ROLE OF ANDREEV SCATTERING IN BULK SUPERCONDUCTORS & NANOSTRUCTURES

Tadeusz DOMAŃSKI

M. Curie-Skłodowska University, Lublin

IFJ PAN Kraków, 28 May 2019

• Quasiparticles in superconductors

 \Rightarrow particle vs hole dilemma

- Quasiparticles in superconductors
- \Rightarrow particle vs hole dilemma
- Nanoscopic superconductors
- \Rightarrow Andreev bound states

- Quasiparticles in superconductors
- \Rightarrow particle vs hole dilemma
- Nanoscopic superconductors
- \Rightarrow Andreev bound states
- Exotics of topological superconductors
- \Rightarrow Majorana qasiparticles

- Quasiparticles in superconductors
- \Rightarrow particle vs hole dilemma
- Nanoscopic superconductors
- \Rightarrow Andreev bound states
- Exotics of topological superconductors
- \Rightarrow Majorana qasiparticles
 - J. Bardeen, A.F. Andreev & E. Majorana

Bulk superconductors

SUPERCONDUCTOR

Perfect conductor

SUPERCONDUCTOR

HALLMARKS OF ELECTRON PAIRING

BCS ground state :

$$|\mathrm{BCS}
angle = \prod_k \left(u_k + v_k \ \hat{c}^\dagger_{k\uparrow} \ \hat{c}^\dagger_{-k\downarrow}
ight) \ |\mathrm{vacuum}
angle$$

BCS ground state :

$$|\mathrm{BCS}
angle = \prod_k \left(u_k + v_k \; \hat{c}^\dagger_{k\uparrow} \; \hat{c}^\dagger_{-k\downarrow}
ight) \; |\mathrm{vacuum}
angle$$

Effective (Bogoliubov) quasiparticles

BCS ground state :

$$|\mathrm{BCS}
angle = \prod_k \left(u_k + v_k \; \hat{c}^\dagger_{k\uparrow} \; \hat{c}^\dagger_{-k\downarrow}
ight) \; |\mathrm{vacuum}
angle$$

Effective (Bogoliubov) quasiparticles

formally due to

$$\hat{\gamma}_{k\uparrow} = u_k \hat{c}_{k\uparrow} + \tilde{v}_k \hat{b}_{q=0} \hat{c}^{\dagger}_{-k\downarrow}$$

 $\hat{\gamma}^{\dagger}_{-k\downarrow} = -\tilde{v}_k \hat{b}^{\dagger}_{q=0} \hat{c}_{k\uparrow} + u_k \hat{c}^{\dagger}_{-k\downarrow}$

BOGOLIUBOV QUASIPARTICLES

Quasiparticle spectrum of conventional superconductors consists of the Bogoliubov (p/h) branches gaped around E_F

Let us consider the interface of metal ${f N}$ and superconductor ${f S}$

where incident electron ...

Let us consider the interface of metal \boldsymbol{N} and superconductor \boldsymbol{S}

where incident electron ...

Let us consider the interface of metal ${f N}$ and superconductor ${f S}$

where incident electron ...

Let us consider the interface of metal ${f N}$ and superconductor ${f S}$

where incident electron is <u>converted</u> into: Cooper pair + hole.

Let us consider the interface of metal \boldsymbol{N} and superconductor \boldsymbol{S}

where incident electron is <u>converted</u> into: Cooper pair + hole.

Let us consider the interface of metal \boldsymbol{N} and superconductor \boldsymbol{S}

where incident electron is <u>converted</u> into: Cooper pair + hole.

In superconductors the particle and hole degrees of freedom are mixed via the electron pairing (efficient near the Fermi energy).

In superconductors the particle and hole degrees of freedom are mixed via the electron pairing (efficient near the Fermi energy).

Practical evidence:

\Rightarrow upon injecting an electron to superconductor

In superconductors the particle and hole degrees of freedom are mixed via the electron pairing (efficient near the Fermi energy).

Practical evidence:

- \Rightarrow upon injecting an electron to superconductor
- \Rightarrow a hole is reflected back (Andreev scattering).

Superconductivity in nanosystems

IMPURITIES IN SOLIDS

Various kinds of impurities in solids

IMPURITIES IN SOLIDS

Various kinds of impurities in solids

Are they foes or friends to a superconducting host?

SPECIFIC EXAMPLES

Impurities/defects:

Impurities/defects:

\Rightarrow	magnetic atoms (for instance Fe, Co)
\Rightarrow	correlated quantum dots (Anderson-type)
\Rightarrow	molecules(multi-level or vibrating)
\Rightarrow	magnetic islands (Shiba glasses and/or lattices)
\Rightarrow	nanowires (carbon nanotubes, Fe-chains)

etc.

existing inside or on surfaces of superconductors.

Impurities/defects:

\Rightarrow	magnetic atoms (for instance Fe, Co)
\Rightarrow	correlated quantum dots (Anderson-type)
\Rightarrow	molecules(multi-level or vibrating)
\Rightarrow	magnetic islands (Shiba glasses and/or lattices)
\Rightarrow	nanowires (carbon nanotubes, Fe-chains)

etc.

existing inside or on surfaces of superconductors.

How can we observe the induced electron pairing ?

IN-GAP STATES

Spectrum of a single impurity hybridized with superconductor:

IN-GAP STATES

Spectrum of a single impurity hybridized with superconductor:

Bound states appearing in the subgap region $E \in \langle -\Delta, \Delta
angle$

IN-GAP STATES

Spectrum of a single impurity hybridized with superconductor:

Bound states appearing in the subgap region $E \in \langle -\Delta, \Delta \rangle$ are dubbed Yu-Shiba-Rusinov (or Andreev) quasiparticles.

PROBING IN-GAP STATES

STM as a tool for probing the spectra of proximitized impurities

PROBING IN-GAP STATES

STM as a tool for probing the spectra of proximitized impurities

R. Žitko et al, Phys. Rev. B 83, 054512 (2011).

TOPOGRAPHY AND SPATIAL EXTENT

Empirical data obtained from STM measurements for NbSe₂

a) bound states extending to 10 nm

b) alternating particle-hole oscillations

G.C. Menard et al., Nature Phys. 11, 1013 (2015).

TOPOGRAPHY AND SPATIAL EXTENT

Empirical data obtained from STM measurements for NbSe₂

a) bound states extending to 10 nm

b) alternating particle-hole oscillations

G.C. Menard et al., Nature Phys. 11, 1013 (2015).

A. Ptok, Sz. Głodzik and T. Domański, Phys. Rev. B 96, 184425 (2017).

ANDREEV TUNNELING SPECTROSCOPY

For probing the subgap states one can measure the conductance of tunneling current through the quantum dot (QD) coupled between the normal (N) and superconducting (S) electrodes

ANDREEV TUNNELING SPECTROSCOPY

For probing the subgap states one can measure the conductance of tunneling current through the quantum dot (QD) coupled between the normal (N) and superconducting (S) electrodes

This is a particular realization of the single-electron-transistor.
CORRELATIONS VS PAIRING

The proximitized quantum dot can described by

$$\hat{H}_{\text{QD}} = \sum_{\sigma} \epsilon_d \; \hat{d}^{\dagger}_{\sigma} \; \hat{d}_{\sigma} \; + \; U_d \; \hat{n}_{d\uparrow} \hat{n}_{d\downarrow} - \left(\Delta_d \; \hat{d}^{\dagger}_{\uparrow} \hat{d}^{\dagger}_{\downarrow} + \text{h.c.}
ight)$$

CORRELATIONS VS PAIRING

The proximitized quantum dot can described by

$$\hat{H}_{QD} = \sum_{\sigma} \epsilon_d \; \hat{d}^{\dagger}_{\sigma} \; \hat{d}_{\sigma} \; + \; U_d \; \hat{n}_{d\uparrow} \hat{n}_{d\downarrow} - \left(\Delta_d \; \hat{d}^{\dagger}_{\uparrow} \hat{d}^{\dagger}_{\downarrow} + \mathrm{h.c.}
ight)$$

Eigen-states of this problem are represented by:

 $\begin{array}{ccc} |\uparrow\rangle & \text{and} & |\downarrow\rangle & \Leftarrow & \text{doublet states (spin <math>\frac{1}{2})} \\ u |0\rangle - v |\uparrow\downarrow\rangle \\ v |0\rangle + u |\uparrow\downarrow\rangle \end{array} & \Leftarrow & \text{singlet states (spin 0)} \end{array}$

CORRELATIONS VS PAIRING

The proximitized quantum dot can described by

$$\hat{H}_{QD} = \sum_{\sigma} \epsilon_d \; \hat{d}^{\dagger}_{\sigma} \; \hat{d}_{\sigma} \; + \; U_d \; \hat{n}_{d\uparrow} \hat{n}_{d\downarrow} - \left(\Delta_d \; \hat{d}^{\dagger}_{\uparrow} \hat{d}^{\dagger}_{\downarrow} + \mathrm{h.c.}
ight)$$

Eigen-states of this problem are represented by:

 $\begin{array}{ccc} |\uparrow\rangle & \text{and} & |\downarrow\rangle & \Leftarrow & \text{doublet states (spin <math>\frac{1}{2})} \\ u |0\rangle - v |\uparrow\downarrow\rangle \\ v |0\rangle + u |\uparrow\downarrow\rangle \end{array} & \Leftarrow & \text{singlet states (spin 0)} \end{array}$

Upon varrying the parameters ε_d , U_d or Γ_S there can be induced quantum phase transition between these doublet/singlet states.

QUANTUM PHASE TRANSITION

Subgap spectrum of the correlated QD $\xi_d = \varepsilon_d + \frac{1}{2}U_d$

QUANTUM PHASE TRANSITION

Subgap spectrum of the correlated QD $\xi_d = \varepsilon_d + \frac{1}{2}U_d$

QUANTUM PHASE TRANSITION

Subgap spectrum of the correlated QD $\xi_d = \varepsilon_d + \frac{1}{2}U_d$

Kondo effect near the quantum phase transition

Kondo effect near the quantum phase transition

T. Domański et al, Scientific Reports 6, 23336 (2016).

Constructive influence of the induced pairing on the Kondo state

T. Domański et al, Scientific Reports 6, 23336 (2016).

Physical observability in the Andreev differential conductance

T. Domański et al, Scientific Reports 6, 23336 (2016).

Zero-pi transition

Quantum dot embedded in Josephson & Andreev circuits.

T. Domański ... V. Janiš & T. Novotný, Phys. Rev. B 95, 045104 (2017).

JOSEPHSON/ANDREEV HETEROSTRUCTURE

Spectrum of the half-filled quantum dot

T. Domański ... V. Janiš & T. Novotný, Phys. Rev. B 95, 045104 (2017).

JOSEPHSON/ANDREEV HETEROSTRUCTURE

Scaling of the Kondo temperarture T_K

T. Domański ... V. Janiš & T. Novotný, Phys. Rev. B 95, 045104 (2017).

JOSEPHSON/ANDREEV HETEROSTRUCTURE

Reversal of Josephson current at 'zero-pi' transition.

T. Domański ... V. Janiš & T. Novotný, Phys. Rev. B 95, 045104 (2017).

NONLOCAL ANDREEV SCATTERING

In 3-terminal junctions there can occur:

NONLOCAL ANDREEV SCATTERING

In 3-terminal junctions there can occur:

either the direct or crossed Andreev reflections.

DIRECT VS CROSSED ANDREEV SCATTERING

Physical consequences: selective charge/heat transfer

G. Michałek, T. Domański, B.R. Bułka, K.I. Wysokiński, Sci. Rep. <u>5</u>, 14572 (2015).
G. Michałek, M. Urbaniak, B.R. Bułka, T. Domański, K.I. Wysokiński,
Phys. Rev. B <u>93</u>, 235440 (2016).

Characteristic temporal scales

Let's consider abrupt coupling of QD to external leads

Let's consider abrupt coupling of QD to external leads

R. Taranko and T. Domański, Phys. Rev. B 98, 075420 (2018).

Important questions:

Let's consider abrupt coupling of QD to external leads

R. Taranko and T. Domański, Phys. Rev. B 98, 075420 (2018).

Important questions:

• how much time does it take to form the in-gap states?

Let's consider abrupt coupling of QD to external leads

R. Taranko and T. Domański, Phys. Rev. B 98, 075420 (2018).

Important questions:

- how much time does it take to form the in-gap states?
- are there some characteristic time-scales?

RELAXATION VS QUANTUM OSCILLATIONS

Time-dependent charge of the quantum dot

- relaxation time is proportional to $1/\Gamma_N$
- oscillations depend on energies of in-gap states

RELAXATION VS QUANTUM OSCILLATIONS

Time-dependent charge of the quantum dot

- relaxation time is proportional to $1/\Gamma_N$
- oscillations depend on energies of in-gap states

RELAXATION VS QUANTUM OSCILLATIONS

Time-dependent charge current

• relaxation time is proportional to $1/\Gamma_N$

oscillations depend on energies of in-gap states

EXPERIMENTALLY ACCESSIBLE QUANTITIES

Subgap tunneling conductance $G_{\sigma} = \frac{\partial I_{\sigma}}{\partial t}$ vs time (t) and voltage (μ)

PHASE-CONTROLLED TRANSIENT EFFECTS

R. Taranko, T. Kwapiński and T. Domański Phys. Rev. B 99, 165419 (2019).

PHASE-CONTROLLED TRANSIENT EFFECTS

R. Taranko, T. Kwapiński and T. Domański Phys. Rev. B 99, 165419 (2019).

Physical issues:

• phase-controlled emergence of in-gap states,

PHASE-CONTROLLED TRANSIENT EFFECTS

R. Taranko, T. Kwapiński and T. Domański Phys. Rev. B 99, 165419 (2019).

Physical issues:

- phase-controlled emergence of in-gap states,
- dynamics of the 0π transition.

PHASAL + TRANSIENT EFFECTS

Quasienergies and time-dependent $n_{\sigma}(t)$ of QD

PHASAL TRANSIENT EFFECTS

R. Taranko, T. Kwapiński and T. Domański Phys. Rev. B 99, 165419 (2019).

Floquet description of bound states

BOUND STATES OF A DRIVEN QUANTUM IMPURITY

Quantum impurity with periodically oscillating energy level

BOUND STATES OF A DRIVEN QUANTUM IMPURITY

Floquet spectrum averaged over a period $T=2\pi/\omega$

 $\Gamma_{SC} = 0, B_0 = B = 0$

 $\Gamma_S = 0.0$

B. Baran and T. Domański, arXiv:1903.10303 (2019).

BOUND STATES OF A DRIVEN QUANTUM IMPURITY

Floquet spectrum averaged over a period $T = 2\pi/\omega$

 $\Gamma_{SC} = 0.1\omega, B_0 = B = 0$

 $\Gamma_S = 0.1 \omega$

B. Baran and T. Domański, arXiv:1903.10303 (2019).
Floquet spectrum averaged over a period $T = 2\pi/\omega$

 $\Gamma_{SC} = 0.25\omega, B_0 = B = 0$

 $\Gamma_S = 0.25\omega$

B. Baran and T. Domański, arXiv:1903.10303 (2019).

Floquet spectrum averaged over a period $T = 2\pi/\omega$

 $\Gamma_{SC} = 0.35\omega, B_0 = B = 0$

 $\Gamma_S = 0.35\omega$

B. Baran and T. Domański, arXiv:1903.10303 (2019).

Floquet spectrum averaged over a period $T=2\pi/\omega$

 $\Gamma_{SC} = 0.5\omega, B_0 = B = 0$

 $\Gamma_S = 0.5\omega$

B. Baran and T. Domański, arXiv:1903.10303 (2019).

Floquet spectrum averaged over a period $T = 2\pi/\omega$

 $\Gamma_{SC} = 0.75\omega, B_0 = B = 0$

 $\Gamma_S = 0.75\omega$

B. Baran and T. Domański, arXiv:1903.10303 (2019).

Floquet spectrum averaged over a period $T=2\pi/\omega$

 $\Gamma_{SC} = 1.0\omega, B_0 = B = 0$

 $\Gamma_S = 1.0\omega$

B. Baran and T. Domański, arXiv:1903.10303 (2019).

Bound states of an "oscillating" quantum dot:

- are characterized by a series of side-peaks,
- of spectral weights dependent on amplitude
- and internal splittings dependent on Γ_s .

Topological superconductors

Nanochain of magnetic impurities embedded in superconductor:

T.-P. Choy, J.M. Edge, A.R. Akhmerov, and C.W.J. Beenakker, Phys. Rev. B <u>84</u>, 195442 (2011).

Nanochain of magnetic impurities embedded in superconductor:

Nanochain of magnetic impurities embedded in superconductor:

arrange the in-gap bound states into Shiba-band(s).

M.H. Christensen ... J. Paaske, Phys. Rev. B 94, 144509 (2016).

Itinerant 1D fermions with intersite (p-wave) pairing

$$\hat{H} = t \sum_{i} \left(\hat{c}_{i}^{\dagger} \hat{c}_{i+1} + \text{h.c.} \right) - \mu \sum_{i} \hat{c}_{i}^{\dagger} \hat{c}_{i} + \Delta \sum_{i} \left(\hat{c}_{i}^{\dagger} \hat{c}_{i+1}^{\dagger} + \text{h.c.} \right)$$

Itinerant 1D fermions with intersite (p-wave) pairing

$$\hat{H} = t \sum_{i} \left(\hat{c}_{i}^{\dagger} \hat{c}_{i+1} + \text{h.c.} \right) - \mu \sum_{i} \hat{c}_{i}^{\dagger} \hat{c}_{i} + \Delta \sum_{i} \left(\hat{c}_{i}^{\dagger} \hat{c}_{i+1}^{\dagger} + \text{h.c.} \right)$$

This toy-model can be recast in the Majorana basis

$$egin{array}{rll} \hat{\gamma}_{j,1} &\equiv& rac{1}{\sqrt{2}}\left(\hat{c}_j+\hat{c}_j^\dagger
ight) \ \hat{\gamma}_{j,2} &\equiv& rac{1}{i\sqrt{2}}\left(\hat{c}_j-\hat{c}_j^\dagger
ight) \end{array}$$

Itinerant 1D fermions with intersite (p-wave) pairing

$$\hat{H} = t \sum_{i} \left(\hat{c}_{i}^{\dagger} \hat{c}_{i+1} + \text{h.c.} \right) - \mu \sum_{i} \hat{c}_{i}^{\dagger} \hat{c}_{i} + \Delta \sum_{i} \left(\hat{c}_{i}^{\dagger} \hat{c}_{i+1}^{\dagger} + \text{h.c.} \right)$$

This toy-model can be recast in the Majorana basis

$$egin{array}{rl} \hat{\gamma}_{j,1} &\equiv& rac{1}{\sqrt{2}}\left(\hat{c}_{j}+\hat{c}_{j}^{\dagger}
ight) \ \hat{\gamma}_{j,2} &\equiv& rac{1}{i\sqrt{2}}\left(\hat{c}_{j}-\hat{c}_{j}^{\dagger}
ight) \end{array}$$

Yu. Kitaev, Phys. Usp. 44, 131 (2001).

In particular, for $\Delta = t$ and when $|\mu|$ is inside the band two operators $\hat{\gamma}_{1,1}$ and $\hat{\gamma}_{2,N}$ *decouple* from all the rest

inducing the zero-energy modes at the chain edges.

In particular, for $\Delta = t$ and when $|\mu|$ is inside the band two operators $\hat{\gamma}_{1,1}$ and $\hat{\gamma}_{2,N}$ *decouple* from all the rest

inducing the zero-energy modes at the chain edges. They can be regarded as *fractions* of non-local fermion

$$\hat{c}_{nonlocal} \equiv \left(\hat{\gamma}_{1,1} + i\hat{\gamma}_{N,2}\right)/\sqrt{2} \\ \hat{c}_{nonlocal}^{\dagger} \equiv \left(\hat{\gamma}_{1,1} - i\hat{\gamma}_{N,2}\right)/\sqrt{2}$$

as manifested by a number of unique phenomena.

PROPERTIES OF MAJORANA QPS

- particle = antiparticle
- \Rightarrow neutral in charge
- \Rightarrow of zero energy
- fractional character
- \Rightarrow half occupied/empty
- spatially nonlocal
- \Rightarrow exist in pairs near boundaries/defects
- topologically protected
- \Rightarrow immune to dephasing/decoherence

$$\hat{\gamma}_{i,n}^{\dagger}=\hat{\gamma}_{i,n}$$

$$\hat{\gamma}_{i,n}^{\dagger} \ \hat{\gamma}_{i,n} = 1/2$$

Intersite pairing of the same spin electrons can be driven e.g. by the spin-orbit (Rashba) interaction in presence of the external magnetic field, using nanowires proximitized to *s-wave* superconductor.

R. Lutchyn, J. Sau, S. Das Sarma, Phys. Rev. Lett. 105, 077001 (2010).Y. Oreg, G. Refael, F. von Oppen, Phys. Rev. Lett. 105, 177002 (2010).

Nanowire

A. Das et al, Nature Phys. 8, 887 (2012).

Nanowire + Rashba

A. Das et al, Nature Phys. 8, 887 (2012).

Nanowire + Rashba + magnetic field

A. Das et al, Nature Phys. 8, 887 (2012).

Nanowire + Rashba + magnetic field + superconductor

A. Das et al, Nature Phys. 8, 887 (2012).

 $B < B_{cr} \rightarrow$ trivial superconducting phase

Nanowire + Rashba + magnetic field + superconductor

A. Das et al, Nature Phys. 8, 887 (2012).

 $B > B_{cr} \rightarrow nontrivial$ superconducting phase

EVOLUTION FROM TRIVIAL TO TOPOLOGICAL PHASE

Effective quasiparticle states of the Rashba nanowire

M.M. Maśka, A. Gorczyca-Goraj, J. Tworzydło, T. Domański, PRB 95, 045429 (2017).

SPATIAL PROFILE OF MAJORANA QPS

Majorana qps are exponentially localized at the edges

R. Aguado, Riv. Nuovo Cim. 40, 523 (2017).

DIFFERENT SCENARIO FOR MAJORANA QPS IN DIM=1

B. Braunecker et. al. Phys. Rev. B 82, 045127 (2010)

DIFFERENT SCENARIO FOR MAJORANA QPS IN DIM=1

B. Braunecker et. al. Phys. Rev. B 82, 045127 (2010)

DIFFERENT SCENARIO FOR MAJORANA QPS IN DIM=1

$$\begin{split} H &= -t \sum_{i\sigma} \hat{c}_{i,\sigma}^{\dagger} \hat{c}_{i+1,\sigma} - \mu \sum_{i\sigma} \hat{c}_{i,\sigma}^{\dagger} \hat{c}_{i,\sigma} + J \sum_{i} S_{i} \cdot \hat{s}_{i} + \Delta \sum_{i} \hat{c}_{i\uparrow} \hat{c}_{i\downarrow} + \text{H.c.}, \\ \text{electron spin:} \quad \hat{s}_{i} &= \frac{1}{2} \sum_{\alpha,\beta} \hat{c}_{i,\alpha}^{\dagger} \sigma_{\alpha\beta} \hat{c}_{i,\beta} \end{split}$$

magnetic moment: $S_i = S(\sin \theta_i \cos \phi_i, \sin \theta_i \sin \phi_i, \cos \theta_i)$

$$S
ightarrow \infty, \ J
ightarrow 0, \ JS - finite$$

This scenario has been studied by:

- M. M. Vazifeh and M. Franz, PRL 111, 206802 (2013)
- I. Reis et al., PRB 90, 085124 (2014)
- W. Hu et al., PRB 92, 115133 (2015)
- T.-P. Choy et al., PRB 84, 195442 (2011)
- M. H. Christensen et al., PRB 94, 144509 (2016)
- ...many other

Ground state energy vs the pitch vector *q*

In-gap Shiba states

This nanochain self-tunes to its topological phase (topofilia)

A. Gorczyca-Goraj, T. Domański & M.M. Maśka, arXiv:1902.1902.06750.

$$A(q) = \frac{1}{L} \sum_{jk} e^{iq(j-k)} \langle S_j \cdot S_k \rangle$$

$$A(q) = \frac{1}{L} \sum_{jk} e^{iq(j-k)} \langle S_j \cdot S_k \rangle$$

$$A(q) = \frac{1}{L} \sum_{jk} e^{iq(j-k)} \langle S_j \cdot S_k \rangle$$

$$A(q) = \frac{1}{L} \sum_{jk} e^{iq(j-k)} \langle S_j \cdot S_k \rangle$$

INFLUENCE OF TEMPERATURE ON TOPOLOGY

Finite (nonzero) temperature can lead to:

 \Rightarrow changeover of topological \mathbb{Z}_2 number

- \Rightarrow changeover of topological \mathbb{Z}_2 number
- \Rightarrow scaling of the coherence length $\xi(T) \propto 1/T$

- \Rightarrow changeover of topological \mathbb{Z}_2 number
- \Rightarrow scaling of the coherence length $\xi(T) \propto 1/T$
- \Rightarrow closing of the topological energy gap

- \Rightarrow changeover of topological \mathbb{Z}_2 number
- \Rightarrow scaling of the coherence length $\xi(T) \propto 1/T$
- \Rightarrow closing of the topological energy gap
- \Rightarrow overdamping of the Majorana qps

Finite (nonzero) temperature can lead to:

- \Rightarrow changeover of topological \mathbb{Z}_2 number
- \Rightarrow scaling of the coherence length $\xi(T) \propto 1/T$
- \Rightarrow closing of the topological energy gap
- \Rightarrow overdamping of the Majorana qps

In realistic systems such critical temperature:

Finite (nonzero) temperature can lead to:

- \Rightarrow changeover of topological \mathbb{Z}_2 number
- \Rightarrow scaling of the coherence length $\xi(T) \propto 1/T$
- \Rightarrow closing of the topological energy gap
- \Rightarrow overdamping of the Majorana qps

In realistic systems such critical temperature:

 $\Rightarrow T_c \approx 5 \text{ K}$

Trivial vs Majorana qps

TRIVIAL VS MAJORANA BOUND STATES

Schematics of a quantum dot – nanowire hybrid structure.

A. Ptok, A. Kobiałka & T. Domański, Phys. Rev. 96, 195403 (2017).

KITAEV CHAIN + NORMAL SITE

E. Vernek et al., Phys. Rev. B 89, 165314 (2014).

KITAEV CHAIN + NORMAL SITE

Subtle leakage of a Majorana mode into a quantum dot

E. Vernek et al., Phys. Rev. B 89, 165314 (2014).

LEAKAGE OF MAJORANAS ON QUANTUM DOT

'Coalescence' of the Andreev into Majorana qps

M.T. Deng, ..., and Ch. Marcus, Science 354, 1557 (2016).

/ Niels Bohr Institute, Copenhagen, Denmark /

QD spectrum vs gate potential V_g for several magnetic fields h.

A. Ptok, A. Kobiałka & T. Domański, Phys. Rev. 96, 195403 (2017).

QD spectrum vs gate potential V_g for various spin-orbit couplings λ .

A. Ptok, A. Kobiałka & T. Domański, Phys. Rev. 96, 195403 (2017).

D. Chevallier, ... and J. Klinovaja, Phys. Rev. B 97, 04504 (2018).

ANDREEV VS MAJORANA: CONCLUSIONS

• Low energy features are very distinct:

- Low energy features are very distinct:
- \Rightarrow avoided-crossing behavior of Andreev/Shiba qps
- \Rightarrow leakage of the zero-energy Majorna qps

- Low energy features are very distinct:
- \Rightarrow avoided-crossing behavior of Andreev/Shiba qps
- \Rightarrow leakage of the zero-energy Majorna qps
- Misinterpretation:
- \Rightarrow coalescence of Andreev into Majorna qps

Edge modes in dim=2 systems
TWO-DIMENSIONAL MAGNETIC STRUCTURES

Magnetic island of Co atoms deposited on the superconducting Pb surface

Diameter of island: 5 - 10 nm

G. Ménard, ..., and <u>P. Simon</u>, Nature Commun. **8**, 2040 (2017). / **P. & M. Curie University (Paris, France)** /

EVIDENCE FOR DELOCALIZED MAJORANA MODES

Majorana modes propagating along magnetic islands

G. Ménard, ..., and <u>P. Simon</u>, Nature Commun. **8**, 2040 (2017). / P. & M. Curie University (Paris, France) /

PROPAGATING MAJORANA EDGE MODES

Magnetic island of Fe atoms deposited on the superconducting Re surface

Chern number: C = 20

A. Palacio-Morales, ..., and <u>R. Wiesendanger</u>, arXiv:1809.04503 (preprint). / University of Hamburg (Germany) /

PROPAGATING MAJORANA EDGE MODES

Real space maps of the tunneling conductance (top panel) and deconvoluted DOS (bottom panel) obtained for various energies (as indicated) in the subgap regime ($\Delta = 240 \mu eV$).

A. Palacio-Morales, ..., and R. Wiesendanger, arXiv:1809.04503 (preprint).

/ University of Hamburg (Germany) /

Mixed – dimensionality structures

CAN MAJORANA QPS BE DECONFINED ?

Our project: Majorana qps of the 1D–2D hybrid structure

Constituents of this hybrid-system belong to different homotopy groups:

Constituents of this hybrid-system belong to different homotopy groups:

dim=1 \Rightarrow homotopy group Z_2

featured by the Berry phase ± 1 around the Brillouin zone

Constituents of this hybrid-system belong to different homotopy groups:

dim=1 \implies homotopy group Z_2

featured by the Berry phase ± 1 around the Brillouin zone

dim=2 \Rightarrow homotopy group Z

which can be characterized by the Chern number, that is equivalent to the Thouless–Kohmoto–Nightingale–den Nijs number.

Constituents of this hybrid-system belong to different homotopy groups:

dim=1 \implies homotopy group Z_2

featured by the Berry phase ± 1 around the Brillouin zone

dim=2 \Rightarrow homotopy group Z

which can be characterized by the Chern number, that is equivalent to the Thouless–Kohmoto–Nightingale–den Nijs number.

For details, concerning the topological criteria see e.g.

- A. Kitaev, AIP Conf. Proc. <u>1134</u>, 22 (2009);
- M.Z. Hasan & C.L. Kane, Rev. Mod. Phys. <u>82</u>, 3045 (2010);
- X.-L. Qi & S.-C. Zhang, Rev. Mod. Phys. <u>83</u>, 1057 (2011).

TRIVIAL VS MAJORANA MODES

Majorana/Andreev quasiparticles of a wire-plaquette hybrid

plaquette: nontopological

nanowire: topological

TRIVIAL VS MAJORANA MODES

Majorana/Andreev quasiparticles of a wire-plaquette hybrid

Both regions are assumed to be in topological sc phase.

HOW TO DETECT (DE)LOCALIZED MAJORANA QPS

Maps of the SESAR tunneling conductance at zero-bias.

SESAR = Selective Equal Spin Andreev Reflection

DIMENSIONAL HYBRID: CONCLUSION

Plaquette-nanowire hybrid structures enables:

Plaquette-nanowire hybrid structures enables:

 \Rightarrow conversion of the Majorana quasiparticle

Plaquette-nanowire hybrid structures enables:

 \Rightarrow conversion of the Majorana quasiparticle

 \Rightarrow into the delocalized edge-mode

Plaquette-nanowire hybrid structures enables:

 \Rightarrow conversion of the Majorana quasiparticle

 \Rightarrow into the delocalized edge-mode

Is this edge mode itinerant ?

Further outlook

ISLAND + NONOWIRE

Itinerant Majorana mode leaking into side-attached nanowire.

E. Mascot, S. Cocklin, S. Rachel, and D.K. Morr, arXiv:1811.06664 Univ. of Illinois at Chicago (USA)

ISLAND + NONOWIRE

Majorana modes leaking to the side-attached nanowires.

DEFECTS IN MAGNETIC ISLAND

Localized Majorana at point-like defect, coexisting with itinerant

Majorana edge mode (observed in Co-Si island on disordered Pb)

ACKNOWLEDGEMENTS

- Majorana quasiparticles
- ⇒ A. Kobiałka (Lublin), A. Ptok (Kraków),
 - M. Maśka & A. Gorczyca-Goraj (Katowice)
- Shiba states/bands in topological phases
- \Rightarrow Sz. Głodzik (Lublin)
- Subgap Kondo effect
- ⇒ I. Weymann & K. Wójcik (Poznań), G. Górski (Rzeszów),
 - T. Novotný, M. Žonda & V. Janiš (Prague),
 - M. Barańska & J. Barański (Dęblin).
- Dynamics of in-gap states
- ⇒ R. Taranko, B. Baran & T. Kwapiński (Lublin)
- Nonlocal Andreev processes
- ⇒ K.I. Wysokiński (Lublin), G. Michałek & B.R. Bułka (Poznań)

HTTPS://WWW.PKS.MPG.DE/BOSSA19/

7-10 April 2019, M. Planck Inst. (Dresden, Germany)

Differential conductance dI/dV obtained for InSb nanowire at 70 mK upon varying a magnetic field.

V. Mourik, ..., and L.P. Kouwenhoven, Science 336, 1003 (2012).

/ Technical Univ. Delft, Netherlands /

STM measurements for the nanochain of Fe atoms self-organized on a surface of superconducting Pb.

S. Nadj-Perge, ..., and <u>A. Yazdani</u>, Science **346**, 602 (2014). / **Princeton University, USA** /

AFM & STM data for Fe chain on Pb(110) surface

R. Pawlak, M. Kisiel *et al*, npj Quantum Information **2**, 16035 (2016). / University of Basel, Switzerland /

Results for the litographically fabricated Al nanowire

F. Nichele, ..., and Ch. Marcus, Phys. Rev. Lett. 119, 136803 (2017).

/ Niels Bohr Institute, Copenhagen, Denmark /