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Itinerant electrons in a lattice of periodically distributed ions

are described by the Bloch waves
Y, ;7)) = u, p (V) e

where u, (7 + R) = u, z(7) are translationally invariant.
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These Bloch waves substituted to the Schrédinger equation
H o, (7) = ea(K), £(7)

imply eigen-energies ¢, (k) forming the band-structure.
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IN-GAP STATES INDUCED BY DOPING

Donors/acceptors contribute in-gap levels to electronic structure
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which provide charge carriers to the conductance/valence
bands. This mechanism gave rise to modern technology.
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Different means to obtain the in-gap states (of insulators) have
been recently considered due to topological reasons.
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Comment on topology and its role in physics




EXAMPLE: CLASSICAL ELECTROSTATICS

The electric flux emanating from or flowing into a closed surface
depends solely on the total charge enclosed inside it. Any shape
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The electric flux emanating from or flowing into a closed surface
depends solely on the total charge enclosed inside it. Any shape

of such surface and spatial charge distribution are irrelevant.
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Johann Carl Friedrich Gauss (1777-1855)
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CONCEPTS OF BERRY-OLOGY

Inspecting ¢, (7) = u, () ¢*7 we can define the Berry connection

A, (k) = <un,ig(7) iV un,,z(?)>

which brings information on topological effects. The Berry curvature

Fu(k) = Vi x Au(K)
integrated along a closed path
j{ dk - E,(k)
C
yields the Berry phase (often identical with the Chern number).

When certain symmetries are imposed and a suitable path C is considered,

the Berry phase is quantized and can be regarded as topological invariant

which plays equivalent role to electric charge in the classical Gauss law.
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TOPOLOGICAL PROPERTIES

* Materials can be classified into 10 different categories according to:
a) time-reversal, b) particle-hole and c) chiral symmetries.

* Two samples belong to the same topological category, if there exists
a continuous process connecting them (preserving the gap).

* Topological transition can occur by closing/reopening the gap.
SnTe Pb1-.SnxTe PbTe
x=10 ————— x=025 x=00

’ vl“x\ ]W
HHOOe

Trivial
* Bulk-to-boundary correspondence assigns 2|v| edge modes related

to the Chern number v. These modes are topologically protected.
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Similar concepts have been next adopted to superconductors,

whose electronic spectrum is gaped due to the Cooper pairing
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TOPOLOGICAL SUPERCONDUCTORS

Similar concepts have been next adopted to superconductors,

whose electronic spectrum is gaped due to the Cooper pairing
g(E)

r

l-— Energy gap

— Majorana quasiparticles

—> non-Abelian statistics



Macroscopic superconductors



SUPERCONDUCTOR: PROPERTIES
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ELECTRON PAIRING

BCS (non-Fermi liquid) ground state :

IBCS) = H (uk + vk E:,tT éT_u) |vacuum)
k

|vk|?> = probablity of occupied states (k 1, —k |)

|ux|?> = probablity of unoccupied states (k 1, —k |)

Bogoliubov quasiparticle = superposition of a particle and hole

Yt = UkCrp ‘|‘vk&T_k¢

~

Al = —wde +wmely

Charge is conserved modulo-2e due to Bose-Einstein
condensation of the Cooper pairs.



BOGOLIUBOV QUASIPARTICLES

Quasiparticle spectrum of conventional superconductors
consists of two Bogoliubov (p/h) branches, gaped around Er

Intensity
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In all superconductors the particle and hole degrees of freedom
are mixed with one another (this is particularly evident near Er)
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Let us consider the interface of metal N and superconductor S

)\ S

where incident electron is converted into: Cooper pair + hole.



Impurities in superconductors
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Typical spectrum of a single impurity in s-wave superconductor:
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IMPURITY IN BULK SUPERCONDUCTOR

Typical spectrum of a single impurity in s-wave superconductor:

2
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J |
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Bound states appearing in the subgap region E € (—A, A)

p(w)

are dubbed Yu-Shiba-Rusinov (or Andreev) quasiparticles.



MAGNETIC OBJECTS IN SUPERCONDUCTORS

Magnetic chains
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MAGNETIC OBJECTS IN SUPERCONDUCTORS

Magnetic chains

Chain along (10) Chain along (11)
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Magnetic chains
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MAGNETIC OBJECTS IN SUPERCONDUCTORS

Magnetic chains

Chain along (10) Chain along (11)
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develop their in-gap bound states in a form of the Shiba-bands.

For specific magnetic textures of such chains and/or islands
there appears topologically non-trivial superconducting state,

hosting the Majorana boundary modes !



A few examples ...



1. Nanowires with Rashba interaction



TOPOLOGICAL SUPERCONDUCTING NANOWIRE

Pairing of identical spin electrons is driven by the spin-orbit (Rashba)
interaction in presence of the magnetic field, using semiconducting

nanowires proximitized to the conventional (s-wave) superconductors.

S-wave superconductor



TOPOLOGICAL SUPERCONDUCTING NANOWIRE

Pairing of identical spin electrons is driven by the spin-orbit (Rashba)
interaction in presence of the magnetic field, using semiconducting

nanowires proximitized to the conventional (s-wave) superconductors.

S-wave superconductor

Examples: nanowire = InSb, InAs, ... superconductor = Al, Pb, ...



TRANSITION TO TOPOLOGICAL PHASE

Effective quasiparticle states of the Rashba nanowire




TRANSITION TO TOPOLOGICAL PHASE

Effective quasiparticle states of the Rashba nanowire

“o 0.1 0.2 0.3 0.4 0.5 0.6

Closing/reopening of a gap < band-invertion of topological insulators

M.M. Maska, A. Gorczyca-Goraj, J. Tworzydto, T. Domanski, PRB 95, 045429 (2017).



Where do such Majoranas appear ?



SPATIAL PROFILE OF MAJORANA QPS

Majorana qps are localized near the edges

e—2x/;§
2 ‘ sin"(kgx)

R. Aguado, Riv. Nuovo Cim. 40, 523 (2017).



EXAMPLE OF EMPIRICAL REALIZATION

Differential conductance dI/dV obtained for InSb
nanowire at 70 mK upon varying a magnetic field.

V. Mourik, ..., and L.P. Kouwenhoven, Science 336, 1003 (2012).

/ Technical Univ. Delft, Netherlands /



EXAMPLE OF EMPIRICAL REALIZATION

Litographically fabricated Al nanowire contacted to InAs

(¢)500 g

G (2¢%h) .

0 005 01 0.15

F. Nichele, ..., and Ch. Marcus, Phys. Rev. Lett. 119, 136803 (2017).

/ Niels Bohr Institute, Copenhagen, Denmark /



Topological protection



TOPOLOGICAL PROTECTION

Low energy quasiparticles of the Rashba nanowire

ts5/t = 1.0

M.M. Maska, A. Gorczyca-Goraj, J. Tworzydto, T. Domanski, PRB 95, 045429 (2017).



TOPOLOGICAL PROTECTION

Low energy quasiparticles of the Rashba nanowire

tss/t = 0.8

M.M. Maska, A. Gorczyca-Goraj, J. Tworzydto, T. Domanski, PRB 95, 045429 (2017).



TOPOLOGICAL PROTECTION

Low energy quasiparticles of the Rashba nanowire

tss/t = 0.6

M.M. Maska, A. Gorczyca-Goraj, J. Tworzydto, T. Domanski, PRB 95, 045429 (2017).



TOPOLOGICAL PROTECTION

Low energy quasiparticles of the Rashba nanowire

ts5/t = 0.4

M.M. Maska, A. Gorczyca-Goraj, J. Tworzydto, T. Domanski, PRB 95, 045429 (2017).



TOPOLOGICAL PROTECTION

Low energy quasiparticles of the Rashba nanowire

tss/t = 0.2

M.M. Maska, A. Gorczyca-Goraj, J. Tworzydto, T. Domanski, PRB 95, 045429 (2017).



TOPOLOGICAL PROTECTION

Low energy quasiparticles of the Rashba nanowire

ts5/t = 0.1

M.M. Maska, A. Gorczyca-Goraj, J. Tworzydto, T. Domanski, PRB 95, 045429 (2017).



TOPOLOGICAL PROTECTION

Low energy quasiparticles of the Rashba nanowire

tss/t = 0.0

M.M. Maska, A. Gorczyca-Goraj, J. Tworzydto, T. Domanski, PRB 95, 045429 (2017).



2. Selforganized magnetic chains



MAGNETIC CHAINS ON SUPERCONDUCTORS

Magnetic atoms (like Fe) on a surface of s-wave superconductor
(for example Pb) arrange themselves into such spiral order,
where topological superconducting phase is selfsustained

induced topological spiral order of

o= . Majorana
superconductivity magnetic moments

bound state

superconductor

R. Lutchyn, J. Sau, S. Das Sarma, Phys. Rev. Lett. 105, 077001 (2010).
Y. Oreg, G. Refael, F. von Oppen, Phys. Rev. Lett. 105, 177002 (2010).



SPIRAL SELFORGANIZATION (TOPOFILIA)

A. Gorczyca-Goraj, T. Domanski & M.M. Maska, Phys. Rev. B 99, 235430 (2019).
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A. Gorczyca-Goraj, T. Domanski & M.M. Maska, Phys. Rev. B 99, 235430 (2019).
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A. Gorczyca-Goraj, T. Domanski & M.M. Maska, Phys. Rev. B 99, 235430 (2019).
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SPIRAL SELFORGANIZATION (TOPOFILIA)

A. Gorczyca-Goraj, T. Domanski & M.M. Maska, Phys. Rev. B 99, 235430 (2019).




EMPIRICAL REALIZATION

STM measurements for the nanochain of Fe atoms
self-organized on a surface of superconducting Pb.

-A, 0 +A
Energy

Superconductor

S. Nadj-Perge, ..., and A. Yazdani, Science 346, 602 (2014).
/ Princeton University, USA /



EMPIRICAL REALIZATION

AFM & STM data for Fe chain on Pb(110) surface
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R. Pawlak, M. Kisiel et al, npj Quantum Information 2, 16035 (2016).
/ University of Basel, Switzerland /



Majorana modes in Josephson junctions



PLANAR JOSEPHSON JUNCTIONS

Two-dimensional electron gas of InAs epitaxially covered by a thin Al layer

Width:

W; =80 nm
Length:

Ll = 1-6 [,l,m

A. Fornieri, ..., Ch. Marcus and F. Nichele, Nature 569, 89 (2019).
Niels Bohr Institute (Copenhagen, Denmark)



PLANAR JOSEPHSON JUNCTIONS

Two-dimensional HgTe quantum well coupled to 15 nm thick Al film

Width:

W =600 nm
Length:

L=1.0 pm

H. Ren, ..., L.W. Molenkamp, B.l. Halperin & A. Yacoby, Nature 569, 93 (2019).
Wiirzburg Univ. (Germany) + Harvard Univ. (USA)



TOPOGRAPHY OF MAJORANA MODES

Spatial profile of the zero-energy (E,, = 0) Majorana quasiparticles in

a homogeneous metallic strip embedded into Josephson junction.
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Sz. Glodzik, N. Sedimayr & T. Domanski, PRB 102, 085411 (2020).



LOCAL DEFECT IN JOSEPHSON JUNCTION

Spatial profile of the Majorana modes in presence of
the strong electrostatic defect placed in the center.
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Sz. Glodzik, N. Sedimayr & T. Domanski, PRB 102, 085411 (2020).



LOCAL DEFECT IN JOSEPHSON JUNCTION

Spatial profile of the Majorana modes in presence of
the strong electrostatic defect placed near the edge.
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Sz. Glodzik, N. Sedimayr & T. Domanski, PRB 102, 085411 (2020).



LOCAL DEFECT IN JOSEPHSON JUNCTION

Spatial profile of the Majorana modes in presence of
the strong electrostatic defect placed near the edge.

(6]

[0} 20 40 60 80
Sz. Glodzik, N. Sedimayr & T. Domanski, PRB 102, 085411 (2020).

"Benefits of Weak Disorder in One-Dimensional Topological Superconductors”
A. Haim & A. Stern, Phys. Rev. Lett. 122, 126801 (2019).



Higher-dimensional topological textures



Higher-dimensional topological textures

( platform for chiral Majorana modes )



TWO-DIMENSIONAL MAGNETIC STRUCTURES

Magnetic island of Co atoms deposited on the superconducting Pb surface

Diameter of island:

5—-10 nm

G. Ménard, ..., and P. Simon, Nature Commun. 8, 2040 (2017).
Pierre & Marie Curie University (Paris, France)



PROPAGATING MAJORANA EDGE MODES

Magnetic island of Fe atoms deposited on the superconducting Re surface

A B ¢

P,

A. Palacio-Morales, ... & R. Wiesendanger, Science Adv. 5, eaav6600 (2019).
University of Hamburg (Germany)



VAN DER WAALS HETEROSTRUCTURES

Ferromagnetic island CrBr; deposited on superconducting NbSe;

a STM tip b E E c
Monolayer \V / \ / \ /
ferromagnet \ ek - WM i
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ONb
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S. Kezilebieke ... Sz. Glodzik ... P. Lilieroth, Nature 424, 588 (2020).




MAGNETIC SKYRMION-TYPE TEXTURES

Scenario for topological superconductivity induced in 2D magnetic thin film

hosting a skyrmion deposited on conventional s-wave superconductor

s-wave superconductor
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MAGNETIC SKYRMION-TYPE TEXTURES

Scenario for topological superconductivity induced in 2D magnetic thin film

hosting a skyrmion deposited on conventional s-wave superconductor
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M. Garnier, A. Mesaros, P. Simon, Comm. Phys. 2, 126 (2019).



TAKE - HOME - MESSAGE
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Synergy of semiconductor physics with electron pairing of
superconductors in finite-size (dim=1 and dim=2) systems:

—> can have constructive character,
—> leading to novel states of matter,
—> hosting the Majorana boundary modes,

—> useful for stable qubits & quantum computing.
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