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Pairing is a common phenomenon which occurs between various

kinds of fermions such as: quarks, electrons, nucleons or atoms.

The underlying pairing mechanism can be driven by:

1. exchange of phonons
/ classical superconductors, MgB2, diamond, ... /

2. exchange of magnons
/ superconductivity of the heavy fermion compounds /

3. strong correlations
/ high Tc superconductors /

4. Feshbach resonance
/ ultracold superfluid atoms /

5. other
/ pairing in nuclei, gluon-quark plasma /

Very often formation of the fermion pairs goes hand in hand with

superconductivity/superfluidity but it needs not be the rule.
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Conventional superconductors – meaning of Tc

At T → Tc electrons near the Fermi energy:

form the Cooper pairs

and behave as a huge super-atom consisting of

∼ 1023 particles all gathered in an identical state.

This is BE condensate of Cooper pairs !
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Theoretical issues – generalities

The order parameter χ(~ri, ~rj) ≡ 〈 ĉ↓(~ri) ĉ↑ (~rj)〉

is in general a complex quantity

χ = |χ| eiθ

with the following physical implications:

|χ| 6= 0 −→ amplitude causes the energy gap

∇θ 6= 0 −→ phase slippage causes supercurrents
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Phase transitions – classification

Vanishing of the complex order parameter

χ = |χ| eiθ

can be achieved at Tc either:

by closing the gap . . . . . . . . . . . . . . . . . . . . . (BCS superconductors)

limT→Tc |χ| = 0

or disordering the phase . . . . . . . . . . . . . . (the HTSC compounds)

limT→Tc 〈θ〉 = 0
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Historical remark

The first empirical observation of the sc fluctuations above Tc

has been seen in granular aluminium .

Tunneling

conductance

revealed

a small

pseudogap

above Tc.

R.W. Cohen and B. Abels, Phys. Rev. 168, 444 (1968).
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The parent compounds are quasi-2D Mott insulators

Important remark:

Spatial extent of the pairs is very short ξab ≃ 5 Å
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HTSC materials – effect of doping

Superconductivity appears upon doping by

electrons or holes

O. Fisher et al, Rev. Mod. Phys. 79, 353 (2007).

Important remark:

What is an origin of the pseudogap ?
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Dynamic phase-stiffness Tθ = ωImσ(ω, T )/σQ

observed at the ultrafast (teraHz) external ac fields.

J. Corson et al, Nature 398, 221 (1999).
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L. Li, ... and N.P. Ong, Phys. Rev. B 81, 054510 (2010).
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Incoherent pairs above Tc ... continued

⇒ Josephson-like features seen above Tc in the tunneling

N. Bergeal et al, Nature Phys. 4, 608 (2008).

⇒ smooth evolution of the electronic spectrum observed

by ARPES near the superconductor–insulator transition

U. Chatterjee et al, Nature Phys. 5, 1456 (2009).

⇒ spectroscopic fingerprints of the Bogoliubov QPs seen

by the unique octet patterns which survive up to 1.5Tc

J. Lee, ... and J.C. Davis, Science 325, 1099 (2009).



II. Model & methodology



Boson-Fermion model
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Ĥ =
∑

i,j,σ

(tij − µ δi,j) ĉ†
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Ĥ =
∑

i,j,σ

(tij − µ δi,j) ĉ†
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l ĉi,↓ĉj,↑ + h.c.

]

~Rl = (~ri + ~rj)/2

describes a two-component system consisting of:

ĉ
(†)
iσ itinerant fermions . . . . . . . . . (e.g. holes near the Mott insulator)

b̂
(†)
l immobile local pairs . . . . . . . (RVB defines them on the bonds)

interacting via:

b̂†
l ĉi,↓ĉj,↑ + h.c. . . . . . . . . . . . . . . . . (the Andreev-type scattering)

Isotropic form of this model has been introduced 25 year ago by
J. Ranninger and S. Robaszkiewicz, Physica B 135, 468 (1985).
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Ĥ =
∑

kσ

(εk − µ) ĉ†
kσĉkσ +

∑

q

(

E(B) − 2µ
)

b̂†
qb̂q

+
1

√
N

∑

k,q

gk,q

[

b̂†
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For studying the many-body effects we construct the sequence

of unitary transformations

Ĥ −→ Ĥ(l1) −→ Ĥ(l2) −→ ... −→ Ĥ(∞)

decoupling the boson from fermion degrees of freedom.

F. Wegner (1994); K.G. Wilson (1994) - inventors of this RG-like scheme

Hamiltonian at l = ∞

ĤF (∞) + ĤB(∞) + 0

T. Domański and J. Ranninger, Phys. Rev. B 63, 134505 (2001).
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Experimental data for T < Tc

H. Matsui, T. Sato, and T. Takahashi et al, Phys. Rev. Lett. 90, 217002 (2003).



Date: Tue, 27 Feb 2007 19:05:55 +0900

From: Hiroaki Matsui <h.matsui@arpes.phys.tohoku.ac.jp>

To: Tadeusz Domanski <doman@kft.umcs.lublin.pl>

Dear Dr. Domanski,

...

We completely agree with you on that detecting the normal state

BQP in the UD cuprates has a huge potential impact on the

pseudogap problem. As you know, this kind of measurement is

not very easy because the ARPES peak is broad in UD at anti-node

and high-temperature. We do not have the data at present, but we

are trying to realize such an experiment by selecting the

conditions.

Thank you very much for contacting us.

Sincerely yours,

H. Matsui
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J. Campuzano group (Chicago, USA)

Results for: Bi 2Sr2CaCu2O8

A. Kanigel et al, Phys. Rev. Lett. 101, 137002 (2008).
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A. Kanigel et al, Phys. Rev. Lett. 101, 137002 (2008).
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PSI group (Villigen, Switzerland)
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Results for: La 1.895Sr0.105CuO4

M. Shi et al, Eur. Phys. Lett. 88, 27008 (2009).



Evidence for Bogoliubov QPs above Tc

D. Jin group (Boulder, USA)
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Date: Mon, 31 Mar 2008 13:57:05 +0300

From: Amit Kanigel <amitk@physics.technion.ac.il>

To: Tadeusz Domanski <doman@kft.umcs.lublin.pl>

Dear Prof. Domanski,

I’m really happy for your remarks. I read your paper (the PRL) and

indeed found it very interesting. I must apologize and admit that I

was not aware of the paper. While writing my paper I looked quite

intensively for theoretical models predicting BG-like dispersion

and for some reason I missed your work. Although the paper was

already submitted I hope I’ll have the chance to put in a reference

to your work before publication.

If you have no objection, after I’ll read the longer paper I might

have few questions for you regarding the Boson-Fermion model.

Best regards,

Amit
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Various experimentas indicate that below Tc the gap
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J.E. Hoffman et al, Science 297, 1148 (2002).
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A. Kanigel et al, Phys. Rev. Lett. 99, 157001 (2007).



Energy gap above Tc

In a normal state the energy gap does survive above Tc.

Upon increasing temperature it gradually closes, starting

from the nodal area where the Fermi arcs emerge.

Pieces of the Fermi surface near the antinodal area are missi ng.

”Death of a Fermi surface” K. McElroy, Nature Physics 2, 441 (2006) .
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We have examined the effect of anisotropic B-F coupling

g~k = g [cos (kx)−cos (ky)] using the realistic dispersion

ε~k = −2t [cos (kx)+cos (ky)]−4t′ cos (kx) cos (ky).
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By increasing temperature:

– ∆pg(~k) is almost unaffected in the antinodal areas,

– Fermi surface gradually rebuilds near the nodal parts,

– length of the Fermi arc scales linearly with T − Tc.

J. Ranninger, T. Domański, Phys. Rev. B 81, 014514 (2010).
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Diamagnetic response above Tc

Main contributions to the current-current response functi on:

⇐= the usual bubble diagram

k + q

k
k + q

q1

q1- k

k - q

q1

q1+ k

anomalous diagrams

Each vertex has to be determined from the flow equations.

T. Domanski and J. Ranninger, (2010).
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