange of magnons

/ heavy fermion compounds /

3. strong correlations

/ high T_c superconductors /

Pairing mechanism can be driven by:

1. exchange of phonons

/ classical superconductors, MgB₂, ... /

2. exchange of magnons

/ heavy fermion compounds /

3. strong correlations

/ high T_c superconductors /

4. Feshbach resonance

/ ultracold superfluid atoms /

Pairing mechanism can be driven by:

1. exchange of phonons

/ classical superconductors, MgB₂, ... /

2. exchange of magnons

/ heavy fermion compounds /

3. strong correlations

/ high T_c superconductors /

4. Feshbach resonance

/ ultracold superfluid atoms /

5. other

/ pairing in nuclei, gluon-quark plasma /

Pairing mechanism can be driven by:

1. exchange of phonons

/ classical superconductors, MgB₂, ... /

2. exchange of magnons

/ heavy fermion compounds /

3. strong correlations

/ high T_c superconductors /

4. Feshbach resonance

/ ultracold superfluid atoms /

5. other

/ pairing in nuclei, gluon-quark plasma /

Appearance of fermion pairs usually goes hand in hand with **superconductivity/superfluidity** but it needn't be the rule.

Conventional superconductors

Conventional superconductors

Pair formation coincides with an onset of coherence at T_c

Pairing causes the energy gap $\Delta(T)$ in a single particle spectrum

Conventional superconductors

Pair formation coincides with an onset of coherence at T_c

Pairing causes the energy gap $\Delta(T)$ in a single particle spectrum

2-nd order phase transition

Below T_c there appears the order parameter (ODLRO) $\chi \propto \Delta(T)$

Conventional superconductors - meaning of T_c

Conventional superconductors – meaning of T_c

Electrons near the Fermi surface:

Conventional superconductors - meaning of T_c

Electrons near the Fermi surface:

 \Rightarrow form the Cooper pairs

Conventional superconductors – meaning of T_c **Electrons near the Fermi surface:** \Rightarrow form the Cooper pairs \Rightarrow and behave as a super-atom consisting

Formal issues – generalities

The order parameter

$$\chi(ec{r},t)\equiv\int dec{
ho}~\langle \hat{c}_{\downarrow}(ec{r}\!+\!rac{ec{
ho}}{2})~\hat{c}_{\uparrow}(ec{r}\!-\!rac{ec{
ho}}{2})
angle$$

Formal issues – generalities

The order parameter

$$\chi(ec{r},t)\equiv\int dec{
ho}~\langle\hat{c}_{\downarrow}(ec{r}\!+\!rac{ec{
ho}}{2})~\hat{c}_{\uparrow}(ec{r}\!-\!rac{ec{
ho}}{2})
angle$$

is a complex quantity

$$\chi = |\chi| \; e^{i oldsymbol{ heta}}$$

Formal issues – generalities

The order parameter

$$\chi(ec{r},t)\equiv\int dec{
ho}~\langle \hat{c}_{\downarrow}(ec{r}\!+\!rac{ec{
ho}}{2})~\hat{c}_{\uparrow}(ec{r}\!-\!rac{ec{
ho}}{2})
angle$$

is a complex quantity

 $\chi = |\chi| \; e^{i heta}$

with the following physical implications:
Formal issues – generalities

The order parameter

$$\chi(ec{r},t)\equiv\int dec{
ho}~\langle \hat{c}_{\downarrow}(ec{r}\!+\!rac{ec{
ho}}{2})~\hat{c}_{\uparrow}(ec{r}\!-\!rac{ec{
ho}}{2})
angle$$

is a complex quantity

 $\chi = |\chi| \; e^{i heta}$

with the following physical implications:

 $|\chi| \neq 0$ \longrightarrow amplitude causes the energy gap

Formal issues – generalities

The order parameter

$$\chi(ec{r},t)\equiv\int dec{
ho}~\langle \hat{c}_{\downarrow}(ec{r}\!+\!rac{ec{
ho}}{2})~\hat{c}_{\uparrow}(ec{r}\!-\!rac{ec{
ho}}{2})
angle$$

is a complex quantity

 $\chi = |\chi| \; e^{i heta}$

with the following physical implications:

 $|\chi| \neq 0$ \longrightarrow amplitude causes the energy gap

 $\nabla \theta \neq 0$ \longrightarrow phase slippage induces supercurrents

Anderson-Higgs mechanism

The low energy excitations of the BE condensed pairs are characterized by the collective (Goldstone) phasal mode.

- outline

The low energy excitations of the BE condensed pairs are characterized by the collective (Goldstone) phasal mode.

For charged particles (e.g. electron pairs) the phase θ of the order parameter χ couples to the vector potential \vec{A}

The low energy excitations of the BE condensed pairs are characterized by the collective (Goldstone) phasal mode.

For charged particles (e.g. electron pairs) the phase θ of the order parameter χ couples to the vector potential \vec{A}

$$S[\vec{A}, \theta] = \int d\vec{r} \left[rac{n_s}{m} \left(
abla heta - \vec{A}
ight)^2 + \left(ext{rot} \vec{A}
ight)^2
ight]$$

The low energy excitations of the BE condensed pairs are characterized by the collective (Goldstone) phasal mode.

For charged particles (e.g. electron pairs) the phase θ of the order parameter χ couples to the vector potential \vec{A}

$$S[ec{m{A}},m{ heta}] = \int dec{r} \left[rac{n_s}{m} \left(
ablam{ heta} - ec{m{A}}
ight)^2 + \left(ext{rot}ec{m{A}}
ight)^2
ight]$$

Using the gauge transformation $\vec{A} \to \vec{A} + \nabla \phi$, $\theta \to \theta + \phi$ such phase can be elliminated, but generating a massive term

The low energy excitations of the BE condensed pairs are characterized by the collective (Goldstone) phasal mode.

For charged particles (e.g. electron pairs) the phase θ of the order parameter χ couples to the vector potential \vec{A}

$$S[ec{m{A}},m{ heta}] = \int dec{r} \left[rac{n_s}{m} \left(
abla m{ heta} - ec{m{A}}
ight)^2 + \left({
m rot} ec{m{A}}
ight)^2
ight]$$

Using the gauge transformation $\vec{A} \to \vec{A} + \nabla \phi$, $\theta \to \theta + \phi$ such phase can be elliminated, but generating a massive term

$$S[ec{m{A}}] = \int dec{r} \left(rac{n_s}{m} + q^2
ight) ec{m{A}}_{ec{q}} \cdot ec{m{A}}_{-ec{q}}$$

The low energy excitations of the BE condensed pairs are characterized by the collective (Goldstone) phasal mode.

For charged particles (e.g. electron pairs) the phase θ of the order parameter χ couples to the vector potential \vec{A}

$$S[ec{m{A}},m{ heta}] = \int dec{r} \left[rac{n_s}{m} \left(
abla m{ heta} - ec{m{A}}
ight)^2 + \left({
m rot} ec{m{A}}
ight)^2
ight]$$

Using the gauge transformation $\vec{A} \to \vec{A} + \nabla \phi$, $\theta \to \theta + \phi$ such phase can be elliminated, but generating a massive term

$$S[ec{m{A}}] = \int dec{r} \left(rac{n_s}{m} + q^2
ight) ec{m{A}}_{ec{q}} \cdot ec{m{A}}_{- ec{q}}$$

This implies the London equation (Meissner effect)

$$\left(rac{n_s}{m}-
abla^2
ight)ec{A}(ec{r})=0$$

The low energy excitations of the BE condensed pairs are characterized by the collective (Goldstone) phasal mode.

For charged particles (e.g. electron pairs) the phase θ of the order parameter χ couples to the vector potential \vec{A}

$$S[ec{m{A}},m{ heta}] = \int dec{r} \left[rac{n_s}{m} \left(
ablam{ heta} - ec{m{A}}
ight)^2 + \left(ext{rot}ec{m{A}}
ight)^2
ight]$$

Using the gauge transformation $\vec{A} \to \vec{A} + \nabla \phi$, $\theta \to \theta + \phi$ such phase can be elliminated, but generating a massive term

$$S[ec{m{A}}] = \int dec{r} \left(rac{n_s}{m} + q^2
ight) ec{m{A}}_{ec{q}} \cdot ec{m{A}}_{-ec{q}}$$

This implies the London equation (Meissner effect)

$$\left(rac{n_s}{m}-
abla^2
ight)ec{oldsymbol{A}}(ec{r})=0$$

Can any part of this mechanism survive above T_c ?

Motivation

Phase transitions – classification

The complex order parameter

$$|\chi = |\chi| \; e^{i heta}$$

Phase transitions – classification

The complex order parameter

$$\chi = |\chi| \; e^{i heta}$$

vanishes at $T
ightarrow T_c$ either by:

First empirical evidence for the sc fluctuations above T_c has been observed in the granular aluminium films.

First empirical evidence for the sc fluctuations above T_c has been observed in the granular aluminium films.

Tunneling conductance revealed a pseudogap surviving above T_c .

First empirical evidence for the sc fluctuations above T_c has been observed in the granular aluminium films.

Tunneling conductance revealed a pseudogap surviving above T_c .

R.W. Cohen and *B.* Abels, *Phys. Rev.* **168**, 444 (1968).

HTSC materials – phase diagram

Superconductivity appears upon doping the Mott insulator by

HTSC materials – phase diagram

Superconductivity appears upon doping the Mott insulator by

O. Fisher et al, Rev. Mod. Phys. **79**, 353 (2007).

HTSC materials – phase diagram

Superconductivity appears upon doping the Mott insulator by

O. Fisher et al, Rev. Mod. Phys. **79**, 353 (2007).

Unresolved problem:

What causes the pseudogap ?

experimental fact # 1

experimental fact # 2

experimental fact # 2

Y. Wang et al, Science **299**, 86 (2003).

experimental fact # 3

experimental fact # 3

Enhanced diamagnetic response revealed above T_c by the ultrahigh precission torque magnetometry.

L. Li et al and N.P. Ong, Phys. Rev. B 81, 054510 (2010).

Incoherent pairs above T_c experimental fact # 3 150 150 (B) (A) La_{2-x}Sr_xCuO₄ Bi₂Sr_{2-v}La_vCuO₆ T^ν onset $\mathsf{T}^v_{\mathsf{onset}}$ (×) ¹⁰⁰ L 100 ¥ _____ T _{onset}' ,¹ ⁰⁰ ⊢ ТМ т™ ď 50 onset onset T_{c} T_{c} 0 0 0.0 0.1 0.2 0.3 0.6 0.4 0.2 Sr content x La content y $T^{ u}$ - onset of the Nernst effect T^M – onset of the diamagnetism L. Li et al and N.P. Ong, Phys. Rev. B 81, 054510 (2010).

Incoherent pairs above T_c ... continued

Technical remarks

Boson-Fermion model

$$\begin{split} \hat{H} &= \sum_{i,j,\sigma} \left(t_{ij} - \mu \; \delta_{i,j} \right) \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \sum_{l} \left(E_{l}^{(B)} - 2\mu \right) \hat{b}_{l}^{\dagger} \hat{b}_{l} \\ &+ \sum_{i,j} g_{ij} \left[\hat{b}_{l}^{\dagger} \hat{c}_{i,\downarrow} \hat{c}_{j,\uparrow} \right. + \text{h.c.} \right] \end{split}$$
$$egin{array}{rcl} \hat{H} &=& \displaystyle{\sum_{i,j,\sigma} \left(t_{ij}-\mu\;\delta_{i,j}
ight) \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma}} + \displaystyle{\sum_{l} \left(E_{l}^{(B)}-2\mu
ight) \hat{b}_{l}^{\dagger} \hat{b}_{l}} \ &+& \displaystyle{\sum_{i,j} g_{ij} \left[\hat{b}_{l}^{\dagger} \hat{c}_{i,\downarrow} \hat{c}_{j,\uparrow}
ight.} + ext{h.c.}
ight]} \ egin{array}{rcl} ec{R}_{l} &=& (ec{r}_{i}+ec{r}_{j})/2 \end{array}$$

$$egin{array}{rcl} \hat{H} &=& \displaystyle{\sum_{i,j,\sigma} \left(t_{ij}-\mu\;\delta_{i,j}
ight) \hat{c}_{i\sigma}^{\dagger}\hat{c}_{j\sigma}} + \displaystyle{\sum_{l} \left(E_{l}^{(B)}-2\mu
ight) \hat{b}_{l}^{\dagger}\hat{b}_{l}} \ &+& \displaystyle{\sum_{i,j} g_{ij} \left[\hat{b}_{l}^{\dagger}\hat{c}_{i,\downarrow}\hat{c}_{j,\uparrow} \;\;+ ext{h.c.}
ight]} \ egin{array}{rcl} egin{array}{rcl} R_{l} &=& (ec{r_{i}}+ec{r_{j}})/2 \end{array}$$

describes a two-component system consisting of:

$$egin{aligned} \hat{H} &=& \sum_{i,j,\sigma} \left(t_{ij} - \mu \; \delta_{i,j}
ight) \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \sum_{l} \left(E_{l}^{(B)} - 2\mu
ight) \hat{b}_{l}^{\dagger} \hat{b}_{l} \ &+& \sum_{i,j} g_{ij} \left[\hat{b}_{l}^{\dagger} \hat{c}_{i,\downarrow} \hat{c}_{j,\uparrow} \; + ext{h.c.}
ight] \ &egin{aligned} ec{R}_{l} &=& (ec{r}_{i} + ec{r}_{j})/2 \end{aligned}$$

describes a two-component system consisting of:

 $\hat{c}_{i\sigma}^{(\dagger)}$ itinerant fermions(e.g. holes near the Mott insulator)

$$egin{array}{rcl} \hat{H} &=& \displaystyle{\sum_{i,j,\sigma} \left(t_{ij}-\mu\;\delta_{i,j}
ight) \hat{c}_{i\sigma}^{\dagger}\hat{c}_{j\sigma}} + \displaystyle{\sum_{l} \left(E_{l}^{(B)}-2\mu
ight) \hat{b}_{l}^{\dagger}\hat{b}_{l}} \ &+& \displaystyle{\sum_{i,j} g_{ij} \left[\hat{b}_{l}^{\dagger}\hat{c}_{i,\downarrow}\hat{c}_{j,\uparrow}
ight.} + ext{h.c.}
ight]} \ egin{array}{rcl} ec{R}_{l} &=& (ec{r}_{i}+ec{r}_{j})/2 \end{array}$$

describes a two-component system consisting of:

 $\hat{c}_{i\sigma}^{(\dagger)}$ itinerant fermions(e.g. holes near the Mott insulator)

immobile local pairs (RVB defines them on the bonds)

$$egin{array}{rcl} \hat{H} &=& \displaystyle{\sum_{i,j,\sigma} \left(t_{ij}-\mu\;\delta_{i,j}
ight) \hat{c}_{i\sigma}^{\dagger}\hat{c}_{j\sigma}} + \displaystyle{\sum_{l} \left(E_{l}^{(B)}-2\mu
ight) \hat{b}_{l}^{\dagger}\hat{b}_{l}} \ &+& \displaystyle{\sum_{i,j} g_{ij} \left[\hat{b}_{l}^{\dagger}\hat{c}_{i,\downarrow}\hat{c}_{j,\uparrow}
ight.} + ext{h.c.}
ight]} \ egin{array}{rcl} ec{R}_{l} &=& (ec{r}_{i}+ec{r}_{j})/2 \end{array}$$

describes a two-component system consisting of:

 $\hat{c}_{i\sigma}^{(\dagger)}$ itinerant fermions(e.g. holes near the Mott insulator)

immobile local pairs (RVB defines them on the bonds) interacting via:

$$egin{array}{rcl} \hat{H} &=& \displaystyle{\sum_{i,j,\sigma} \left(t_{ij}-\mu\;\delta_{i,j}
ight) \hat{c}_{i\sigma}^{\dagger}\hat{c}_{j\sigma}} + \displaystyle{\sum_{l} \left(E_{l}^{(B)}-2\mu
ight) \hat{b}_{l}^{\dagger}\hat{b}_{l}} \ &+& \displaystyle{\sum_{i,j} g_{ij} \left[\hat{b}_{l}^{\dagger}\hat{c}_{i,\downarrow}\hat{c}_{j,\uparrow}
ight.} + ext{h.c.}
ight]} \ egin{array}{rcl} ec{R}_{l} &=& (ec{r}_{i}+ec{r}_{j})/2 \end{array}$$

describes a two-component system consisting of:

 $\hat{c}_{i\sigma}^{(\dagger)}$ itinerant fermions(e.g. holes near the Mott insulator)

immobile local pairs (RVB defines them on the bonds) interacting via:

$$egin{array}{rcl} \hat{H} &=& \displaystyle{\sum_{i,j,\sigma} \left(t_{ij}-\mu\;\delta_{i,j}
ight) \hat{c}_{i\sigma}^{\dagger}\hat{c}_{j\sigma}} + \displaystyle{\sum_{l} \left(E_{l}^{(B)}-2\mu
ight) \hat{b}_{l}^{\dagger}\hat{b}_{l}} \ &+& \displaystyle{\sum_{i,j} g_{ij} \left[\hat{b}_{l}^{\dagger}\hat{c}_{i,\downarrow}\hat{c}_{j,\uparrow}
ight.} + ext{h.c.}
ight]} \ egin{array}{rcl} ec{R}_{l} &=& (ec{r}_{i}+ec{r}_{j})/2 \end{array}$$

describes a two-component system consisting of:

 $\hat{c}_{i\sigma}^{(\dagger)}$ itinerant fermions(e.g. holes near the Mott insulator)

immobile local pairs (RVB defines them on the bonds) interacting via:

In the Lagrangian language we obtain this kind of physics upon applying the Hubbard-Stratonovich transformation !

$$\begin{split} \hat{H} &= \sum_{\mathbf{k}\sigma} \left(\varepsilon_{\mathbf{k}} - \mu \right) \hat{c}^{\dagger}_{\mathbf{k}\sigma} \hat{c}_{\mathbf{k}\sigma} + \sum_{\mathbf{q}} \left(E^{(B)} - 2\mu \right) \hat{b}^{\dagger}_{\mathbf{q}} \hat{b}_{\mathbf{q}} \\ &+ \frac{1}{\sqrt{N}} \sum_{\mathbf{k},\mathbf{q}} g_{\mathbf{k},\mathbf{q}} \left[\hat{b}^{\dagger}_{\mathbf{q}} \hat{c}_{\mathbf{k},\downarrow} \hat{c}_{\mathbf{q}-\mathbf{k},\uparrow} \right. + \text{h.c.} \right] \end{split}$$

$$\begin{split} \hat{H} &= \sum_{\mathbf{k}\sigma} \left(\varepsilon_{\mathbf{k}} - \mu \right) \hat{c}^{\dagger}_{\mathbf{k}\sigma} \hat{c}_{\mathbf{k}\sigma} + \sum_{\mathbf{q}} \left(E^{(B)} - 2\mu \right) \hat{b}^{\dagger}_{\mathbf{q}} \hat{b}_{\mathbf{q}} \\ &+ \frac{1}{\sqrt{N}} \sum_{\mathbf{k},\mathbf{q}} g_{\mathbf{k},\mathbf{q}} \left[\hat{b}^{\dagger}_{\mathbf{q}} \hat{c}_{\mathbf{k},\downarrow} \hat{c}_{\mathbf{q}-\mathbf{k},\uparrow} \right. + \text{h.c.} \right] \end{split}$$

This BF scenario has been considered by various groups:

J. Ranninger with coworkers Grenoble
R. Micnas, S. Robaszkiewicz
T.D. Lee with coworkers New York
V.B. Geshkenbein, L.B. loffe, A.I. Larkin
E. Altman & A. Auerbach Technion
A. Griffin with coworkers Toronto
K. Levin with coworkers Chicago
and many others.

For studying the many-body effects we construct the sequence

For studying the many-body effects we construct the sequence of unitary transformations

For studying the many-body effects we construct the sequence of unitary transformations

$$\hat{H} \longrightarrow \hat{H}(l_1) \longrightarrow \hat{H}(l_2) \longrightarrow ... \longrightarrow \hat{H}(\infty)$$

For studying the many-body effects we construct the sequence of unitary transformations

$$\hat{H} \longrightarrow \hat{H}(l_1) \longrightarrow \hat{H}(l_2) \longrightarrow ... \longrightarrow \hat{H}(\infty)$$

decoupling the boson from fermion degrees of freedom.

For studying the many-body effects we construct the sequence of unitary transformations

$$\hat{H} \longrightarrow \hat{H}(l_1) \longrightarrow \hat{H}(l_2) \longrightarrow ... \longrightarrow \hat{H}(\infty)$$

decoupling the boson from fermion degrees of freedom.

F. Wegner (1994); K.G. Wilson (1994) - inventors of this RG-like scheme

For studying the many-body effects we construct the sequence of unitary transformations

$$\hat{H} \longrightarrow \hat{H}(l_1) \longrightarrow \hat{H}(l_2) \longrightarrow ... \longrightarrow \hat{H}(\infty)$$

decoupling the boson from fermion degrees of freedom.

F. Wegner (1994); K.G. Wilson (1994) - inventors of this RG-like scheme

Hamiltonian at l = 0

$$\hat{H}_F$$
 + \hat{H}_B + \hat{V}_{BF}

For studying the many-body effects we construct the sequence of unitary transformations

$$\hat{H} \longrightarrow \hat{H}(l_1) \longrightarrow \hat{H}(l_2) \longrightarrow ... \longrightarrow \hat{H}(\infty)$$

decoupling the boson from fermion degrees of freedom.

F. Wegner (1994); K.G. Wilson (1994) - inventors of this RG-like scheme

Hamiltonian at $0 < l < \infty$

 $\hat{H}_F(l) + \hat{H}_B(l) + \hat{V}_{BF}(l)$

For studying the many-body effects we construct the sequence of unitary transformations

$$\hat{H} \longrightarrow \hat{H}(l_1) \longrightarrow \hat{H}(l_2) \longrightarrow ... \longrightarrow \hat{H}(\infty)$$

decoupling the boson from fermion degrees of freedom.

F. Wegner (1994); K.G. Wilson (1994) - inventors of this RG-like scheme

Hamiltonian at $l = \infty$

$$\hat{H}_F(\infty) + \hat{H}_B(\infty) + 0$$

For studying the many-body effects we construct the sequence of unitary transformations

$$\hat{H} \longrightarrow \hat{H}(l_1) \longrightarrow \hat{H}(l_2) \longrightarrow ... \longrightarrow \hat{H}(\infty)$$

decoupling the boson from fermion degrees of freedom.

F. Wegner (1994); K.G. Wilson (1994) - inventors of this RG-like scheme

Hamiltonian at $l = \infty$

$$\hat{H}_F(\infty) + \hat{H}_B(\infty) + 0$$

T. Domański and J. Ranninger, Phys. Rev. **B 63**, 134505 (2001).

- algorithm

 $\hat{H}(l) = \hat{S}(l) \; \hat{H} \; \hat{S}^{\dagger}(l)$ Let

- algorithm

Let

 $\hat{H}(l) = \hat{S}(l) \; \hat{H} \; \hat{S}^{\dagger}(l)$ *l* – a continuous flow parameter.

- algorithm

Let $\hat{H}(l) = \hat{S}(l) \hat{H} \hat{S}^{\dagger}(l)$ l - a continuous flow parameter.

The derivative

$$egin{aligned} &rac{d\hat{H}(l)}{dl} &= &rac{d\hat{S}(l)}{dl}\hat{H}\hat{S}^{\dagger}(l)+\hat{S}(l)\hat{H}rac{d\hat{S}^{\dagger}(l)}{dl}\ &= &rac{d\hat{S}(l)}{dl}\hat{S}^{\dagger}(l)\hat{H}(l)+\hat{H}(l)\hat{S}(l)rac{d\hat{S}^{\dagger}(l)}{dl} \end{aligned}$$

– algorithm

Let $\hat{H}(l) = \hat{S}(l) \hat{H} \hat{S}^{\dagger}(l)$ l-a continuous flow parameter.

The derivative

$$egin{aligned} rac{d\hat{H}(l)}{dl} &= rac{d\hat{S}(l)}{dl}\hat{H}\hat{S}^{\dagger}(l) + \hat{S}(l)\hat{H}rac{d\hat{S}^{\dagger}(l)}{dl} \ &= rac{d\hat{S}(l)}{dl}\hat{S}^{\dagger}(l)\hat{H}(l) + \hat{H}(l)\hat{S}(l)rac{d\hat{S}^{\dagger}(l)}{dl} \end{aligned}$$

Using the unitary transform, identity $\hat{S}(l)\hat{S}^{\dagger}(l) = 1$, so that $\frac{d\hat{S}(l)}{dl}\hat{S}^{\dagger}(l) + \hat{S}(l)\frac{d\hat{S}^{\dagger}(l)}{dl} = 0$ we obtain the flow equation

– algorithm

Let $\hat{H}(l) = \hat{S}(l) \hat{H} \hat{S}^{\dagger}(l)$ l-a continuous flow parameter.

The derivative

$$egin{array}{rll} rac{d\hat{H}(l)}{dl}&=&rac{d\hat{S}(l)}{dl}\hat{H}\hat{S}^{\dagger}(l)+\hat{S}(l)\hat{H}rac{d\hat{S}^{\dagger}(l)}{dl}\ &=&rac{d\hat{S}(l)}{dl}\hat{S}^{\dagger}(l)\hat{H}(l)+\hat{H}(l)\hat{S}(l)rac{d\hat{S}^{\dagger}(l)}{dl} \end{array}$$

Using the unitary transform. identity $\hat{S}(l)\hat{S}^{\dagger}(l) = 1$, so that $\frac{d\hat{S}(l)}{dl}\hat{S}^{\dagger}(l) + \hat{S}(l)\frac{d\hat{S}^{\dagger}(l)}{dl} = 0$ we obtain the flow equation $\frac{d\hat{H}(l)}{dl} = [\hat{\eta}(l), \hat{H}(l)]$

- algorithm

Let $\hat{H}(l) = \hat{S}(l) \hat{H} \hat{S}^{\dagger}(l)$ l - a continuous flow parameter.

The derivative

$$egin{aligned} rac{d\hat{H}(l)}{dl} &= rac{d\hat{S}(l)}{dl}\hat{H}\hat{S}^{\dagger}(l)+\hat{S}(l)\hat{H}rac{d\hat{S}^{\dagger}(l)}{dl}\ &= rac{d\hat{S}(l)}{dl}\hat{S}^{\dagger}(l)\hat{H}(l)+\hat{H}(l)\hat{S}(l)rac{d\hat{S}^{\dagger}(l)}{dl} \end{aligned}$$

Using the unitary transform, identity $\hat{S}(l)\hat{S}^{\dagger}(l) = 1$, so that $\frac{d\hat{S}(l)}{dl}\hat{S}^{\dagger}(l) + \hat{S}(l)\frac{d\hat{S}^{\dagger}(l)}{dl} = 0$ we obtain the flow equation

$$rac{d\hat{H}(l)}{dl} = [\hat{\eta}(l), \hat{H}(l)]$$

where

$$\hat{\eta}(l) = rac{d\hat{S}(l)}{dl}\hat{S}^{\dagger}(l) = -\hat{\eta}^{\dagger}(l).$$

- algorithm

How one can guess a diagonalizing generator $\eta(l)$?

- algorithm

How one can guess a diagonalizing generator $\eta(l)$?

For the Hamiltonian

$$\hat{H} = \hat{H}_{diag} + \hat{H}_{off}$$

one can choose

$$\hat{\eta}(l) = \left[\hat{H}_{diag}(l), \hat{H}_{off}(l)
ight]$$

and then

$$\lim_{l o\infty} \hat{H}_{off}(l) = 0$$

– algorithm

How one can guess a diagonalizing generator $\eta(l)$?

For the Hamiltonian

$$\hat{H} = \hat{H}_{diag} + \hat{H}_{off}$$

one can choose

$$\hat{\eta}(l) = \left[\hat{H}_{diag}(l), \hat{H}_{off}(l)
ight]$$

and then

$$\lim_{l o\infty} \hat{H}_{off}(l) = 0$$

For more details see for instance:

S. Kehrein, Springer Tracts in Modern Physics **217**, (2006); F. Wegner, J. Phys. A: Math. Gen. **39**, 8221 (2006).

- algorithm

Similar ideas have been also earlier developed also in the field of **control theory** under the names:

 \star "double bracket flow"

R.W. Brockett, Lin. Alg. and its Appl. **146**, 79 (1991).

M.T. Chu and K.R. Driessel, J. Num. Anal. **27**, 1050 (1990).

- algorithm

Similar ideas have been also earlier developed also in the field of **control theory** under the names:

 \star "double bracket flow"

R.W. Brockett, Lin. Alg. and its Appl. **146**, *79* (1991).

M.T. Chu and K.R. Driessel, J. Num. Anal. 27, 1050 (1990).

Pedagogical study of numerical efficiency of the CUT method in comparison to the known numerical procedures such as e.g. the Jacobi transformation, has been done by

- algorithm

Similar ideas have been also earlier developed also in the field of **control theory** under the names:

R.W. Brockett, Lin. Alg. and its Appl. **146**, *79* (1991).

M.T. Chu and K.R. Driessel, J. Num. Anal. 27, 1050 (1990).

Pedagogical study of numerical efficiency of the CUT method in comparison to the known numerical procedures such as e.g. the Jacobi transformation, has been done by

S.R. White, J. Chem. Phys. 117, 7472 (2002).

Results :

1. Bogoliubov quasiparticles above T_c

Effective spectrum: BF model

 $T_c < T < T^*$

T. Domański and J. Ranninger, Phys. Rev. Lett. **91**, 255301 (2003).

Effective spectrum: BF model

 $T_c < T < T^*$

T. Domański and J. Ranninger, Phys. Rev. Lett. **91**, 255301 (2003).

Experimental data for $T < T_c$

H. Matsui, T. Sato, and T. Takahashi et al, Phys. Rev. Lett. 90, 217002 (2003).

J. Campuzano group (Chicago, USA)

Results for: Bi_2Sr_2CaCu_2O_8

A. Kanigel et al, Phys. Rev. Lett. 101, 137002 (2008).

J. Campuzano group (Chicago, USA)

Results for: $Bi_2Sr_2CaCu_2O_8$

A. Kanigel et al, Phys. Rev. Lett. 101, 137002 (2008).

PSI group (Villigen, Switzerland)

Results for: $La_{1.895}Sr_{0.105}CuO_4$

M. Shi et al, Eur. Phys. Lett. **88**, 27008 (2009).

D. Jin group (Boulder, USA)

Results :

2. Diamagnetism above T_c

Correlation functions

For studying the diamagnetic response (in the Kubo formalism) we have to determine the current-current correlation function

 $- \, \hat{T}_{ au} \langle \hat{j}_{\mathrm{q}}(au) \; \hat{j}_{-\mathrm{q}}(0)
angle$

with statistical averaging defined as

$$\langle ...
angle = {
m Tr} \left\{ e^{-eta \hat{H}} ...
ight\} / {
m Tr} \left\{ e^{-eta \hat{H}}
ight\}$$

and $\beta^{-1} = k_B T$.

This can be achieved using the following invariance

$$\operatorname{Tr}\left\{e^{-\beta\hat{H}}\hat{O}\right\} = \operatorname{Tr}\left\{e^{\hat{S}(l)}e^{-\beta\hat{H}}\hat{O}e^{-\hat{S}(l)}\right\}$$
$$= \operatorname{Tr}\left\{e^{\hat{S}(l)}e^{-\beta\hat{H}}e^{-\hat{S}(l)}e^{\hat{S}(l)}\hat{O}e^{-\hat{S}(l)}\right\}$$
$$= \operatorname{Tr}\left\{e^{-\beta\hat{H}(l)}\hat{O}(l)\right\}$$

where

$$\hat{H}(l) = e^{\hat{S}(l)}\hat{H}e^{-\hat{S}(l)}$$
 $\hat{O}(l) = e^{\hat{S}(l)}\hat{O}e^{-\hat{S}(l)}$

Main contributions to the current-current response function:

Main contributions to the current-current response function:

the usual bubble diagram

Main contributions to the current-current response function:

Residual diamagnetism originates from the collective behavior of pairs. It is closely related with increase of pair susceptibility, which is enhanced at T_{dia}^* and ultimately diverges at T_{sc} .

Residual diamagnetism originates from the collective behavior of pairs. It is closely related with increase of pair susceptibility, which is enhanced at T_{dia}^* and ultimately diverges at T_{sc} .

Residual diamagnetism originates from the collective behavior of pairs. It is closely related with increase of pair susceptibility, which is enhanced at T_{dia}^* and ultimately diverges at T_{sc} .

The structure function $\frac{1}{\omega} \operatorname{Im} \chi(q, \omega)$ showing a piece of the collective (Goldstone) branch for $q_{c1} < q < q_{c2}$.

Onset of the diamagnetism coincides with appearance of the collective features in the fermion/boson spectrum.

Onset of the diamagnetism coincides with appearance of the collective features in the fermion/boson spectrum.

fermion dispersion

Onset of the diamagnetism coincides with appearance of the collective features in the fermion/boson spectrum.

fermion dispersion

Onset of the diamagnetism coincides with appearance of the collective features in the fermion/boson spectrum.

fermion dispersion

Onset of the diamagnetism coincides with appearance of the collective features in the fermion/boson spectrum.

fermion dispersion

Onset of the diamagnetism coincides with appearance of the collective features in the fermion/boson spectrum.

fermion dispersion

Onset of the diamagnetism coincides with appearance of the collective features in the fermion/boson spectrum.

fermion dispersion

Onset of the diamagnetism coincides with appearance of the collective features in the fermion/boson spectrum.

fermion dispersion

Onset of the diamagnetism coincides with appearance of the collective features in the fermion/boson spectrum.

1) There is unambiguous evidence for pre-existing pairs above T_c due to

- 1) There is unambiguous evidence for pre-existing pairs above T_c due to
- \Rightarrow the residual diamagnetism

/ torque magnetometry /

- 1) There is unambiguous evidence for pre-existing pairs above T_c due to
- the residual diamagnetism
 / torque magnetometry /
- Bogoliubov quasiparticles / ARPES, FT-STM, Josephson effect /

- 1) There is unambiguous evidence for pre-existing pairs above T_c due to
- the residual diamagnetism
 / torque magnetometry /
- Bogoliubov quasiparticles
 / ARPES, FT-STM, Josephson effect /
- 2) Superconducting fluctuations
Summary

- 1) There is unambiguous evidence for pre-existing pairs above T_c due to
- the residual diamagnetism
 / torque magnetometry /
- Bogoliubov quasiparticles / ARPES, FT-STM, Josephson effect /
- 2) Superconducting fluctuations
 - cause various collective features
 / reminiscent of the sc state /

Summary

- 1) There is unambiguous evidence for pre-existing pairs above T_c due to
- the residual diamagnetism
 / torque magnetometry /
- Bogoliubov quasiparticles / ARPES, FT-STM, Josephson effect /
- 2) Superconducting fluctuations
- cause various collective features

/ reminiscent of the sc state /

although ODLRO is not yet established

/ the short-range coherence /

Summary

- 1) There is unambiguous evidence for pre-existing pairs above T_c due to
- the residual diamagnetism
 / torque magnetometry /
- Bogoliubov quasiparticles / ARPES, FT-STM, Josephson effect /
- 2) Superconducting fluctuations
- cause various collective features

/ reminiscent of the sc state /

although ODLRO is not yet established

/ the short-range coherence /

Thank you.