Are pairs of Majorana modes distantly cross-correlated?

Tadeusz Domański M. Curie-Skłodowska University Lublin, Poland

XXI Krajowa Konferencja Nadprzewodnictwa

Kraków, 25/09/2024

1. Topological superconductivity

(pairs of boundary modes)

2. Stationary phenomena (in topological hybrid structures)

3. Dynamical effects

(transmitted via Majorana modes)

Part 1. Topological superconductivity

Magnetic atoms (like Fe) on a surface of s-wave superconductor (for example Pb or AI) arrange themselves into the spiral order, promoting the topological superconducting state (topofilia).

MAGNETIC IMPURITIES + SUPERCONDUCTOR

Such helix magnetic texture, supporting the topological superconducting state survives at finite temperatures (up to a few K).

A. Gorczyca-Goraj, T. Domański, M.M. Maśka, PRB 99, 235430 (2019).

PAIRING & MAGNETISM IN NANOWIRES

Spin-orbit (Rashba) interaction in presence of magnetic field applied to semiconducting nanowire proximitized to s-wave superconductor can also induce triplet pairing of electrons between neighboring sites.

PAIRING & MAGNETISM IN NANOWIRES

Spin-orbit (Rashba) interaction in presence of magnetic field applied to semiconducting nanowire proximitized to s-wave superconductor can also induce triplet pairing of electrons between neighboring sites.

Such intersite triplet pairing of mobile electrons in 1-dimensional chains has been predicted to host the Majorana boundary modes.

TOPOLOGICAL TRANSITION

Effective quasiparticle states of the Rashba nanowire

TOPOLOGICAL TRANSITION

Effective quasiparticle states of the Rashba nanowire

Closing / reopening of a gap \iff band-invertion of topological insulators

M.M. Maśka, A. Gorczyca-Goraj, J. Tworzydło, T. Domański, PRB 95, 045429 (2017).

BONDARY MODES IN TRIPLET SUPERCONDUCTOR

Itinerant 1D fermions with intersite (p-wave) pairing

$$\hat{H} = t \sum_{i=1}^{N-1} \left(\hat{c}_i^{\dagger} \hat{c}_{i+1} + \text{h.c.} \right) + \Delta \sum_{i=1}^{N-1} \left(\hat{c}_i^{\dagger} \hat{c}_{i+1}^{\dagger} + \text{h.c.} \right) - \mu \sum_{i=1}^{N} \hat{c}_i^{\dagger} \hat{c}_i$$

Usual fermion operators can be recast in the Majorana basis

$$egin{array}{rll} \hat{\gamma}_{j,1} &\equiv& rac{1}{\sqrt{2}}\left(\hat{c}_{j}+\hat{c}_{j}^{\dagger}
ight) \ \hat{\gamma}_{j,2} &\equiv& rac{1}{i\sqrt{2}}\left(\hat{c}_{j}-\hat{c}_{j}^{\dagger}
ight) \end{array}$$

A.Y. Kitaev, Phys. Usp. 44, 131 (2001).

KITAEV CHAIN: PARADIGM FOR MAJORANA QPS

For $\Delta = t$ and $|\mu|$ being inside the band (for example $\mu = 0$) the operators $\hat{\gamma}_{1,1}$ and $\hat{\gamma}_{2,N}$ *decouple* from all the rest

They correspond to zero-energy modes at the chain edges which can be regarded as *fractions* of non-local fermion

$$\hat{c}_{nonlocal} \equiv (\hat{\gamma}_{1,1} + i\hat{\gamma}_{N,2}) / \sqrt{2} \hat{c}_{nonlocal}^{\dagger} \equiv (\hat{\gamma}_{1,1} - i\hat{\gamma}_{N,2}) / \sqrt{2}$$

KITAEV CHAIN: PARADIGM FOR MAJORANA QPS

For $\Delta = t$ and $|\mu|$ being inside the band (for example $\mu = 0$) the operators $\hat{\gamma}_{1,1}$ and $\hat{\gamma}_{2,N}$ *decouple* from all the rest

They correspond to zero-energy modes at the chain edges which can be regarded as *fractions* of non-local fermion

$$\hat{c}_{nonlocal} \equiv \left(\hat{\gamma}_{1,1} + i\hat{\gamma}_{N,2}\right)/\sqrt{2} \\ \hat{c}_{nonlocal}^{\dagger} \equiv \left(\hat{\gamma}_{1,1} - i\hat{\gamma}_{N,2}\right)/\sqrt{2}$$

Are these boundary modes distantly cross-correlated?

SPATIAL PROFILE OF MAJORANA MODES

Majorana zero-energy modes are confined on edges (and/or defects)

R. Aguado, Riv. Nuovo Cim. 40, 523 (2017).

MINIMAL KITAEV CHAIN

Effective triplet pairing has been recently realized using two quantum dots interconnected by superconductor (Poor Man's Majorana states)

T. Dvir, ... & L.P. Kouwenhoven, Nature 614, 445 (2023).

MINIMAL KITAEV CHAIN

Two spin-polarized quantum dots in an InSb nanowire strongly coupled by elastic co-tunneling and crossed Andreev reflection

T. Dvir, ... & L.P. Kouwenhoven, Nature 614, 445 (2023).

Part 2. Stationary phenomena (in topological hybrid structures)

Hybrid structure: quantum dot + topological superconductors

Hybrid structure: quantum dot + topological superconductors

PHYSICAL REVIEW B 84, 140501(R) (2011)

Scheme to measure Majorana fermion lifetimes using a quantum dot

Martin Leijnse and Karsten Flensberg Nano-Science Center & Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark (Received 30 August 2011; published 3 October 2011)

Hybrid structure: quantum dot + topological superconductors

PHYSICAL REVIEW B 84, 140501(R) (2011)

Scheme to measure Majorana fermion lifetimes using a quantum dot

Martin Leijnse and Karsten Flensberg Nano-Science Center & Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark (Received 30 August 2011; published 3 October 2011)

PHYSICAL REVIEW B 84, 201308(R) (2011)

Detecting a Majorana-fermion zero mode using a quantum dot

Dong E. Liu and Harold U. Baranger

Department of Physics, Duke University, Box 90305, Durham, North Carolina 27708-0305, USA (Received 22 July 2011; revised manuscript received 13 September 2011; published 16 November 2011)

Hybrid structure: quantum dot + topological superconductors

PHYSICAL REVIEW B 84, 140501(R) (2011)

Scheme to measure Majorana fermion lifetimes using a quantum dot

Martin Leijnse and Karsten Flensberg

Nano-Science Center & Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark (Received 30 August 2011; published 3 October 2011)

PHYSICAL REVIEW B 84, 201308(R) (2011)

Detecting a Majorana-fermion zero mode using a quantum dot

Dong E. Liu and Harold U. Baranger Department of Physics, Duke University, Box 90305, Durham, North Carolina 27708-0305, USA (Received 22 July 2011; revised manuscript received 13 September 2011; published 16 November 2011)

PHYSICAL REVIEW B **89**, 165314 (2014)

E. Vernek,^{1,2} P. H. Penteado,² A. C. Seridonio,³ and J. C. Egues² ¹Instituto de Física, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais 38400-902, Brazil ²Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo 13560-970, Brazil ³Departamento de Física e Química, Universidade Estadual Paulista, Ilha Solteira, São Paulo 15385-000, Brazil (Received 15 August 2013; revised manuscript received 10 April 2014; published 30 April 2014)

TRANSFER OF MAJORANA MODE ON QD

Hybrid structure: quantum dot + topological superconductor

Issue: Majorana mode is partly transferred onto quantum dot where it can be detected by tunneling spectroscopy

M. Leijnse and K. Flensberg, Phys. Rev. B 84, 140501(R) (2011).

Hybrid structure: Epitaxial AI shell (blue) grown on two facets of the hexagonal InAs core (cyan), with a thickness of \sim 10 nm. Magnetic field is applied parallelly to the nanowire.

M.T. Deng et al, Science 354, 1557 (2016).

EXPERIMENTAL REALIZATION

Experimental data: (A) Tunneling spectrum for resonant dot-wire coupling obtained at $V_{bg} = -8.5$ V, $V_{g1} = 22$ V, and $V_{g2} = V_{g3} = -10$ V. (B) Differential conductance at various values of the magnetic field.

M.T. Deng et al, Science 354, 1557 (2016).

GATE-CONTROLLED BOUND STATES

Hybrid structure: trivial + topological segments of nanowire

Issue: bound states of trivial segment attached to topological sc

A. Ptok, A. Kobiałka, T. Domański, Phys. Rev. B 96, 195430 (2017).

GATE-CONTROLLED BOUND STATES

Hybrid structure: trivial + topological segments of nanowire

Remark: bound states can be probed by STM measurements A. Ptok, A. Kobiałka, T. Domański, Phys. Rev. B 96, 195430 (2017).

GATE-CONTROLLED BOUND STATES

Hybrid structure: trivial + topological segments of nanowire

Variation the trivial (Andreev) & topological (Majorana) states vs the gate potential V_g for several spin-orbit couplings λ . A. Ptok, A. Kobiałka, T. Domański, Phys. Rev. B <u>96</u>, 195430 (2017).

What about correlations ? (on-site Coulomb repulsion)

BOUND STATES OF STRONGLY CORRELATED DOT

Hybrid structure: Anderson impurity + topological nanowire

Spectrum of the Anderson impurity for ↓-spin electron which is side-coupled to the Majorana boundary mode of topological sc. J. Barański, M. Barańska, T. Zienkiewicz, T. Domański, (2024) submitted.

BOUND STATES OF STRONGLY CORRELATED DOT

Hybrid structure: Anderson impurity + topological nanowire

Spectrum of the Anderson impurity for ↑-spin electron which is not coupled to the Majorana boundary mode of topological sc. J. Barański, M. Barańska, T. Zienkiewicz, T. Domański, (2024) submitted.

Nonlocal cross-correlations ? (under stationary conditions)

TWO IMPURITIES + TOLOGOGICAL NANOWIRE

Hybrid structure: 2 quantum dots + topological nanowire

Issue: correlation effects \longleftrightarrow leakage of Majorana modes

G.S. Diniz and E. Vernek, Phys. Rev. B 107, 045121 (2023).

MAJORANA - MAJORANA COEXISTENCE

DMRG results:

(obtained in the Majorana operator representation)

Non-local spectral function vs μ for various Coulomb potentials G.S. Diniz and E. Vernek, Phys. Rev. B <u>107</u>, 045121 (2023).

Time - resolved phenomena (imposed by slow/fast changes)

Hybrid structure: switching on/off topological phase

Issue: gate-imposed relocation of the Majorana mode

B. Pandey, L. Mohanta and E. Gagotto, Phys. Rev. B 107, L060304 (2023).

RELOCATION OF MAJORANAS

Hybrid structure: slow switching

RELOCATION OF MAJORANAS

Hybrid structure: fast switching

Part 3. Dynamical effects (transmitted via Majorana modes)

TIME-RESOLVED LEAKAGE OF MAJORANA MODE

Hybrid structure: quantum dot attached to topological nanowire

Question:

How much time does it take to transfer the Majorana mode on QD?

J. Barański, M. Barańska, T. Zienkiewicz, R. Taranko, T.Domański, PRB 103, 235416 (2021).

TIME-RESOLVED LEAKAGE OF MAJORANA MODE

Transient effects:

- \Rightarrow at t = 0 QD is coupled to the external N and S electrodes,
- \Rightarrow at t = 10 topological nanowire is attached to N-QD-S setup.

Gradual development of the trivial (Andreev) and topological (Majorana) states manifested in the differential conductance.

TIME-RESOLVED LEAKAGE OF MAJORANA MODE

Time-dependent zero-bias conductance

Majorana zero-bias feature establishes in about nanoseconds.

J. Barański, M. Barańska, T. Zienkiewicz, R. Taranko, T.Domański, PRB 103, 235416 (2021).

What about distant dynamical phenomena ?

DYNAMICAL CROSS-CORRELATIONS

Two quantum dots interconnected via topological superconductor

Question: Is any nonlocal communication transmitted between QD₁ and QD₂ through the Majorana boundary modes ?

R. Taranko, K. Wrześniewski, I. Weymann, T. Domański, Phys. Rev. B 110, 035413 (2024).

STEADY-LIMIT CONDUCTANCE

Differential conductance $G(V, t \to \infty)$ versus bias V for several couplings λ between $QD_{1,2}$ and topological superconductor.

R. Taranko, K. Wrześniewski, I. Weymann, T. Domański, Phys. Rev. B 110, 035413 (2024).

TIME-RESOLVED CONDUCTANCE

Time-dependent conductance of the biased N-QD₁-S junction

Signatures of the (trivial) molecular bound states and (topological) Majorana mode obtained for $\varepsilon_1 = 0$, $\varepsilon_2 = 2$. R. Taranko, K. Wrześniewski, I. Weymann, T. Domański, Phys. Rev. B <u>110</u>, 035413 (2024).

NONLOCAL CROSS-CORRELATIONS

Evolution of the interdot electron pairing $C_{12}(t) = \left\langle \hat{d}_{1\downarrow} \hat{d}_{2\uparrow} \right\rangle$

The nonlocal electron pairing persists only over a short transient time-scale. It could be detected by crossed Andreev refelections.

R. Taranko, K. Wrześniewski, I. Weymann, T. Domański, Phys. Rev. B 110, 035413 (2024).

 \Rightarrow are distantly cross-correlated only briefly after attaching them to topological superconductor,

 \Rightarrow are distantly cross-correlated only briefly after attaching them to topological superconductor,

 \Rightarrow beyond this transient region they do not show any mutual interdependence.

 \Rightarrow are distantly cross-correlated only briefly after attaching them to topological superconductor,

 \Rightarrow beyond this transient region they do not show any mutual interdependence.

 \Rightarrow It implies absence of charge teleportation and/or other nonlocal phenomena outside transient region.

Other related phenomena

MAJORANA SIGNATURES IN AC-CONDUCTANCE

Quantum dot coupled to the topological nanowire under ac-voltage

Question:

Can we resolve Majorana and Kondo states in ac-response?

K.P. Wójcik, T. Domański, I. Weymann, Phys. Rev. B 109, 075432 (2024).

DYNAMICAL FEATURES

The frequency dependent conductance of the ac-driven junction

Spin-resolved conductances: Signatures of the Coulomb peak and the Kondo effect can be clearly distinguished at finite-frequencies.

QUASIPARTICLE SPECTRUM OF QUANTUM DOTS

Issue: Molecular spectrum of the quantum dots connected via the overlapping Majorana modes

G. Górski, K.P. Wójcik, J. Barański, I. Weymann & T. Domański, Sci. Rep. 14, 13848 (2024).

QUASIPARTICLE SPECTRUM OF QUANTUM DOTS

The same quasiparticle states are present in both quantum dots , however, with very different spectral weights. G. Górski, K.P. Wójcik, J. Barański, I. Weymann & T. Domański, Sci. Rep. <u>14</u>, 13848 (2024).

QUANTUM ENTAGLEMENT OF DOUBLE DOTS

Setup: Quantum dots interconnected via short topological nanowire

Scientific issue:

Entanglement of QD's quantified by their fermionic negativity

C. Jasiukiewicz, A. Sinner, I. Weymann, T. Domański & L. Chotorlishvili, (2024) /to be submitted/.

QUANTUM ENTAGLEMENT OF DOUBLE DOTS

Setup: Quantum dots interconnected via short topological nanowire

Logarythmic negativity versus the energy levels QD's obtained for $\varepsilon_M \neq 0$.

 \Rightarrow conventional (Andreev-type),

- \Rightarrow conventional (Andreev-type),
- \Rightarrow topological (Majorana-type).

- \Rightarrow conventional (Andreev-type),
- \Rightarrow topological (Majorana-type).

Both types are promising candidates for stable qubits and/or quantum computations.

 \Rightarrow conventional (Andreev-type),

 \Rightarrow topological (Majorana-type).

Both types are promising candidates for stable qubits and/or quantum computations.

http://kft.umcs.lublin.pl/doman/lectures

ACKNOWLEDGEMENTS

⇒ M.M. Maśka, M. Dziurawiec (Technical University, Wrocław)

⇒ I. Weymann, K. Wrześniewski (A. Mickiewicz University, Poznań)

(Institute of Molecular Physics PAS, Poznań)

 \Rightarrow Sz. Głodzik, R. Taranko, N. Sedlmayr

(M. Curie-Skłodowska Univ., Lublin)

