Kraków, 4 marca 2013 r.

Procesy Andreeva w silnie skorelowanych układach fermionowych

T. Domański

Uniwersytet Marii Curie–Skłodowskiej w Lublinie

http://kft.umcs.lublin.pl/doman/lectures

1. Introduction

/ underlying idea /

1. Introduction

/ underlying idea /

2. Andreev transport via quantum dots

/ correlations versus superconductivity /

1. Introduction

/ underlying idea /

2. Andreev transport via quantum dots

/ correlations versus superconductivity /

3. Further extensions

/ quantum interference, dephasing, Cooper splitting, etc /

1. Introduction

/ underlying idea /

2. Andreev transport via quantum dots

/ correlations versus superconductivity /

3. Further extensions

/ quantum interference, dephasing, Cooper splitting, etc /

4. Andreev spectroscopy in bulk superconductors

/ probing the pair coherence /

1. Introduction

/ underlying idea /

2. Andreev transport via quantum dots

/ correlations versus superconductivity /

3. Further extensions

/ quantum interference, dephasing, Cooper splitting, etc /

4. Andreev spectroscopy in bulk superconductors

/ probing the pair coherence /

5. Andreev scattering in ultracold gasses

/ fermion vs molecular channels /

1. Introduction

the main concept

the main concept

Let us consider the process of electron tunneling from the normal conductor ${f N}$ (e.g. metallic lead) to the superconducting electrode ${f S}$

the main concept

Let us consider the process of electron tunneling from the normal conductor N (e.g. metallic lead) to the superconducting electrode S

Let us restrict to the subgap regime $|eV| \ll \Delta$ of an applied bias V.

the main concept

Let us consider the process of electron tunneling from the normal conductor ${f N}$ (e.g. metallic lead) to the superconducting electrode ${f S}$

electron

the main concept

Let us consider the process of electron tunneling from the normal conductor ${f N}$ (e.g. metallic lead) to the superconducting electrode ${f S}$

electron

the main concept

Let us consider the process of electron tunneling from the normal conductor ${f N}$ (e.g. metallic lead) to the superconducting electrode ${f S}$

electron

the main concept

Let us consider the process of electron tunneling from the normal conductor N (e.g. metallic lead) to the superconducting electrode S

hole

Cooper pair

the main concept

Let us consider the process of electron tunneling from the normal conductor N (e.g. metallic lead) to the superconducting electrode S

the main concept

Let us consider the process of electron tunneling from the normal conductor N (e.g. metallic lead) to the superconducting electrode S

hole Cooper pair

Such double-charge exchange is named the **Andreev reflection** (scattering).

historical remark

historical remark

This *anomalous* transport channel allows for a finite subgap current across N-S interface even though the single-particle transmissions are forbidden. Its original idea has been suggested by

historical remark

This *anomalous* transport channel allows for a finite subgap current across N-S interface even though the single-particle transmissions are forbidden. Its original idea has been suggested by

A.F. Andreev

/ P. Kapitza Institute, Moscow (Russia) /

A.F. Andreev, Sov. Phys. JETP 19, 1228 (1964).

2. Andreev transport via quantum dot

N-QD-S scheme

Let us consider the quantum dot (QD) on an interface between the external metallic (N) and superconducting (S) leads

N-QD-S scheme

Let us consider the quantum dot (QD) on an interface between the external metallic (N) and superconducting (S) leads

N-QD-S scheme

Let us consider the quantum dot (QD) on an interface between the external metallic (N) and superconducting (S) leads

This setup can be thought of as a particular version of the SET.

Physical situation – energy spectrum

Physical situation – energy spectrum

Components of the N-QD-S heterostructure have the following spectra

energy spectrum

Components of the N-QD-S heterostructure have the following spectra

Physical situation – energy spectrum

Components of the N-QD-S heterostructure have the following spectra

External bias $eV = \mu_N - \mu_S$ induces the current(s) through QD.

The correlation effects

The correlation effects

$$\hat{H}_{QD} = \sum_{\sigma} \epsilon_d \; \hat{d}_{\sigma}^{\dagger} \; \hat{d}_{\sigma} \; + \; U \; \hat{n}_{d\uparrow} \; \hat{n}_{d\downarrow}$$

The correlation effects

$$\hat{H}_{QD} = \sum_{\sigma} \epsilon_d \; \hat{d}_{\sigma}^{\dagger} \; \hat{d}_{\sigma} \; + \; U \; \hat{n}_{d\uparrow} \; \hat{n}_{d\downarrow}$$

are expected to affect the transport properties of the system

The correlation effects

$$\hat{H}_{QD} = \sum_{\sigma} \epsilon_d \; \hat{d}_{\sigma}^{\dagger} \; \hat{d}_{\sigma} \; + \; U \; \hat{n}_{d\uparrow} \; \hat{n}_{d\downarrow}$$

are expected to affect the transport properties of the system

$$egin{array}{lll} \hat{H} &=& \sum_{\sigma} \epsilon_{d} \hat{d}_{\sigma}^{\dagger} \hat{d}_{\sigma} + U \; \hat{n}_{d\uparrow} \; \hat{n}_{d\downarrow} + \hat{H}_{N} + \hat{H}_{S} \ &+& \sum_{\mathbf{k},\sigma} \sum_{eta = N,S} \left(V_{\mathbf{k}eta} \; \hat{d}_{\sigma}^{\dagger} \hat{c}_{\mathbf{k}\sigmaeta} + V_{\mathbf{k}eta}^{st} \; \hat{c}_{\mathbf{k}\sigma,eta}^{\dagger} \hat{d}_{\sigma}
ight) \end{array}$$

The correlation effects

$$\hat{H}_{QD} = \sum_{\sigma} \epsilon_d \; \hat{d}_{\sigma}^{\dagger} \; \hat{d}_{\sigma} \; + \; U \; \hat{n}_{d\uparrow} \; \hat{n}_{d\downarrow}$$

are expected to affect the transport properties of the system

$$egin{array}{lll} \hat{H} &=& \sum_{\sigma} \epsilon_{d} \hat{d}_{\sigma}^{\dagger} \hat{d}_{\sigma} + U \; \hat{n}_{d\uparrow} \; \hat{n}_{d\downarrow} + \hat{H}_{N} + \hat{H}_{S} \ &+& \sum_{\mathbf{k},\sigma} \sum_{eta = N,S} \left(V_{\mathbf{k}eta} \; \hat{d}_{\sigma}^{\dagger} \hat{c}_{\mathbf{k}\sigmaeta} + V_{\mathbf{k}eta}^{st} \; \hat{c}_{\mathbf{k}\sigma,eta}^{\dagger} \hat{d}_{\sigma}
ight) \end{array}$$

where

$$\hat{H}_N = \sum_{m{k},\sigma} \left(arepsilon_{m{k},N} \! - \! \mu_N
ight) \hat{c}^\dagger_{m{k}\sigma N} \hat{c}_{m{k}\sigma N}$$

The correlation effects

$$\hat{H}_{QD} = \sum_{\sigma} \epsilon_d \; \hat{d}_{\sigma}^{\dagger} \; \hat{d}_{\sigma} \; + \; U \; \hat{n}_{d\uparrow} \; \hat{n}_{d\downarrow}$$

are expected to affect the transport properties of the system

$$egin{array}{lll} \hat{H} &=& \sum_{\sigma} \epsilon_{d} \hat{d}_{\sigma}^{\dagger} \hat{d}_{\sigma} + U \; \hat{n}_{d\uparrow} \; \hat{n}_{d\downarrow} + \hat{H}_{N} + \hat{H}_{S} \ &+& \sum_{\mathbf{k},\sigma} \sum_{eta = N,S} \left(V_{\mathbf{k}eta} \; \hat{d}_{\sigma}^{\dagger} \hat{c}_{\mathbf{k}\sigmaeta} + V_{\mathbf{k}eta}^{st} \; \hat{c}_{\mathbf{k}\sigma,eta}^{\dagger} \hat{d}_{\sigma}
ight) \end{array}$$

where

$$\hat{H}_S = \sum_{k,\sigma} (\varepsilon_{k,S} - \mu_S) \, \hat{c}_{k\sigma S}^{\dagger} \hat{c}_{k\sigma S} - \sum_{k} \left(\Delta \hat{c}_{k\uparrow S}^{\dagger} \hat{c}_{k\downarrow S}^{\dagger} + \text{h.c.} \right)$$

Relevant problems : issue # 1

Relevant problems : issue # 1

Hybridization of QD to the metallic lead is responsible for:

issue # 1

Hybridization of QD to the metallic lead is responsible for:

issue # 1

Hybridization of QD to the metallic lead is responsible for:

a broadening of QD levels

issue # 1

Hybridization of QD to the metallic lead is responsible for:

a broadening of QD levels and ...

issue # 1

Hybridization of QD to the metallic lead is responsible for:

a broadening of QD levels and ...

issue # 1

Hybridization of QD to the metallic lead is responsible for:

* a broadening of QD levels and

appearance of the Kondo resonance below T_K .

Hybridization of QD to the superconducting lead

#1+2

#1+2

Hybridizations Γ_N and Γ_S are thus effectively leading to

#1+2

Hybridizations Γ_N and Γ_S are thus effectively leading to

/ interplay between the Kondo effect and superconductivity /

★ What relation does occur between superconductivity (transmitted onto the QD) and the Kondo effect?

★ What relation does occur between superconductivity (transmitted onto the QD) and the Kondo effect ?

Do they coexist or compete ?

★ What relation does occur between superconductivity (transmitted onto the QD) and the Kondo effect ?

Do they coexist or compete ?

★ How do these effects show up in the charge current through N-QD-S junction ?

★ What relation does occur between superconductivity (transmitted onto the QD) and the Kondo effect ?

Do they coexist or compete ?

★ How do these effects show up in the charge current through N-QD-S junction ?

Are there any particular features?

To account for both, the proximity effect and the correlations, we have to deal with the Nambu (2×2 matrix) Green's function

To account for both, the proximity effect and the correlations, we have to deal with the Nambu (2×2 matrix) Green's function

$$G_d(au, au') \!=\! - \left(egin{array}{ccc} \hat{T}_ au \langle \hat{d}_\uparrow \left(au
ight) \hat{d}_\uparrow^\dagger \left(au'
ight)
angle & \hat{T}_ au \langle \hat{d}_\uparrow \left(au
ight) \hat{d}_\downarrow(au')
angle \ \hat{T}_ au \langle \hat{d}_\downarrow^\dagger \left(au
ight) \hat{d}_\uparrow^\dagger \left(au'
ight)
angle & \hat{T}_ au \langle \hat{d}_\downarrow^\dagger \left(au
ight) \hat{d}_\downarrow(au')
angle \end{array}
ight)$$

To account for both, the proximity effect and the correlations, we have to deal with the Nambu (2×2 matrix) Green's function

$$G_d(au, au')\!=\!-\left(egin{array}{ccc} \hat{T}_ au\langle\hat{d}_\uparrow\left(au
ight)\hat{d}_\uparrow^\dagger\left(au'
ight)
angle &\hat{T}_ au\langle\hat{d}_\uparrow\left(au
ight)\hat{d}_\downarrow(au')
angle \ \hat{T}_ au\langle\hat{d}_\downarrow^\dagger\left(au
ight)\hat{d}_\uparrow^\dagger\left(au'
ight)
angle &\hat{T}_ au\langle\hat{d}_\downarrow^\dagger\left(au
ight)\hat{d}_\downarrow(au')
angle \end{array}
ight)$$

In equilibrium its Fourier transform obeys the Dyson equation

To account for both, the proximity effect and the correlations, we have to deal with the Nambu (2×2 matrix) Green's function

$$G_d(au, au')\!=\!-\left(egin{array}{ccc} \hat{T}_ au\langle\hat{d}_\uparrow\left(au
ight)\hat{d}_\uparrow^\dagger\left(au'
ight)
angle &\hat{T}_ au\langle\hat{d}_\uparrow\left(au
ight)\hat{d}_\downarrow(au')
angle \ \hat{T}_ au\langle\hat{d}_\downarrow^\dagger\left(au
ight)\hat{d}_\uparrow^\dagger\left(au'
ight)
angle &\hat{T}_ au\langle\hat{d}_\downarrow^\dagger\left(au
ight)\hat{d}_\downarrow(au')
angle \end{array}
ight)$$

In equilibrium its Fourier transform obeys the Dyson equation

$$G_d(\omega)^{-1} = \left(egin{array}{ccc} \omega - arepsilon_d & 0 \ 0 & \omega + arepsilon_d \end{array}
ight) - \Sigma_d^0(\omega) - \Sigma_d^U(\omega)$$

To account for both, the proximity effect and the correlations, we have to deal with the Nambu (2×2 matrix) Green's function

$$G_d(au, au')\!=\!-\left(egin{array}{ccc} \hat{T}_ au\langle\hat{d}_\uparrow\left(au
ight)\hat{d}_\uparrow^\dagger\left(au'
ight)
angle &\hat{T}_ au\langle\hat{d}_\uparrow\left(au
ight)\hat{d}_\downarrow(au')
angle \ \hat{T}_ au\langle\hat{d}_\downarrow^\dagger\left(au
ight)\hat{d}_\uparrow^\dagger\left(au'
ight)
angle &\hat{T}_ au\langle\hat{d}_\downarrow^\dagger\left(au
ight)\hat{d}_\downarrow(au')
angle \end{array}
ight)$$

In equilibrium its Fourier transform obeys the Dyson equation

$$G_d(\omega)^{-1} = \left(egin{array}{ccc} \omega - arepsilon_d & 0 \ 0 & \omega + arepsilon_d \end{array}
ight) - \Sigma_d^0(\omega) - \Sigma_d^U(\omega)$$

with

$$\Sigma_d^0(\omega)$$
 the selfenergy for $U=0$

To account for both, the proximity effect and the correlations, we have to deal with the Nambu (2×2 matrix) Green's function

$$G_d(au, au')\!=\!-\left(egin{array}{ccc} \hat{T}_ au\langle\hat{d}_\uparrow\left(au
ight)\hat{d}_\uparrow^\dagger\left(au'
ight)
angle &\hat{T}_ au\langle\hat{d}_\uparrow\left(au
ight)\hat{d}_\downarrow(au')
angle \ \hat{T}_ au\langle\hat{d}_\downarrow^\dagger\left(au
ight)\hat{d}_\uparrow^\dagger\left(au'
ight)
angle &\hat{T}_ au\langle\hat{d}_\downarrow^\dagger\left(au
ight)\hat{d}_\downarrow(au')
angle \end{array}
ight)$$

In equilibrium its Fourier transform obeys the Dyson equation

$$G_d(\omega)^{-1} = \left(egin{array}{ccc} \omega - arepsilon_d & 0 \ 0 & \omega + arepsilon_d \end{array}
ight) - \Sigma_d^0(\omega) - \Sigma_d^U(\omega)$$

with

 $\Sigma_d^U(\omega)$ correction due to U
eq 0.

Non-equilibrium phenomena

The steady current $J_L=-J_R$ is found to consist of two contributions

$$J(V) = J_1(V) + J_A(V)$$

Non-equilibrium phenomena

The steady current $J_L=-J_R$ is found to consist of two contributions

$$J(V) = J_1(V) + J_A(V)$$

which can be expressed by the Landauer-type formula

$$J_1(V) = rac{2e}{h} \int d\omega \; T_1(\omega) \left[f(\omega\!+\!eV\!,T)\!-\!f(\omega,T)
ight]$$

$$J_A(V) = rac{2e}{h} \int d\omega \; T_A(\omega) \left[f(\omega\!+\!eV\!,T)\!-\!f(\omega\!-\!eV\!,T)
ight]$$

with the transmittance

$$T_1(\omega) = \Gamma_N \Gamma_S \left(\left| G_{11}^r(\omega)
ight|^2 + \left| G_{12}^r(\omega)
ight|^2 - rac{2\Delta}{|\omega|} \mathrm{Re} G_{11}^r(\omega) G_{12}^r(\omega)
ight)$$

Non-equilibrium phenomena

The steady current $J_L=-J_R$ is found to consist of two contributions

$$J(V) = J_1(V) + J_A(V)$$

which can be expressed by the Landauer-type formula

$$J_1(V) = rac{2e}{h} \int d\omega \; T_1(\omega) \left[f(\omega\!+\!eV\!,T)\!-\!f(\omega,T)
ight]$$

$$J_A(V) = rac{2e}{h} \int d\omega \; T_A(\omega) \left[f(\omega\!+\!eV\!,T)\!-\!f(\omega\!-\!eV\!,T)
ight]$$

with the transmittance

$$T_A(\omega) = \Gamma_N^2 \left| G_{12}(\omega)
ight|^2$$

Transport channels

Qualitative features in the differential conductance $G(V) = rac{\partial J(V)}{\partial V}$

Transport channels

Qualitative features in the differential conductance $G(V) = rac{\partial J(V)}{\partial V}$

Transport channels

Qualitative features in the differential conductance $G(V) = rac{\partial J(V)}{\partial V}$

T. Domański, A. Donabidowicz, K.I. Wysokiński, PRB 76, 104514 (2007).

Transport channels

Qualitative features in the differential conductance $G(V) = rac{\partial J(V)}{\partial V}$

T. Domański, A. Donabidowicz, K.I. Wysokiński, PRB 76, 104514 (2007).

We shall now focus on the subgap Andreev conductance.

- effect of the asymmetry Γ_S/Γ_N

– effect of the asymmetry Γ_S/Γ_N

- effect of the asymmetry Γ_S/Γ_N

$$\Gamma_S/\Gamma_N = 0$$

- effect of the asymmetry Γ_S/Γ_N

$$\Gamma_S/\Gamma_N = 1$$

- effect of the asymmetry Γ_S/Γ_N

$$\Gamma_S/\Gamma_N = 2$$

- effect of the asymmetry Γ_S/Γ_N

$$\Gamma_S/\Gamma_N = 3$$

- effect of the asymmetry Γ_S/Γ_N

$$\Gamma_S/\Gamma_N~=~4$$

- effect of the asymmetry Γ_S/Γ_N

$$\Gamma_S/\Gamma_N = 5$$

- effect of the asymmetry Γ_S/Γ_N

$$\Gamma_S/\Gamma_N = 6$$

- effect of the asymmetry Γ_S/Γ_N

$$\Gamma_S/\Gamma_N = 8$$

- effect of the asymmetry Γ_S/Γ_N

Spectral function obtained below T_K for $U = 10\Gamma_N$

Superconductivity suppresses the Kondo resonance

– effect of the asymmetry Γ_S/Γ_N

Andreev conductance $G_A(V)$ for:

$$\left(U=10\Gamma_{N}
ight)$$

- effect of the asymmetry Γ_S/Γ_N

Andreev conductance $G_A(V)$ for:

$$U=10\Gamma_N$$

- effect of the asymmetry Γ_S/Γ_N

Andreev conductance $G_A(V)$ for:

$$(U=10\Gamma_N)$$

- effect of the asymmetry Γ_S/Γ_N

Andreev conductance $G_A(V)$ for:

$$\left(U=10\Gamma_N
ight)$$

$$\Gamma_{\rm S} / \Gamma_{\rm N} = 1$$

- effect of the asymmetry Γ_S/Γ_N

Andreev conductance $G_A(V)$ for:

$$(U=10\Gamma_N)$$

- effect of the asymmetry Γ_S/Γ_N

Andreev conductance $G_A(V)$ for:

$$\left(U=10\Gamma_N
ight)$$

$$\Gamma_{\rm S} / \Gamma_{\rm N} = 3$$

- effect of the asymmetry Γ_S/Γ_N

Andreev conductance $G_A(V)$ for:

$$(U=10\Gamma_N)$$

$$\Gamma_{\rm S} / \Gamma_{\rm N} = 4$$

- effect of the asymmetry Γ_S/Γ_N

Andreev conductance $G_A(V)$ for:

$$(U=10\Gamma_N)$$

$$\Gamma_{\rm S} / \Gamma_{\rm N} = 5$$

- effect of the asymmetry Γ_S/Γ_N

Andreev conductance $G_A(V)$ for:

$$U=10\Gamma_N$$

$$\Gamma_{\rm S} / \Gamma_{\rm N} = 6$$

- effect of the asymmetry Γ_S/Γ_N

Andreev conductance $G_A(V)$ for:

$$U=10\Gamma_N$$

$$\Gamma_{\rm S} / \Gamma_{\rm N} = 7$$

- effect of the asymmetry Γ_S/Γ_N

Andreev conductance $G_A(V)$ for:

$$\left(U=10\Gamma_N
ight)$$

$$\Gamma_{\rm S} / \Gamma_{\rm N} = 8$$

- effect of the asymmetry Γ_S/Γ_N

Andreev conductance $G_A(V)$ for:

$$\left(U=10\Gamma_{N}
ight)$$

$$\Gamma_{\rm S} / \Gamma_{\rm N} = 8$$

T. Domański and A. Donabidowicz, PRB 78, 073105 (2008).

Kondo resonance slightly <u>enhances</u> the zero-bias Andreev conductance, especially for $\Gamma_S \sim \Gamma_N$!

Experimental setup / University of Tokyo /

/ University of Tokyo /

/ University of Tokyo /

QD: self-assembled InAs

diameter \sim 100 nm

backgate: Si-doped GaAs

/ University of Tokyo /

 $T_c \simeq 1$ K

 $\Delta \simeq 152 \mu$ eV

QD: self-assembled InAs

diameter \sim 100 nm

backgate: Si-doped GaAs

/ University of Tokyo /

 $T_c \simeq 1$ K

 $\Delta \simeq 152 \mu$ eV

QD: self-assembled InAs

diameter \sim 100 nm

backgate: Si-doped GaAs

R.S. Deacon et al, Phys. Rev. Lett. 104, 076805 (2010).

Interplay with the Kondo effect

R.S. Deacon et al, Phys. Rev. B 81, 121308(R) (2010).

Interplay with the Kondo effect

"The zero-bias
conductance peak
is consistent with
Andreev transport
enhanced by the
Kondo singlet state"

R.S. Deacon et al, Phys. Rev. B 81, 121308(R) (2010).

Interplay with the Kondo effect

"The zero-bias
conductance peak
is consistent with
Andreev transport
enhanced by the
Kondo singlet state"

"We note that
the feature exhibits
excellent qualitative
agreement with
a recent theoretical
treatment by
Domanski et al"

R.S. Deacon et al, Phys. Rev. B 81, 121308(R) (2010).

Summary

/ for part 2 /

Summary / for part 2 /

QD coupled between N and S electrodes:

QD coupled between N and S electrodes:

absorbs the superconducting order / proximity effect /

```
Summary / for part 2 /
```

QD coupled between N and S electrodes:

- ⇒ absorbs the superconducting order / proximity effect /
- \Rightarrow is affected by the correlations / Kondo & charging effects /

QD coupled between N and S electrodes:

- absorbs the superconducting order / proximity effect /
- \Rightarrow is affected by the correlations / Kondo & charging effects /

Interplay between the proximity and correlation effects is manifested in a subgap Andreev transport by:

QD coupled between N and S electrodes:

- absorbs the superconducting order / proximity effect /
- \Rightarrow is affected by the correlations / Kondo & charging effects /

Interplay between the proximity and correlation effects is manifested in a subgap Andreev transport by:

 \Rightarrow particle-hole splitting / when $arepsilon_d \sim \mu_S$ /

QD coupled between N and S electrodes:

- absorbs the superconducting order / proximity effect /
- \Rightarrow is affected by the correlations / Kondo & charging effects /

Interplay between the proximity and correlation effects is manifested in a subgap Andreev transport by:

- \Rightarrow particle-hole splitting / when $arepsilon_d \sim \mu_S$ /
- \Rightarrow **zero-bias enhancement** / below T_K /

3. Further extensions

Double QD

between a metal and superconductor

(T-shape configuration)

Relevant issues:

\Rightarrow	induced on-dot pairing		. (due to	Γ_{ξ}	3)
---------------	------------------------	--	-----------	----------------	----

\Rightarrow	Coulomb blockade $\&$ Kondo effect	. (via $oldsymbol{U_1}$	and Γ_N	y)
---------------	------------------------------------	-------------------------	----------------	------------

 \Rightarrow quantum interference(because of t)

Quantum interference

in the particle and hole channels

Fano-type lineshapes appear simultaneously at $\pm arepsilon_2$

J. Barański and T. Domański, Phys. Rev. B (2012).

Quantum interference

- in the particle and hole channels

J. Barański and T. Domański, Phys. Rev. B 84, 195424 (2011).

Double QD

decoherence effects

In this setup the floating lead (D) is responsible for a dephasing.

Quantum interference influence of the decoherence

Quantum interference

influence of the decoherence

Density of states $ho_{d1}(\omega)$

J. Barański and T. Domański, Phys. Rev. B (2012).

Quantum interference

influence of the decoherence

Andreev transmittance $T_A(\omega)$

J. Barański and T. Domański, Phys. Rev. B (2012).

Interplay with ferromagnetism - Univ. of Basel group

- Univ. of Basel group

- Univ. of Basel group

L. Hofstetter et al, Phys. Rev. Lett. 104, 246804 (2010).

- Univ. of Basel group

L. Hofstetter et al, Phys. Rev. Lett. 104, 246804 (2010).

Effects of ferromagnetism and superconductivity

- Univ. of Basel group

L. Hofstetter et al, Phys. Rev. Lett. 104, 246804 (2010).

Effects of ferromagnetism and superconductivity

left – Ni/Co/Pd trilayer ferromagnet

QD - InAs nanowire

right - Ti/Al bilayer superconductor

Three terminal junctions

Three terminal junctions

Crossed Andreev reflections tunable via gate voltages

Three terminal junctions

Crossed Andreev reflections tunable via gate voltages

J. Eldridge, M.G. Pala, M. Governale, J. König, Phys. Rev. B 82, 184507 (2010)

Cooper pair splitter

Cooper pair splitter

Realization of the Cooper pair splitting in a microwave cavity

Cooper pair splitter

Realization of the Cooper pair splitting in a microwave cavity

A. Cottet, T. Kontos, and A. Levy Yeyati, Phys. Rev. Lett. 108, 166803 (2012)

- in three terminal junctions

- in three terminal junctions

- in three terminal junctions

Idea of the spin valves using the Andreev reflections

- in three terminal junctions

Idea of the spin valves using the Andreev reflections

B. Sothmann, D. Futterer, M. Governale, J. König, Phys. Rev. B 82, 094514 (2010).

4. Bulk superconductors

for bulk superconductors

for bulk superconductors

The subgap Andreev spectroscopy is also a valuable tool for studying various superconducting compounds.

for bulk superconductors

The subgap Andreev spectroscopy is also a valuable tool for studying various superconducting compounds.

For practical experimental realizations one can e.g. use an insulating barrier sandwiched between the conducting (N) and the probed superconductor (S).

for bulk superconductors

The subgap Andreev spectroscopy is also a valuable tool for studying various superconducting compounds.

Other experimental realizations are also possible in the STM configuration, where the apex oxygen atoms play a role similar to QD in the N-QD-S setup.

for bulk superconductors

The subgap Andreev spectroscopy is also a valuable tool for studying various superconducting compounds.

Such Andreev spectroscopy has revealed the intriguing two-gap feature.

5. Ultracold gasses

for ultracold atoms

for ultracold atoms

Proposal for the Andreev-type spectroscopy has been discussed also in a context of the superfluid ultracold fermion atom systems.

for ultracold atoms

Proposal for the Andreev-type spectroscopy has been discussed also in a context of the superfluid ultracold fermion atom systems.

A.J. Daley, P. Zoller, and B. Trauzettel, Phys. Rev. Lett. 100, 110404 (2008).

The wave packet propagating along the 1-dimensional optical lattice can be scattered at an interaction boundary in the Andreev-type fashion.

$$egin{array}{ll} \hat{H}_{loc}(\mathbf{r}) &=& \sum_{\sigma} arepsilon(\mathbf{r}) \; \hat{c}_{\sigma}^{\dagger}(\mathbf{r}) \hat{c}_{\sigma}(\mathbf{r}) + E(\mathbf{r}) \; \hat{b}^{\dagger}(\mathbf{r}) \hat{b}(\mathbf{r}) \ &+ g \left(\hat{b}^{\dagger}(\mathbf{r}) \hat{c}_{\downarrow}(\mathbf{r}) \hat{c}_{\uparrow} \; \left(\mathbf{r}
ight) + \hat{c}_{\uparrow}^{\dagger} \; \left(\mathbf{r}
ight) \hat{c}_{\downarrow}^{\dagger}(\mathbf{r}) \hat{b}(\mathbf{r})
ight) \end{array}$$

$$egin{array}{ll} \hat{H}_{loc}(\mathbf{r}) &=& \sum_{\sigma} arepsilon(\mathbf{r}) \; \hat{c}_{\sigma}^{\dagger}(\mathbf{r}) \hat{c}_{\sigma}(\mathbf{r}) + E(\mathbf{r}) \; \hat{b}^{\dagger}(\mathbf{r}) \hat{b}(\mathbf{r}) \ &+ g \left(\hat{b}^{\dagger}(\mathbf{r}) \hat{c}_{\downarrow}(\mathbf{r}) \hat{c}_{\uparrow} \; \left(\mathbf{r}
ight) + \hat{c}_{\uparrow}^{\dagger} \; \left(\mathbf{r}
ight) \hat{c}_{\downarrow}^{\dagger}(\mathbf{r}) \hat{b}(\mathbf{r})
ight) \end{array}$$

$$egin{array}{ll} \hat{H}_{loc}(\mathbf{r}) &=& \sum_{\sigma} arepsilon(\mathbf{r}) \; \hat{c}_{\sigma}^{\dagger}(\mathbf{r}) \hat{c}_{\sigma}(\mathbf{r}) + E(\mathbf{r}) \; \hat{b}^{\dagger}(\mathbf{r}) \hat{b}(\mathbf{r}) \ &+ g \left(\hat{b}^{\dagger}(\mathbf{r}) \hat{c}_{\downarrow}(\mathbf{r}) \hat{c}_{\uparrow} \; \left(\mathbf{r}
ight) + \hat{c}_{\uparrow}^{\dagger} \; \left(\mathbf{r}
ight) \hat{c}_{\downarrow}^{\dagger}(\mathbf{r}) \hat{b}(\mathbf{r})
ight) \end{array}$$

 $\hat{c}_{\sigma}^{(\dagger)}(\mathbf{r})$ fermion atoms(open channel)

$$egin{array}{ll} \hat{H}_{loc}(\mathbf{r}) &=& \sum_{\sigma} arepsilon(\mathbf{r}) \; \hat{c}_{\sigma}^{\dagger}(\mathbf{r}) \hat{c}_{\sigma}(\mathbf{r}) + E(\mathbf{r}) \; \hat{b}^{\dagger}(\mathbf{r}) \hat{b}(\mathbf{r}) \ &+ g \left(\hat{b}^{\dagger}(\mathbf{r}) \hat{c}_{\downarrow}(\mathbf{r}) \hat{c}_{\uparrow} \; \left(\mathbf{r}
ight) + \hat{c}_{\uparrow}^{\dagger} \; \left(\mathbf{r}
ight) \hat{c}_{\downarrow}^{\dagger}(\mathbf{r}) \hat{b}(\mathbf{r})
ight) \end{array}$$

 $\hat{c}_{\sigma}^{(\dagger)}(\mathbf{r})$ fermion atoms(open channel)

 $\hat{b}^{(\dagger)}(\mathbf{r})$ molecules(closed channel)

$$egin{array}{ll} \hat{H}_{loc}(\mathbf{r}) &=& \sum_{\sigma} arepsilon(\mathbf{r}) \; \hat{c}_{\sigma}^{\dagger}(\mathbf{r}) \hat{c}_{\sigma}(\mathbf{r}) + E(\mathbf{r}) \; \hat{b}^{\dagger}(\mathbf{r}) \hat{b}(\mathbf{r}) \ &+ g \left(\hat{b}^{\dagger}(\mathbf{r}) \hat{c}_{\downarrow}(\mathbf{r}) \hat{c}_{\uparrow} \; \left(\mathbf{r}
ight) + \hat{c}_{\uparrow}^{\dagger} \; \left(\mathbf{r}
ight) \hat{c}_{\downarrow}^{\dagger}(\mathbf{r}) \hat{b}(\mathbf{r})
ight) \end{array}$$

 $\hat{c}_{\sigma}^{(\dagger)}(\mathbf{r})$ fermion atoms(open channel)

resonantly interacting via:

$$egin{array}{ll} \hat{H}_{loc}(\mathbf{r}) &=& \sum_{\sigma} arepsilon(\mathbf{r}) \; \hat{c}_{\sigma}^{\dagger}(\mathbf{r}) \hat{c}_{\sigma}(\mathbf{r}) + E(\mathbf{r}) \; \hat{b}^{\dagger}(\mathbf{r}) \hat{b}(\mathbf{r}) \ &+ g \left(\hat{b}^{\dagger}(\mathbf{r}) \hat{c}_{\downarrow}(\mathbf{r}) \hat{c}_{\uparrow} \; \left(\mathbf{r}
ight) + \hat{c}_{\uparrow}^{\dagger} \; \left(\mathbf{r}
ight) \hat{c}_{\downarrow}^{\dagger}(\mathbf{r}) \hat{b}(\mathbf{r})
ight) \end{array}$$

 $\hat{c}_{\sigma}^{(\dagger)}(\mathbf{r})$ fermion atoms(open channel)

 $\hat{b}^{(\dagger)}(\mathbf{r})$ molecules(closed channel)

resonantly interacting via:

 \hat{b}^{\dagger} $\hat{c}_{\downarrow}\hat{c}_{\uparrow}$ + h.c.(Feshbach resonance)

$$egin{array}{ll} \hat{H}_{loc}(\mathbf{r}) &=& \sum_{\sigma} arepsilon(\mathbf{r}) \; \hat{c}_{\sigma}^{\dagger}(\mathbf{r}) \hat{c}_{\sigma}(\mathbf{r}) + E(\mathbf{r}) \; \hat{b}^{\dagger}(\mathbf{r}) \hat{b}(\mathbf{r}) \ &+ g \left(\hat{b}^{\dagger}(\mathbf{r}) \hat{c}_{\downarrow}(\mathbf{r}) \hat{c}_{\uparrow} \; \left(\mathbf{r}
ight) + \hat{c}_{\uparrow}^{\dagger} \; \left(\mathbf{r}
ight) \hat{c}_{\downarrow}^{\dagger}(\mathbf{r}) \hat{b}(\mathbf{r})
ight) \end{array}$$

 $\hat{c}_{\sigma}^{(\dagger)}(\mathbf{r})$ fermion atoms(open channel)

 $\hat{b}^{(\dagger)}(\mathbf{r})$ molecules(closed channel)

resonantly interacting via:

 \hat{b}^{\dagger} $\hat{c}_{\downarrow}\hat{c}_{\uparrow}$ + h.c.(Feshbach resonance)

M.L. Chiofalo, S.J.J.M.F. Kokkelmans, J.N. Milstein, and M.J. Holland, Phys. Rev. Lett. 88, 090402 (2002).

$$\mathcal{G}_{loc}(i\omega_n) = [1-Z(T)] \left(rac{u^2}{i\omega_n - arepsilon_+} + rac{v^2}{i\omega_n - arepsilon_-}
ight) + rac{Z(T)}{i\omega_n - arepsilon}$$

$$\mathcal{G}_{loc}(i\omega_n) = [1-Z(T)] \left(rac{u^2}{i\omega_n - arepsilon_+} + rac{v^2}{i\omega_n - arepsilon_-}
ight) + rac{Z(T)}{i\omega_n - arepsilon}$$

where

[exact]

$$\mathcal{G}_{loc}(i\omega_n) = [1\!-\!Z(T)] \left(rac{u^2}{i\omega_n\!-\!arepsilon_+} + rac{v^2}{i\omega_n\!-\!arepsilon_-}
ight) + rac{Z(T)}{i\omega_n\!-\!arepsilon_-}$$

where

arepsilon energy of non-bonding state

[exact]

$$\mathcal{G}_{loc}(i\omega_n) = [1\!-\!Z(T)] \left(rac{u^2}{i\omega_n\!-\!arepsilon_+} + rac{v^2}{i\omega_n\!-\!arepsilon_-}
ight) + rac{Z(T)}{i\omega_n\!-\!arepsilon_-}$$

where

arepsilon energy of non-bonding state

 $oldsymbol{Z(T)}$ the spectral weight

[exact]

$$\mathcal{G}_{loc}(i\omega_n) = [1-Z(T)] \left(rac{u^2}{i\omega_n - arepsilon_+} + rac{v^2}{i\omega_n - arepsilon_-}
ight) + rac{Z(T)}{i\omega_n - arepsilon}$$

where

arepsilon energy of non-bonding state

 $oxed{Z(T)}$ the spectral weight

 $arepsilon_{\pm} = E/2 \pm \sqrt{(arepsilon - E/2)^2 + g^2}$ BCS-like excitation energies

$$\mathcal{G}_{loc}(i\omega_n) = [1-Z(T)] \left(rac{u^2}{i\omega_n - arepsilon_+} + rac{v^2}{i\omega_n - arepsilon_-}
ight) + rac{Z(T)}{i\omega_n - arepsilon}$$

where

arepsilon energy of non-bonding state

 $oxed{Z(T)}$ the spectral weight

 $arepsilon_{\pm}=E/2\pm\sqrt{(arepsilon-E/2)^2+g^2}$ BCS-like excitation energies

 $u^2,v^2=rac{1}{2}\left[1\pm(arepsilon-E/2)/\sqrt{(arepsilon-E/2)^2+g^2}
ight]$ BCS-like coefficients

[exact]

$$\mathcal{G}_{loc}(i\omega_n) = [1-Z(T)] \left(rac{u^2}{i\omega_n - arepsilon_+} + rac{v^2}{i\omega_n - arepsilon_-}
ight) + rac{Z(T)}{i\omega_n - arepsilon}$$

where

arepsilon energy of non-bonding state

 $oxed{Z(T)}$ the spectral weight

 $arepsilon_{\pm} = E/2 \pm \sqrt{(arepsilon - E/2)^2 + g^2}$ BCS-like excitation energies

$$u^2,v^2=rac{1}{2}\left[1\pm(arepsilon-E/2)/\sqrt{(arepsilon-E/2)^2+g^2}
ight]$$
BCS-like coefficients

T. Domański, Eur. Phys. J. B 33, 41 (2003);

T. Domański et al, Sol. State Commun. 105, 473 (1998).

[near the unitary limit]

$$\hat{H} = \int d ext{r} \left(\hat{T}_{m{kin}}(ext{r}) + \hat{H}_{m{loc}}(ext{r})
ight)$$

[near the unitary limit]

$$\hat{H} = \int d\mathbf{r} \left(\hat{T}_{m{kin}}(\mathbf{r}) + \hat{H}_{m{loc}}(\mathbf{r})
ight)$$

[near the unitary limit]

$$\hat{H} = \int d\mathbf{r} \left(\hat{T}_{m{kin}}(\mathbf{r}) + \hat{H}_{m{loc}}(\mathbf{r})
ight)$$

[near the unitary limit]

$$\hat{H} = \int d\mathbf{r} \left(\hat{T}_{m{kin}}(\mathbf{r}) + \hat{H}_{m{loc}}(\mathbf{r})
ight)$$

[near the unitary limit]

$$\hat{H} = \int d\mathbf{r} \left(\hat{T}_{m{kin}}(\mathbf{r}) + \hat{H}_{m{loc}}(\mathbf{r})
ight)$$

[near the unitary limit]

$$\hat{H} = \int d\mathbf{r} \left(\hat{T}_{m{kin}}(\mathbf{r}) + \hat{H}_{m{loc}}(\mathbf{r})
ight)$$

Evidence for Bogoliubov QPs above T_c

D. Jin group (Boulder, USA)

Results for the ultracold $^{40}\mathrm{K}$ atoms

J.P. Gaebler et al, Nature Phys. 6, 569 (2010).

Andreev spectroscopy:

Andreev spectroscopy:

⇒ is a suitable tool for probing the pair-coherence

Andreev spectroscopy:

- ⇒ is a suitable tool for probing the pair-coherence
- ⇒ simultaneously exploring the particle and hole states

Andreev spectroscopy:

- ⇒ is a suitable tool for probing the pair-coherence
- **⇒** simultaneously exploring the particle and hole states

It can be applied to:

Andreev spectroscopy:

- ⇒ is a suitable tool for probing the pair-coherence
- ⇒ simultaneously exploring the particle and hole states

It can be applied to:

nanoscopic objects

/ coupled to superconducting electrodes /

Andreev spectroscopy:

- ⇒ is a suitable tool for probing the pair-coherence
- ⇒ simultaneously exploring the particle and hole states

It can be applied to:

- nanoscopic objects/ coupled to superconducting electrodes /
- bulk materials

/ superconductors, atomic superfluids, black holes (?) /