Time-resolved Andreev states in superconducting hybrid structures

Tadeusz DOMAŃSKI

M. Curie-Skłodowska Univ.

IFM PAN Poznań

5 November 2021

Superconducting nanostructures

Superconducting nanostructures

a few examples ...

1. ANDREEV-TYPE JUNCTION

Normal metal (N) - Quantum Dot (QD) - Superconductor (S)

1. ANDREEV-TYPE JUNCTION

Normal metal (N) - Quantum Dot (QD) - Superconductor (S)

This is particular version of single-electron-transistor (SET) which operates on the Andreev (electron-to-hole) scattering mechanism.

1. ANDREEV-TYPE JUNCTION

Example of the recent empirical realization

J. Estrada Saldaña, A. Vekris, V. Sosnovtseva, T. Kanne, P. Krogstrup, K. Grove-Rasmussen and J. Nygård, Commun. Phys. <u>3</u>, 125 (2020).

2. JOSEPHSON JUNCTION

Schematics of realistic S_L -QD- S_R (Josephson-type) junction

G. Kiršanskas, M. Goldstein, K. Flensberg, L.I. Glazman & J. Paaske, Phys. Rev. B 92, 235422 (2015)

2. JOSEPHSON JUNCTION

Selected example of experimental realization

R. Delagrange, R. Weil, A. Kasumov, M. Ferrier, H. Bouchiat, R. Deblock, Phys. Rev. B <u>93</u>, 195437 (2016).

3. COOPER PAIR SPLITTER

Three-terminal geometry of the Cooper pair splitter with two quantum dots (1,2) coupled to the normal (L, R) electrodes and strongly coupled to the superconductor (S) as a reservoir of Cooper pairs.

B.R. Bułka, Phys. Rev. B 104, 155410 (2021)

SUPERCONDUCTING PROXIMITY EFFECT

Quantum dot (QD) coupled to bulk superconductor (SC) induces:

 \Rightarrow on-dot pairing

SUPERCONDUCTING PROXIMITY EFFECT

Quantum dot (QD) coupled to bulk superconductor (SC) induces:

 \Rightarrow on-dot pairing

This is spectroscopically manifested by formation of:

 \Rightarrow in-gap bound states

SUPERCONDUCTING PROXIMITY EFFECT

Quantum dot (QD) coupled to bulk superconductor (SC) induces:

 \Rightarrow on-dot pairing

This is spectroscopically manifested by formation of:

- \Rightarrow in-gap bound states
- Such in-gap states originate from:
- \Rightarrow leakage of Cooper pairs on QD (Andreev)
- \Rightarrow exchange int. of QD with SC (Yu-Shiba-Rusinov)

Spectrum of a single impurity coupled to bulk superconductor:

Bound states appearing in the subgap region $-\Delta < \omega < \Delta$

Spectrum of a single impurity coupled to bulk superconductor:

Bound states appearing in the subgap region $-\Delta < \omega < \Delta$

Yu-Shiba-Rusinov (Andreev) bound states

 \Rightarrow transient phenomena

- \Rightarrow transient phenomena
- \Rightarrow quantum quench

- \Rightarrow transient phenomena
- \Rightarrow quantum quench
- \Rightarrow periodic driving

- \Rightarrow transient phenomena
- \Rightarrow quantum quench
- \Rightarrow periodic driving

II. Phase transition in time-domain:

Part I:

characteristic temporal scales of bound states

Consider a sudden coupling of QD to external leads

Consider a sudden coupling of QD to external leads

R. Taranko and T. Domański, Phys. Rev. B 98, 075420 (2018).

 \Rightarrow how much time is needed to create in-gap states ?

RELAXATION VS QUANTUM OSCILLATIONS

Time-dependent charge of an initially empty QD

- relaxation time is proportional to $1/\Gamma_N$
- oscillations depend on energies of in-gap states

RELAXATION VS QUANTUM OSCILLATIONS

t-dependent charge for various initial fillings $(n_{\uparrow}, n_{\downarrow})$

- relaxation time is proportional to $1/\Gamma_N$
- oscillations depend on energies of in-gap states

RELAXATION VS QUANTUM OSCILLATIONS

Time-dependent charge current of unbiased junction

• relaxation time is proportional to $1/\Gamma_N$

oscillations depend on energies of in-gap states

EXPERIMENTALLY ACCESSIBLE QUANTITIES

Subgap tunneling conductance $G_{\sigma} = \frac{\partial I_{\sigma}}{\partial t}$ vs time (t) and voltage (μ)

STATISTICS OF TUNNELING EVENTS

Transient currents from 'Waiting Time Distribution' approach

G. Michałek, B. Bułka, T. Domański & K.I. Wysokiński, Acta Phys. Polon. A 133, 391 (2018).

Josephson-type structures

PHASE-CONTROLLED TRANSIENT EFFECTS

R. Taranko, T. Kwapiński & T. Domański, Phys. Rev. B 99, 165419 (2019).

Physical issue:

 \Rightarrow phase tunable evolution of in-gap states

DEVELOPMENT OF ON-DOT PAIRING

Complex order parameter $\chi(t) = \langle \hat{d}_{\downarrow} \hat{d}_{\uparrow} \rangle$ induced by proximity effect

R. Taranko, T. Kwapiński & T. Domański, Phys. Rev. B 99, 165419 (2019).

TRANSIENT CURRENTS

Time-dependent charge currents $j_N(t)$ and $j_{S1}(t)$.

R. Taranko, T. Kwapiński & T. Domański, Phys. Rev. B 99, 165419 (2019).

DYNAMICAL EFFECTS OF BIASED JUNCTION

Conductance of the Andreev current $j_N(t)$ versus voltage μ applied between the normal lead and superconductors.

R. Taranko, T. Kwapiński & T. Domański, Phys. Rev. B 99, 165419 (2019).

Hybrid structure with topological superconductor

MAJORANA LEAKAGE ON QUANTUM DOT

N-QD-S circuit side-attached to topological superconductor

MAJORANA LEAKAGE ON QUANTUM DOT

N-QD-S circuit side-attached to topological superconductor

\Rightarrow time-resolved transfer of Majorana mode on QD

MAJORANA LEAKAGE ON QUANTUM DOT

N-QD-S circuit side-attached to topological superconductor

 $\Rightarrow time-resolved transfer of Majorana mode on QD$ $\Rightarrow how does it show in the Andreev conductance$
TIME-RESOLVED MAJORANA LEAKAGE

The differential Andreev conductance vs bias voltage V and time

TIME-RESOLVED ZERO BIAS CONDUCTANCE

The zero-bias differential conductivity obtained for $\Gamma_S = 3\Gamma_N$ and $\epsilon_d = \Gamma_N$, assuming: $t_m = 0.25$ (upper left), 0.5 (upper right), 1 (lower left), 1.5 (lower right) Γ_N . QD is abruptly connected to Majorana mode at time $t = 20\hbar/\Gamma_N$.

TIME-RESOLVED ZERO BIAS CONDUCTANCE

The zero-bias differential conductivity obtained for $\Gamma_S = 3\Gamma_N$ and $\epsilon_d = \Gamma_N$, assuming: $t_m = 0.25$ (upper left), 0.5 (upper right), 1 (lower left), 1.5 (lower right) Γ_N . QD is abruptly connected to Majorana mode at time $t = 20\hbar/\Gamma_N$. Typical values of the Majorana leakage time $\tau = 2 - 20$ nanoseconds.

Quench-induced dynamics

QUENCH DRIVEN DYNAMICS

Quantum quench protocols:

QUENCH DRIVEN DYNAMICS

Quantum quench protocols:

 \Rightarrow sudden change of the coupling $\Gamma_{S}(t)$

QUENCH DRIVEN DYNAMICS

Quantum quench protocols:

- \Rightarrow sudden change of the coupling $\Gamma_{S}(t)$
- \Rightarrow abrupt application of gate potential $V_G(t)$

QUENCH OF COUPLING Γ_S

Time-dependent observables driven by the quantum quench

 $\Gamma_S = \mathbf{0} \longrightarrow \Gamma_S = U$ obtained for $\varepsilon_d = 0$, $\Gamma_N = U/10$.

Time-dependent observables driven by the quantum quench

 $\varepsilon_d = -U/2 \longrightarrow \varepsilon_d = -U$ obtained for $\Gamma_S = 4U$, $\Gamma_N = U/10$.

UNIVERSAL TENDENCY

Rabbi-type oscillations observable in development of the in-gap states

POST-QUENCH QUANTUM OSCILLATIONS

Rabi-type oscillations induced by the quench from $\Gamma_S = 0$ to Γ_S (as indicated).

Part II: dynamical singlet-doublet transition

SINGLY OCCUPIED VS BCS-TYPE CONFIGURATIONS

The proximitized quantum dot can described by

$$\hat{H}_{\text{QD}} = \sum_{\sigma} \epsilon_d \ \hat{d}^{\dagger}_{\sigma} \ \hat{d}_{\sigma} \ + \ U_d \ \hat{n}_{d\uparrow} \hat{n}_{d\downarrow} - \left(\Delta_d \ \hat{d}^{\dagger}_{\uparrow} \hat{d}^{\dagger}_{\downarrow} + \text{h.c.}\right)$$

where $\Delta_d = \Gamma_S/2$.

SINGLY OCCUPIED VS BCS-TYPE CONFIGURATIONS

The proximitized quantum dot can described by

$$\hat{H}_{QD} = \sum_{\sigma} \epsilon_d \; \hat{d}^{\dagger}_{\sigma} \; \hat{d}_{\sigma} \; + \; U_d \; \hat{n}_{d\uparrow} \hat{n}_{d\downarrow} - \left(\Delta_d \; \hat{d}^{\dagger}_{\uparrow} \hat{d}^{\dagger}_{\downarrow} + \mathrm{h.c.}
ight)$$

where $\Delta_d = \Gamma_S/2$. True eigen-states are represented by:

 $\begin{array}{ccc} |\uparrow\rangle & \text{and} & |\downarrow\rangle & \Leftarrow & \text{doublet states (spin <math>\frac{1}{2})} \\ u |0\rangle - v |\uparrow\downarrow\rangle \\ v |0\rangle + u |\uparrow\downarrow\rangle \end{array} & \Leftarrow & \text{singlet states (spin 0)} \end{array}$

SINGLY OCCUPIED VS BCS-TYPE CONFIGURATIONS

The proximitized quantum dot can described by

$$\hat{H}_{ ext{QD}} = \sum_{\sigma} \epsilon_d \; \hat{d}^{\dagger}_{\sigma} \; \hat{d}_{\sigma} \; + \; U_d \; \hat{n}_{d\uparrow} \hat{n}_{d\downarrow} - \left(\Delta_d \; \hat{d}^{\dagger}_{\uparrow} \hat{d}^{\dagger}_{\downarrow} + ext{h.c.}
ight)$$

where $\Delta_d = \Gamma_S/2$. True eigen-states are represented by:

 $\begin{array}{ccc} |\uparrow\rangle & \text{and} & |\downarrow\rangle & \Leftarrow & \text{doublet states (spin <math>\frac{1}{2})} \\ u |0\rangle - v |\uparrow\downarrow\rangle \\ v |0\rangle + u |\uparrow\downarrow\rangle \end{array} & \Leftarrow & \text{singlet states (spin 0)} \end{array}$

Upon varrying the parameters ε_d , U_d or Γ_S there can be induced quantum phase transition between these doublet/singlet states.

J. Bauer, A. Oguri & A.C. Hewson, J. Phys.: Condens. Matter 19, 486211 (2007).

QUANTUM PHASE TRANSITION: EXPERIMENT

J. Estrada Saldaña, A. Vekris, V. Sosnovtseva, T. Kanne, P. Krogstrup, K. Grove-Rasmussen and J. Nygård, Commun. Phys. <u>3</u>, 125 (2020).

SINGLET VS DOUBLET: EXPERIMENT

Differential conductance vs source-drain bias V_{sd} (vertical axis) and gate potential V_p (horizontal axis) measured for various Γ_S/U

 $U \geq \Gamma_s$

J. Estrada Saldaña, A. Vekris, V. Sosnovtseva, T. Kanne, P. Krogstrup, K. Grove-Rasmussen and J. Nygård, Commun. Phys. <u>3</u>, 125 (2020).

SINGLET VS DOUBLET: EXPERIMENT

Differential conductance vs source-drain bias V_{sd} (vertical axis) and gate potential V_p (horizontal axis) measured for various Γ_S/U

 $U \geq \Gamma_s$

J. Estrada Saldaña, A. Vekris, V. Sosnovtseva, T. Kanne, P. Krogstrup, K. Grove-Rasmussen and J. Nygård, Commun. Phys. <u>3</u>, 125 (2020).

Crossings of in-gap states correspond to the singlet-doublet QPT.

Outline of general concept

Next, at time t=0, we impose an abrupt change (quench): $\hat{H}_0 \longrightarrow \hat{H}$

Next, at time t=0, we impose an abrupt change (quench): $\hat{H}_0 \longrightarrow \hat{H}$

For t>0 Schrödinger equation $irac{d}{dt}\ket{\Psi(t)}=\hat{H}\ket{\Psi(t)}$ implies: $\ket{\Psi(t)}=e^{-it\hat{H}}\ket{\Psi_0}$

Next, at time t=0, we impose an abrupt change (quench): $\hat{H}_0 \longrightarrow \hat{H}$

For t>0 Schrödinger equation $irac{d}{dt}\ket{\Psi(t)}=\hat{H}\ket{\Psi(t)}$ implies: $|\Psi(t)
angle=e^{-it\hat{H}}\ket{\Psi_0}$

Fidelity (similarity) of these states is:

$$\langle \Psi_0 | \Psi(t)
angle = \left\langle \Psi_0 | e^{-it\hat{H}} | \Psi_0
ight
angle$$

Next, at time t=0, we impose an abrupt change (quench): $\hat{H}_0 \longrightarrow \hat{H}$

For t>0 Schrödinger equation $irac{d}{dt}\ket{\Psi(t)}=\hat{H}\ket{\Psi(t)}$ implies: $|\Psi(t)
angle=e^{-it\hat{H}}\ket{\Psi_0}$

Fidelity (similarity) of these states is:

 $\langle \Psi_0 | \Psi(t)
angle = \left\langle \Psi_0 | e^{-it\hat{H}} | \Psi_0
ight
angle$ Loschmidt amplitude

Idea: M. Heyl, A. Polkovnikov, S. Kehrein, Phys. Rev. Lett. 110, 135704 (2013).

Idea: M. Heyl, A. Polkovnikov, S. Kehrein, Phys. Rev. Lett. 110, 135704 (2013).

Partition function

$$\mathcal{Z}=\left\langle e^{-eta\hat{H}}
ight
angle$$

Loschmidt amplitude

$$\left< \Psi_0 | e^{-it\hat{H}} | \Psi_0 \right>$$

Idea: M. Heyl, A. Polkovnikov, S. Kehrein, Phys. Rev. Lett. 110, 135704 (2013).

Partition function

$$\mathcal{Z}=\left\langle e^{-eta\hat{H}}
ight
angle$$

where

$$\beta = \frac{1}{k_B T}$$

Loschmidt amplitude

$$\left< \Psi_0 | e^{-it\hat{H}} | \Psi_0 \right>$$

Loschmidt echo L(t) $L(t) = \left| \left\langle \Psi_0 | e^{-it\hat{H}} | \Psi_0 \right\rangle \right|^2$

Idea: M. Heyl, A. Polkovnikov, S. Kehrein, Phys. Rev. Lett. 110, 135704 (2013).

Partition function

$$\mathcal{Z}=\left\langle e^{-eta\hat{H}}
ight
angle$$

where

$$eta = rac{1}{k_B T}$$

Free energy F(T) $\mathcal{Z}(T) \equiv e^{-\beta F(T)}$ Loschmidt amplitude

$$\left< \Psi_0 | e^{-it\hat{H}} | \Psi_0 \right>$$

Loschmidt echo L(t) $L(t) = \left| \left\langle \Psi_0 | e^{-it\hat{H}} | \Psi_0 \right\rangle \right|^2$

Return rate $\lambda(t)$ $L(t) \equiv e^{-\lambda(t)}$

Idea: M. Heyl, A. Polkovnikov, S. Kehrein, Phys. Rev. Lett. 110, 135704 (2013).

Partition function

$$\mathcal{Z}=\left\langle e^{-eta\hat{H}}
ight
angle$$

where

 $eta = rac{1}{k_B T}$

Free energy F(T) $\mathcal{Z}(T) \equiv e^{-\beta F(T)}$

Critical temperature T_c

nonanalytical $\lim_{T \to T_c} F(T)$

Loschmidt amplitude

$$\left< \Psi_0 | e^{-it\hat{H}} | \Psi_0 \right>$$

Loschmidt echo L(t) $L(t) = \left| \left\langle \Psi_0 | e^{-it\hat{H}} | \Psi_0 \right\rangle \right|^2$

Return rate $\lambda(t)$ $L(t) \equiv e^{-\lambda(t)}$

Critical time t_c

nonanalytical $\lim_{t o t_c} \lambda(t)$

CRITICAL TIME

At critical time t_c the rate function $\lambda(t)$ of the Loschmidt echo $L(t) \equiv e^{-\lambda(t)}$ exhibits a nonanalytic kink.

Some examples ...

SU-SCHRIEFFER-HEEGER MODEL

Quasiparticle spectrum of the SSH model under stationary conditions.

QUENCH DRIVEN TRANSITION

QUENCH OF TRANSVERSE FIELD h

dashed green line - inside the same phase

Dynamical phase transitions usually occur:

Dynamical phase transitions usually occur:

 \Rightarrow upon crossing phase-boundaries (however there are exceptions from this rule)
Dynamical phase transitions usually occur:

- \Rightarrow upon crossing phase-boundaries (however there are exceptions from this rule)
- $\Rightarrow \text{ at equidistant critical times} \\ (in most cases, though not always)$

Dynamical phase transitions usually occur:

- \Rightarrow upon crossing phase-boundaries (however there are exceptions from this rule)
- \Rightarrow at equidistant critical times (in most cases, though not always)
- \Rightarrow at finite temperatures (but they are no longer sharp)

FINITE-SIZE EFFECTS

"Local measures of dynamical quantum phase transitions" J.C. Halimeh, D. Trapin, M. Damme & M. Heyl, Phys. Rev. B <u>104</u>, 075130 (2021).

Dynamical singlet-doublet transition

*t*NRG RESULTS:

ABRUPT CHANGE OF Γ_S

Loschmidt echo

 $L(t) \equiv |\langle \Psi(0) | \Psi(t) \rangle|^2$

Return rate $\lambda(t) \equiv - \ln \{L(t)\}$

The squared magnetic moment $\langle S_z^2(t)
angle$

*t*NRG RESULTS: $\Gamma_S = U/4 \longrightarrow \Gamma_S = 3U/4$

Loschmidt echo L(t) and return rate $\lambda(t)$ obtained for various $\Gamma_N \equiv \Gamma$

tnrg results: $\Gamma_S = U/4 \longrightarrow \Gamma_S = 3U/4$

K. Wrześniewski, N. Sedlmayr, T. Domański & I. Weynmann, (2021)

Evolution of the Andreev in-gap states:

Evolution of the Andreev in-gap states:

• activates Rabi-type oscillations /due to particle-hole mixing/

depends on initial configuration /proximity effect could be blocked/

may exhibit dynamical transition(s) /upon varying ground states/

Evolution of the Andreev in-gap states:

activates Rabi-type oscillations /due to particle-hole mixing/

depends on initial configuration /proximity effect could be blocked/

may exhibit dynamical transition(s) /upon varying ground states/

These phenomena are detectable in transport properties !

ACKNOWLEDGEMENTS

- transient phenomena, Floquet formalism & machine-learning
 R. Taranko (Lublin), B. Baran (Lublin),
- statistical approach to Andreev transport

⇒ B.R. Bułka & G. Michałek (Poznań), K.I. Wysokiński (Lublin),

- time-resolved leakage of Majorana mode
- \Rightarrow J. Barański (Dęblin),
- dynamical singlet-doublet transition
- \Rightarrow I. Weymann & K. Wrześniewski (Poznań),

N. Sedlmayr (Lublin)

Andreev (triplet) blockade

DYNAMICAL EFFECTS IN DOUBLE QUANTUM DOT

Setup: let's consider two quantum dots (QD_{1,2}) placed between normal metal (N) and superconducting (S) electrodes

⁽¹⁾R. Taranko, K. Wrześniewski, B. Baran, I. Weymann & T. Domański, Phys. Rev. B <u>103</u>, 165430 (2021).

⁽²⁾B. Baran, R. Taranko & T. Domański, Sci. Rep. <u>11</u>, 11148 (2021).

ANDREEV BLOCKADE

D. Pekker, P. Zhang & S.M. Frolov, SciPost Phys. 11, 081 (2021).

ANDREEV BLOCKADE

D. Pekker, P. Zhang & S.M. Frolov, SciPost Phys. 11, 081 (2021).

Problem: initial triplet configuration does not allow for development of the superconducting proximity effect

DYNAMICS OF ANDREEV BLOCKADE

Disappearance of Andreev blockade obtained for half-filled DQD.

R. Taranko, K. Wrześniewski, B. Baran, I. Weymann & T. Domański, PRB 103, 165430 (2021).

TRIPLET BLOCKADE IN JOSEPHSON JUNCTION

"Triplet-blockaded Josephson supercurrent in double quantum dots" D. Bouman et al, Phys. Rev. B 102, 220505(R) (2020).

Periodically driven QD

Quantum impurity with periodically oscillating energy level

Floquet spectrum averaged over a period $T=2\pi/\omega$

 $\Gamma_{SC} = 0, B_0 = B = 0$

 $\Gamma_S = 0.0$

B. Baran and T. Domański, Phys. Rev. B 100, 085414 (2019).

Floquet spectrum averaged over a period $T=2\pi/\omega$

 $\Gamma_{SC} = 0.1\omega, B_0 = B = 0$

 $\Gamma_S = 0.1 \omega$

B. Baran and T. Domański, Phys. Rev. B 100, 085414 (2019).

Floquet spectrum averaged over a period $T = 2\pi/\omega$

 $\Gamma_{SC} = 0.25\omega, B_0 = B = 0$

 $\Gamma_S = 0.25\omega$

B. Baran and T. Domański, Phys. Rev. B 100, 085414 (2019).

Floquet spectrum averaged over a period $T = 2\pi/\omega$

 $\Gamma_{SC} = 0.35\omega, B_0 = B = 0$

 $\Gamma_S = 0.35\omega$

B. Baran and T. Domański, Phys. Rev. B 100, 085414 (2019).

Floquet spectrum averaged over a period $T=2\pi/\omega$

 $\Gamma_{SC} = 0.5\omega, B_0 = B = 0$

 $\Gamma_S = 0.5\omega$

B. Baran and T. Domański, Phys. Rev. B 100, 085414 (2019).

Floquet spectrum averaged over a period $T = 2\pi/\omega$

 $\Gamma_{SC} = 0.75\omega, B_0 = B = 0$

 $\Gamma_S = 0.75\omega$

B. Baran and T. Domański, Phys. Rev. B 100, 085414 (2019).

Floquet spectrum averaged over a period $T=2\pi/\omega$

 $\Gamma_{SC} = 1.0\omega, B_0 = B = 0$

 $\Gamma_S = 1.0\omega$

B. Baran and T. Domański, Phys. Rev. B 100, 085414 (2019).