Krakéw, 4 marca 2013 r.

Procesy Andreeva w silnie skore-

lowanych uktadach fermionowych

T. Domanski

Uniwersytet Marii Curie—Sktodowskie]
w Lublinie

http://kft.umcs.lublin.pl/doman/lectures




Outline




Outline

1. Introduction
/ underlying idea /




Outline

1. Introduction
/ underlying idea /

2. Andreev transport via quantum dots
/ correlations versus superconductivity /




Outline

1. Introduction
/ underlying idea /

2. Andreev transport via quantum dots
/ correlations versus superconductivity /

3. Further extensions
/ quantum interference, dephasing, Cooper splitting, etc /




Outline

1. Introduction
/ underlying idea /

2. Andreev transport via quantum dots
/ correlations versus superconductivity /

3. Further extensions
/ quantum interference, dephasing, Cooper splitting, etc /

4. Andreev spectroscopy in bulk superconductors
/ probing the pair coherence /




Outline

Introduction
/ underlying idea /

Andreev transport via quantum dots
/ correlations versus superconductivity /

Further extensions
/ quantum interference, dephasing, Cooper splitting, etc /

Andreev spectroscopy in bulk superconductors

/ probing the pair coherence /

Andreev scattering in ultracold gasses
/ fermion vs molecular channels /




1. Introduction




Andreev reflections the main concept




Andreev reflections the main concept

Let us consider the process of electron tunneling from the no rmal

conductor N (e.g. metallic lead) to the superconducting electrode S




Andreev reflections the main concept

Let us consider the process of electron tunneling from the no rmal
conductor N (e.g. metallic lead) to the superconducting electrode S

N

Let us restrict to the subgap regime  |eV| < A of an applied bias V.
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Andreev reflections the main concept

Let us consider the process of electron tunneling from the no rmal
conductor N (e.g. metallic lead) to the superconducting electrode S

N S

8

hole Cooper pair

Such double-charge exchange is named the Andreev reflection (scattering).
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Andreev reflections historical remark

This anomalous transport channel allows for a finite subgap current across

N-S interface even though the single-particle transmissions are forbidden.
Its original idea has been suggested by

A.F. Andreev, Sov. Phys. JETP 19, 1228 (1964).




2. Andreev transport via quantum dot




Physical situation N-QD-S scheme

Let us consider the quantum dot (QD) on an interface between

the external metallic (N) and superconducting (S) leads




Physical situation N-QD-S scheme

Let us consider the quantum dot (QD) on an interface between

the external metallic (N) and superconducting (S) leads

V:IHN'HS
|

metallic lead superconductor




Physical situation N-QD-S scheme

Let us consider the quantum dot (QD) on an interface between

the external metallic (N) and superconducting (S) leads

V:IHN'HS

N s
QD

N

+ Vg
metallic lead @ superconductor

This setup can be thought of as a particular version of the SET
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Components of the N-QD-S heterostructure have the following spe ctra

N

External bias eV = pun — s induces the current(s) through QD.
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Microscopic model

The correlation effects

HQD T Zéd dT —I— U ndT ndi

are expected to affect the transport properties of the syste

Z €qdl dy + U gy na, + Hn + Hs

S Y (Vs dbékes + Vi el pdo)
k,oc B=N,S

Hg = Zk,a (ek,s —1s) élzasékcs Dk (AckTsck¢S+h-C-)
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Hybridization of QD to the metallic lead is responsible for:
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* a broadening of QD levels and

* appearance of the Kondo resonance below Tk.
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[ERi Kondo peak

/ interplay between the Kondo effect and superconductivity /
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Questions:

* What relation does occur between superconductivity
(transmitted onto the QD) and the Kondo effect ?

Do they coexist or compete ?

* How do these effects show up in the charge current
through N-QD-S junction ?

Are there any particular features ?
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Formal aspects

To account for both, the proximity effect and the correlatio ns,
we have to deal with the Nambu (2 x2 matrix) Green’s function

Tr(dy (7)d} (1)) T (dr (7)d(7"))
L (d) (T)d] (7)) T (d] (r)d ("))

Gyg(m,7")=—

In equilibrium its Fourier transform obeys the Dyson equati
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The steady current Jy = —Jgr is found to consist of two contributions

‘ J(V) = Ju(V) + Ja(V) |

which can be expressed by the Landauer-type formula
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with the transmittance
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Transport channels

Qualitative features in the differential conductance G (V) =

8J(V)
vV
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~0.2

T. Domanski, A. Donabidowicz, K.I. Wysokinski, PRB 76, 104514 (2007).

We shall now focus on the subgap Andreev  conductance.
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w/ My

Superconductivity suppresses the Kondo resonance
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Kondo resonance slightly enhances  the zero-bias

Andreev conductance, especially for I's ~ I'n!
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T. ~ 1K

A ~ 152ueV

QD : self-assembled InAs
diameter ~ 100 nm

backgate : Si-doped GaAs

R.S. Deacon et al, Phys. Rev. Lett. 104, 076805 (2010).
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InAs QD
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Interplay with the Kondo effect

InAs QD

"The zero-bias
conductance peak
IS consistent with
Andreev transport
enhanced by the
Kondo singlet state”

"We note that

the feature exhibits
excellent qualitative
agreement with

a recent theoretical

—V/ =2.284 vli p Y
J/ |
00 02

treatment by

Domanski et al”
V_, (mV)

R.S. Deacon et al, Phys. Rev. B 81, 121308(R) (2010).
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QD coupled between N and S electrodes:

—> absorbs the superconducting order / proximity effect /

—> is affected by the correlations /Kondo & charging effects /

Interplay between the proximity and correlation effects
IS manifested in a subgap Andreev transport by:

—> particle-hole splitting /when €4~ ug/

—> zero-bias enhancement /below T/
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Double QD —  between a metal and superconductor

€+U,

N

( T-shape configuration)
Relevant issues:

—> induced on-dot pairing (due to T'g)
—> Coulomb blockade & Kondo effect (via U7 and I' )

—> quantum interference (because of t)
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Fano-type lineshapes appear simultaneously at
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J. Baranski and T. Domanski, Phys. Rev. B (2012).




Quantum interference — in the particle and hole channels

Differential Andreev conductance G 4 = —42~
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J. Baranski and T. Domanski, Phys. Rev. B 84, 195424 (2011).




Double QD — decoherence effects

In this setup the floating lead (D) is responsible for a dephas Ing.
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Density of states pg; (w)
Py1(w)

0.5 | o / "n=0 0001 -rrreve -

0.01
0.4 | _ |01 ———--
| 0.5 ——

03

02}

4

w/ Ty

J. Baranski and T. Domanski, Phys. Rev. B (2012).




Quantum interference — influence of the decoherence

Andreev transmittance T4 (w)

Ta(w)
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02t

0.1 ¢
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J. Baranski and T. Domanski, Phys. Rev. B (2012).
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Interplay with ferromagnetism — Univ. of Basel group

L. Hofstetter et al, Phys. Rev. Lett. 104, 246804 (2010).

Effects of ferromagnetism and superconductivity

left — Ni/Co/Pd trilayer ferromagnet
QD - InAs nanowire
right — Ti/Al bilayer superconductor
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Three terminal junctions

Lg; Lsk
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Crossed Andreev reflections tunable via gate voltages

J. Eldridge, M.G. Pala, M. Governale, J. Konig, Phys. Rev. B 82, 184507 (2010)
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Cooper pair splitter

Realization of the Cooper pair splitting in a microwave cavity

A. Cottet, T. Kontos, and A. Levy Yeyati, Phys. Rev. Lett. 108, 166803 (2012)
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Idea of the spin valves using the Andreev reflections

B. Sothmann, D. Futterer, M. Governale, J. Konig, Phys. Rev. B 82, 094514 (2010).
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Andreev spectroscopy —  for bulk superconductors

The subgap Andreev spectroscopy is also a valuable tool for s tudying
various superconducting compounds.

K.Y. Yang et al, Phys. Rev. Lett. 105, 167004 (2010).

For practical experimental realizations one can e.g. use an | nsulating barrier
sandwiched between the conducting (N) and the probed superco nductor (S).




Andreev spectroscopy —  for bulk superconductors

The subgap Andreev spectroscopy is also a valuable tool for s tudying
various superconducting compounds.

STMtip  O-orbital CuQ, plane
(constant DOS) (d-wave DOS)

S. Pilgram et al, Phys. Rev. Lett. 97, 117003 (2006).

®Cu O ©Bi @Sr ‘ [

Other experimental realizations are also possible in the ST M configuration,
where the apex oxygen atoms play a role similar to QD in the N-Q D-S setup.




Andreev spectroscopy —  for bulk superconductors

The subgap Andreev spectroscopy is also a valuable tool for s tudying
various superconducting compounds.

La,_Sr CuO, l

O T(onset) J
cover electrode - ARPES >T -

I ARPES <T
O TC(bU|k) l ]

(®))
o

1

S S
Energy gaps A (meV)

0
T T T T T
0.15 0.20 0.25 0.30
Doping x

G. Koren, T. Kirzner, Phys. Rev. Lett. 106, 017002 (2011).

Such Andreev spectroscopy has revealed the intriguing two- gap feature.
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Andreev spectroscopy —  for ultracold atoms

Proposal for the Andreev-type spectroscopy has been discus sed also
In a context of the superfluid ultracold fermion atom systems.

S A A -5,

/lcb gL<gR

A.J. Daley, P. Zoller, and B. Trauzettel, Phys. Rev. Lett. 100, 110404 (2008).

The wave packet propagating along the 1-dimensional optical lattice can
be scattered at an interaction boundary in the Andreev-type f ashion.
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M.L. Chiofalo, S.J.J.M.F. Kokkelmans, J.N. Milstein, and M.J. Holland, Phys. Rev. Lett. 88, 090402 (2002).
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energy of non-bonding state

the spectral weight

BCS-like excitation energies

u?,v? = BCS-like coefficients

T. Domanski, Eur. Phys. J. B 33, 41 (2003); T. Domanski et al, Sol. State Commun. 105, 473 (1998).
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A(Kg,w)

= _ =

T. Domanski, Phys. Rev. A 84, 023634 (2011).
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D. Jin group (Boulder, USA)
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Conclusions

Andreev spectroscopy :

—> Is a suitable tool for probing the pair-coherence

—> simultaneously exploring the particle and hole states

It can be applied to:

® nanoscopic objects
/ coupled to superconducting electrodes /

® Dpulk materials
/ superconductors, atomic superfluids, black holes (?) /




