TIME-DEPENDENT PHENOMENA IN NANOSCOPIC SUPERCONDUCTORS

Tadeusz Domański

UMCS Lublin

"Condensed Matter Physics Seminar"

Lublin, 20 Oct. 2020

• Nanoscopic superconductors

• Nanoscopic superconductors

 \Rightarrow quantum dots, nanowires, nanoislands proximitized to bulk superconductors

OUTLINE

Nanoscopic superconductors

- \Rightarrow quantum dots, nanowires, nanoislands proximitized to bulk superconductors
- Time-dependent phenomena

OUTLINE

- Nanoscopic superconductors
- \Rightarrow quantum dots, nanowires, nanoislands proximitized to bulk superconductors
- Time-dependent phenomena
- \Rightarrow transient effects
- \Rightarrow quench dynamics
 - a) dynamical quantum phase transition
 - b) gradual leakage of Majorana modes

HETEROSTRUCTURES WITH SUPERCONDUCTOR(S)

normal metal (N) - quantum dot (QD) - superconductor (S)

J. Estrada Saldaña, A. Vekris, V. Sosnovtseva, T. Kanne, P. Krogstrup, K. Grove-Rasmussen and J. Nygård, Commun. Phys. <u>3</u>, 125 (2020).

HETEROSTRUCTURES WITH SUPERCONDUCTOR(S)

normal metal (N) - quantum dot (QD) - superconductor (S)

J. Estrada Saldaña, A. Vekris, V. Sosnovtseva, T. Kanne, P. Krogstrup, K. Grove-Rasmussen and J. Nygård, Commun. Phys. <u>3</u>, 125 (2020). N - metallic gold QD - InAs wire S - Aluminum

HETEROSTRUCTURES WITH SUPERCONDUCTOR(S)

superconductor (S) - quantum dot (QD) - superconductor (S)

R. Delagrange, R. Weil, A. Kasumov, M. Ferrier, H. Bouchiat, R. Deblock, Phys. Rev. B <u>93</u>, 195437 (2016).

IN-GAP STATES

Spectrum of a single impurity coupled to bulk superconductor:

IN-GAP STATES

Spectrum of a single impurity coupled to bulk superconductor:

Bound states appearing in the subgap region $-\Delta < \omega < \Delta$.

IN-GAP STATES

Spectrum of a single impurity coupled to bulk superconductor:

Bound states appearing in the subgap region $-\Delta < \omega < \Delta$.

Yu-Shiba-Rusinov (Andreev) bound states

Transient dynamics

Consider a sudden coupling of QD to external leads

R. Taranko and T. Domański, Phys. Rev. B 98, 075420 (2018).

Consider a sudden coupling of QD to external leads

R. Taranko and T. Domański, Phys. Rev. B 98, 075420 (2018).

• for *t* < 0 QD is isolated

 $\Gamma_S = \mathbf{0} = \Gamma_N$

Consider a sudden coupling of QD to external leads

R. Taranko and T. Domański, Phys. Rev. B 98, 075420 (2018).

for t < 0 QD is isolated
for t > 0 QD is hybridized

 $\Gamma_S = \mathbf{0} = \Gamma_N$ $\Gamma_S \neq \mathbf{0} \neq \Gamma_N$

Physical questions:

R. Taranko and T. Domański, Phys. Rev. B 98, 075420 (2018).

- how much time is needed to create in-gap states?
- can such characteristic time-scale be measured ?

Time-dependent charge for various initial QD fillings

Time-dependent charge for various initial QD fillings

importance of the initial QD configuration

Time-dependent charge for various initial QD fillings

- importance of the initial QD configuration
- oscillations for empty/doubly occupied QD

Time-dependent charge for various initial QD fillings

- importance of the initial QD configuration
- oscillations for empty/doubly occupied QD

These quantum oscillations are reminiscent of the Rabi (two-level) system.

Role of the coupling Γ_N to metallic lead

Role of the coupling Γ_N to metallic lead

• relaxation time is proportional to $1/\Gamma_N$

Role of the coupling Γ_N to metallic lead

• relaxation time is proportional to $1/\Gamma_N$

Thermalization is driven by a continuum electrons from the metallic lead.

Empirically measurable transient current

- relaxation time is proportional to $1/\Gamma_N$
- oscillations depend on energies of in-gap states

R. Taranko and T. Domański, Phys. Rev. B 98, 075420 (2018).

EXPERIMENTALLY ACCESSIBLE QUANTITIES

Subgap tunneling conductance $G_{\sigma} = \frac{\partial I_{\sigma}}{\partial t}$ vs time (t) and voltage (μ)

CHARACTERISTIC TIME-SCALES

Signatures of the in-gap bound states vs (t, μ)

period of oscillations \(\tau_2 = \frac{2}{\Gamma_s}\).....(about picoseconds)
 relaxation time \(\tau_1 = \frac{2}{\Gamma_N}\).....(it can be arbitrary)

R. Taranko and T. Domański, Phys. Rev. B 98, 075420 (2018).

STATISTICS OF TUNNELING EVENTS

Transient currents from 'Waiting Time Distribution' approach

G. Michałek, B. Bułka, T. Domański & K.I. Wysokiński, Acta Phys. Polon. A 133, 391 (2018).

STATISTICS OF TUNNELING EVENTS

Transient currents from 'Waiting Time Distribution' approach

G. Michałek, B. Bułka, T. Domański & K.I. Wysokiński, Acta Phys. Polon. A 133, 391 (2018).

G. Michałek, B. Bułka, T. Domański & K.I. Wysokiński, Phys. Rev. B 101, 235402 (2020).

JOSEPHSON/ANDREEV CIRCUITS

R. Taranko, T. Kwapiński & T. Domański, Phys. Rev. B 99, 165419 (2019).

JOSEPHSON/ANDREEV CIRCUITS

R. Taranko, T. Kwapiński & T. Domański, Phys. Rev. B 99, 165419 (2019).

Issues to be addressed:

• phase-controlled emergence of in-gap states,

JOSEPHSON/ANDREEV CIRCUITS

R. Taranko, T. Kwapiński & T. Domański, Phys. Rev. B 99, 165419 (2019).

Issues to be addressed:

- phase-controlled emergence of in-gap states,
- dynamical effects observable by $j_S(t)$ and/or $j_N(t)$.

SCHEME FOR EMPIRICAL REALIZATION

Chart for a practical realization of the Josephson & Andreev circuits

G. Kiršanskas, M. Goldstein, K. Flensberg, L.I. Glazman & J. Paaske, Phys. Rev. B 92, 235422 (2015)

PHASE-CONTROLLED TRANSIENTS

Time dependent charge $n_{\sigma}(t)$ of QD

R. Taranko, T. Kwapiński & T. Domański, Phys. Rev. B 99, 165419 (2019).

PHASE-CONTROLLED TRANSIENTS

Time dependent order parameter $\langle \hat{d}_{\downarrow} \hat{d}_{\uparrow} \rangle$ vs phase difference

R. Taranko, T. Kwapiński & T. Domański, Phys. Rev. B 99, 165419 (2019).

PHASE-CONTROLLED TRANSIENTS

The measurable time-dependent Andreev conductance

R. Taranko, T. Kwapiński & T. Domański, Phys. Rev. B 99, 165419 (2019).

Quench dynamics
QUANTUM QUENCH PROTOCOL

K. Wrześniewski, B. Baran, R. Taranko, T. Domański & I. Weymann, arXiv:2007.10747 (2020).

Two scenarios of quantum quenches:

QUANTUM QUENCH PROTOCOL

K. Wrześniewski, B. Baran, R. Taranko, T. Domański & I. Weymann, arXiv:2007.10747 (2020).

Two scenarios of quantum quenches:

 \Rightarrow sudden coupling to superconductor $0 \rightarrow \Gamma_S$,

QUANTUM QUENCH PROTOCOL

K. Wrześniewski, B. Baran, R. Taranko, T. Domański & I. Weymann, arXiv:2007.10747 (2020).

Two scenarios of quantum quenches:

⇒ sudden coupling to superconductor $0 \rightarrow \Gamma_S$, ⇒ abrupt switching of gate potential $0 \rightarrow V_G$.

DYNAMICS VS CORRELATIONS

K. Wrześniewski, B. Baran, R. Taranko, T. Domański & I. Weymann, arXiv:2007.10747 (2020).

Main issue to be considered:

competition between pairing & Coulomb repulsion.

IN-GAP STATES OF CORRELATED QD

Emergenece of the Andreev states induced by quench $0 ightarrow \Gamma_S$

K. Wrześniewski, B. Baran, R. Taranko, T. Domański & I. Weymann, arXiv:2007.10747 (2020).

IN-GAP STATES OF CORRELATED QD

Time-dependent observables driven by the quantum quench $0 ightarrow \Gamma_S$

solid lines - time dependent NRG dashed lines - Hartree-Fock-Bogolubov

Results obtained for $\varepsilon_d = 0$, $\Gamma_N/U = 0.1$, quench $\Gamma_S = 0 \longrightarrow \Gamma_S = U$.

IN-GAP STATES OF CORRELATED QD

tNRG results for the quantum quench $0 \rightarrow \Gamma_S$ (as indicated)

QD charge n(t)

charge current $j_S(t)$ from supercond. to QD

on-dot pairing $\chi(t)\equiv \langle d_{\downarrow}d_{\uparrow}
angle$

Hartree-Fock-Bogolubov results for the quantum quench $0 \rightarrow \Gamma_S$

SUDDEN CHANGE OF A GATE POTENTIAL

tNRG results for $\Gamma_S = U/2$, $\Gamma_N = U/10$ imposing the quench lifting QD level from $\varepsilon_d (t < 0) = -U/2$ to ε_d (as indicated)

Dynamical phase transition

QUENCH-DRIVEN PHASE TRANSITION

K. Wrześniewski et al, (2020) /project in progress/.

Challenging task:

QUENCH-DRIVEN PHASE TRANSITION

K. Wrześniewski et al, (2020) /project in progress/.

Challenging task:

 \Rightarrow transitions between $|\sigma\rangle$ and $|BCS\rangle$ configurations

QUENCH-DRIVEN PHASE TRANSITION

K. Wrześniewski et al, (2020) /project in progress/.

Challenging task:

⇒ transitions between $|\sigma\rangle$ and $|BCS\rangle$ configurations ⇒ possible signature(s) of critical time(s) ?

SINGLY OCCUPIED VS BCS-TYPE CONFIGURATIONS

Quantum dot proximitized to superconductor can described by

$$\hat{H}_{\text{QD}} = \sum_{\sigma} \epsilon_d \ \hat{d}^{\dagger}_{\sigma} \ \hat{d}_{\sigma} \ + \ U_d \ \hat{n}_{d\uparrow} \hat{n}_{d\downarrow} - \left(\Delta_d \ \hat{d}^{\dagger}_{\uparrow} \hat{d}^{\dagger}_{\downarrow} + \text{h.c.}\right)$$

SINGLY OCCUPIED VS BCS-TYPE CONFIGURATIONS

Quantum dot proximitized to superconductor can described by

$$\hat{H}_{\mathrm{QD}} = \sum_{\sigma} \epsilon_d \; \hat{d}^{\dagger}_{\sigma} \; \hat{d}_{\sigma} \; + \; U_d \; \hat{n}_{d\uparrow} \hat{n}_{d\downarrow} - \left(\Delta_d \; \hat{d}^{\dagger}_{\uparrow} \hat{d}^{\dagger}_{\downarrow} + \mathrm{h.c.}
ight)$$

Eigen-states of this problem are represented by:

 $\begin{array}{ccc} |\uparrow\rangle & \text{and} & |\downarrow\rangle & \Leftarrow & \text{doublet states (spin <math>\frac{1}{2})} \\ u |0\rangle - v |\uparrow\downarrow\rangle \\ v |0\rangle + u |\uparrow\downarrow\rangle \end{array} & \Leftarrow & \text{singlet states (spin 0)} \end{array}$

SINGLY OCCUPIED VS BCS-TYPE CONFIGURATIONS

Quantum dot proximitized to superconductor can described by

$$\hat{H}_{\mathrm{QD}} = \sum_{\sigma} \epsilon_d \; \hat{d}^{\dagger}_{\sigma} \; \hat{d}_{\sigma} \; + \; U_d \; \hat{n}_{d\uparrow} \hat{n}_{d\downarrow} - \left(\Delta_d \; \hat{d}^{\dagger}_{\uparrow} \hat{d}^{\dagger}_{\downarrow} + \mathrm{h.c.}
ight)$$

Eigen-states of this problem are represented by:

 $\begin{array}{ccc} |\uparrow\rangle & \text{and} & |\downarrow\rangle & \Leftarrow & \text{doublet states (spin <math>\frac{1}{2})} \\ u |0\rangle - v |\uparrow\downarrow\rangle \\ v |0\rangle + u |\uparrow\downarrow\rangle \end{array} & \Leftarrow & \text{singlet states (spin 0)} \end{array}$

Upon varrying the parameters ε_d , U_d or Γ_S there can be induced quantum phase transition between these doublet/singlet states.

QUANTUM PHASE TRANSITION

Singlet-doublet quantum phase transition: NRG results

J. Bauer, A. Oguri & A.C. Hewson, J. Phys.: Condens. Matter 19, 486211 (2007).

QUANTUM PHASE TRANSITION: EXPERIMENT

J. Estrada Saldaña, A. Vekris, V. Sosnovtseva, T. Kanne, P. Krogstrup, K. Grove-Rasmussen and J. Nygård, Commun. Phys. <u>3</u>, 125 (2020).

For time t < 0:

$$\hat{H}_0 \ket{\Psi_0} = E_0 \ket{\Psi_0}$$

For time t < 0:

$$\hat{H}_0 \ket{\Psi_0} = E_0 \ket{\Psi_0}$$

At time t = 0:

For time t < 0:

 $\hat{H}_0\ket{\Psi_0}=E_0\ket{\Psi_0}$

At time t = 0:

 $\hat{H}_0 \longrightarrow \hat{H}$

Schödinger equation $i\hbar rac{d}{dt} \ket{\Psi(t)} = \hat{H} \ket{\Psi(t)}$ implies $\ket{\Psi(t)} = e^{-it\hat{H}} \ket{\Psi_0}$

For time t < 0:

 $\hat{H}_0 \ket{\Psi_0} = E_0 \ket{\Psi_0}$

At time t = 0:

$$\hat{H}_0 \longrightarrow \hat{H}$$

Schödinger equation $i\hbar \frac{d}{dt} \ket{\Psi(t)} = \hat{H} \ket{\Psi(t)}$ implies $\ket{\Psi(t)} = e^{-it\hat{H}} \ket{\Psi_0}$

Fidelity (similarity) of these states at time $t\geq 0$ $\langle \Psi(t)|\Psi_0
angle = \left\langle \Psi_0|e^{-it\hat{H}}|\Psi_0
ight
angle$

For time t < 0:

 $\hat{H}_0 \ket{\Psi_0} = E_0 \ket{\Psi_0}$

At time t = 0:

$$\hat{H}_0 \longrightarrow \hat{H}$$

Schödinger equation $i\hbar \frac{d}{dt} \ket{\Psi(t)} = \hat{H} \ket{\Psi(t)}$ implies $\ket{\Psi(t)} = e^{-it\hat{H}} \ket{\Psi_0}$

Fidelity (similarity) of these states at time $t \ge 0$ $\langle \Psi(t) | \Psi_0 \rangle = \left\langle \Psi_0 | e^{-it\hat{H}} | \Psi_0 \right\rangle$ Loschmidt amplitude

partition function

$$\mathcal{Z}=\left\langle e^{-eta\hat{H}}
ight
angle$$

Loschmidt amplitude

$$\left\langle \Psi_{0}|e^{-it\hat{H}}|\Psi_{0}
ight
angle$$

partition function

$$\mathcal{Z}=\left\langle e^{-eta\hat{H}}
ight
angle$$

Loschmidt amplitude

 $\left\langle \Psi_{0}|e^{-it\hat{H}}|\Psi_{0}
ight
angle$

Loschmidt echo L(t)

$$L(t) = |\left\langle \Psi_0 | e^{-it\hat{H}} | \Psi_0
ight
angle |^2$$

where

$$\beta = \frac{1}{k_B T}$$

partition function

$$\mathcal{Z}=\left\langle e^{-eta\hat{H}}
ight
angle$$

where

$$\beta = \frac{1}{k_B T}$$

Loschmidt amplitude

 $\left\langle \Psi_{0}|e^{-it\hat{H}}|\Psi_{0}
ight
angle$

Loschmidt echo L(t)

$$L(t) = |\left\langle \Psi_0 | e^{-it\hat{H}} | \Psi_0
ight
angle |^2$$

free energy F(T) $\mathcal{Z} \equiv e^{-\beta F(T)}$ return rate $\lambda(t)$ $L(t) \equiv e^{-N\lambda(t)}$

partition function

$$\mathcal{Z}=\left\langle e^{-eta\hat{H}}
ight
angle$$

where

$$\beta = \frac{1}{k_B T}$$

free energy F(T) $\mathcal{Z} \equiv e^{-\beta F(T)}$

critical temperature T_c

nonanalytical $\lim_{T \to T_c} F(T)$

Loschmidt amplitude

 $\left< \Psi_0 | e^{-it\hat{H}} | \Psi_0 \right>$

Loschmidt echo L(t) $L(t) = |\left\langle \Psi_0 | e^{-it\hat{H}} | \Psi_0
ight
angle |^2$

return rate $\lambda(t)$ $L(t) \equiv e^{-N\lambda(t)}$

critical time t_c nonanalytical $\lim_{t \to t_c} \lambda(t)$

QUENCH FROM \ket{BCS} to $\ket{\sigma}$

Loschmidt echo

 $L(t) \equiv |\langle \Psi(t) | \Psi(0) \rangle|^2$

return rate $|L(t)| \equiv e^{-N\lambda(t)}$

squared magnetic moment $\langle S_z^2(t) \rangle$

QUENCH FROM \ket{BCS} to $\ket{\sigma}$

Loschmidt echo L(t) a return rate $\lambda(t)$ induced by the quench of Γ_S

RETURN RATE: ISING MODEL

DQPT driven by quench in the Ising model (N. SedImayr, 2019) solid red line - across a phase transition dashed green line - inside a phase transition

RETURN RATE: SSH MODEL

DQPT driven by quench in the SSH model (N. SedImayr, 2019) solid red line $\delta = 0.3$ dashed green line $\delta = 0.95$

RETURN RATE: ISING MODEL

DQPT driven by quench in the Ising model (N. SedImayr, 2019) solid red line - across a phase transition dashed green line - inside a phase transition

ISING MODEL: FINITE SIZE EFFECTS

"Local measures of dynamical quantum phase transitions" J.C. Halimeh, D. Trapin, M. Damme & M. Heyl, arXiv:2010.07307 (2020).

DYNAMICAL QUANTUM PHASE TRANSITION

DQPT driven in N-QD-S by quench across the singlet-doublet transition

Issues to be checked/clarified:

DYNAMICAL QUANTUM PHASE TRANSITION

DQPT driven in N-QD-S by quench across the singlet-doublet transition

Issues to be checked/clarified:

scaling analysis (due to discretization)

DYNAMICAL QUANTUM PHASE TRANSITION

DQPT driven in N-QD-S by quench across the singlet-doublet transition

Issues to be checked/clarified:

- scaling analysis (due to discretization)
- what sets critical time t_c ?(is it really periodic ?)
DYNAMICAL QUANTUM PHASE TRANSITION

DQPT driven in N-QD-S by quench across the singlet-doublet transition

Issues to be checked/clarified:

- scaling analysis (due to discretization)
- what sets critical time t_c?(is it really periodic ?)
- how can we observe it ?(detectable features)

Dynamics of Majorana modes

J. Barański et al (2020) /work in progress/.

J. Barański et al (2020)

/work in progress/.

Issues to be addressed:

J. Barański et al (2020)

/work in progress/.

Issues to be addressed:

• dynamics of Majorana leakage,

J. Barański et al (2020)

/work in progress/.

Issues to be addressed:

- dynamics of Majorana leakage,
- time-resoveld conductance.

TIME-RESOLVED MAJORANA LEAKAGE

The differential Andreev conductance vs bias voltage V and time

TIME-RESOLVED ZERO BIAS CONDUCTANCE

The zero-bias differential conductivity obtained for $\Gamma_S = 3\Gamma_N$ and $\epsilon_d = \Gamma_N$, assuming: $t_m = 0.25$ (upper left), 0.5 (upper right), 1 (lower left), 1.5 (lower right) Γ_N . QD is abruptly connected to Majorana mode at time $t = 20\hbar/\Gamma_N$.

ACKNOWLEDGEMENTS

- time-dependent Andreev quasiparticles etc.
- \Rightarrow R. Taranko (Lublin), B. Baran (Lublin),
- correlations & dynamical quantum phase transition
- 🔿 K. Wrześniewski (Poznań), I. Weymann (Poznań),
 - N. Sedlmayr (Lublin),
- time-dependent leakage of Majorana
- ⇒ J. Barański (Dęblin), M. Barańska (Dęblin),
- quenches in topological nanowires
- \Rightarrow A. (Kobiałka), G. Wlazłowski (Warsaw).