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Pairing is a common phenomenon which occurs between various

kinds of fermions such as: quarks, electrons, nucleons or atoms.

The underlying pairing mechanism can be driven by:

1. exchange of phonons
/ classical superconductors, MgB2, diamond, ... /

2. exchange of magnons
/ superconductivity of the heavy fermion compounds /

3. strong correlations
/ high Tc superconductors /

4. Feshbach resonance
/ ultracold superfluid atoms /

5. other
/ pairing in nuclei, gluon-quark plasma /

Very often formation of the fermion pairs goes hand in hand with

superconductivity/superfluidity but it needs not be the rule.
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†
kσ ĉkσ +
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The real space representation:

Ĥ =
∑
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†
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∑

i,j

Vi,j ĉ
†
i↑ ĉi↑ ĉ

†
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with attractive potential Vi,j < 0
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The order parameter −→ 2-nd order phase transition
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Pair fluctuations

Possible sources:

1. quantum fluctuations

ÂB̂ = Â〈B̂〉 + 〈Â〉B̂ − 〈Â〉〈B̂〉 + δÂ δB̂

where δÂ = Â−〈Â〉 – fluctuation neglected in the BCS theory.

2. topological

In the low dimensional (dim≤2) systems ODLRO does not establish.

There can appear only the power-law behaviour

〈ψ̂↓(r1) ψ̂↑ (r2)〉 ∝ |r1−r2|−θ(T )

whith the phase stiffness θ 6= 0 for T ≤ TKT .

J.M. Kosterlitz and P.J. Thouless, J. Phys. C 6, 1181 (1973).
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Historical remarks: 1

First estimation of the fluctuation effects has been done

by V.L. Ginzburg (1963).

He predicted smearing of the specific heat jump near Tc

but in an extremely narrow temperature region

δT

Tc

∼
(

a

ξ

)4

∼ 10−12−10−14

a – interatomic distance,

ξ – correlation length.

V.L. Ginzburg, Sov. Solid State 2, 61 (1968).
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First experimental observation of the sc fluctuations above Tc

has been obtained for granular aluminium.

Tunneling
conductance
revealed
a small
pseudogap
above Tc.

R.W. Cohen and B. Abels, Phys. Rev. 168, 444 (1968).
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Historical remarks: 3

One can study the fluctuations in a systematic way using the

perturbative theory for conductivity. The leading diagrams are:

Aslamazov-Larkin

Maki - Thompson

diagrams giving
corrections
to the density of states

V.V. Dorin et al, Phys. Rev. B 48, 12951 (1993).
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1. The parent compounds are quasi-2D Mott insulators

Important remark:

Spatial extent of the pairs is very short ξab ' 5 Å
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2. Superconductivity appears upon doping by

electrons or holes

O. Fisher et al, Rev. Mod. Phys. 79, 353 (2007).

A puzzle:
Why this diagram is asymmetric ?
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3. Inhomogeneities

The new STM

spectroscopy

finds that

the energy gap

is inhomogenous.

/ K. McElroy et al, Phys. Rev.
Lett. 94, 197005 (2005) /

Notice:
Inhomogenous structure promotes the fluctuations
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T. Nakano et al, J. Phys. Soc. Jpn. 67, 2622 (2002).

What kind of mechanism is responsible for the pseudogap ?
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Theoretical concepts

(a) Pseudogap is a precursor of the superconducting
gap which is due to strong fluctuations (because
of the reduced dimensionality, local pairing, etc).

(b) Pseudogap is not related to sc gap. It represents
some other type of ordering which is competing
with the sc phase.
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Pair fluctuations

Usual mean field solution (i.e. the saddle point) neglects

an influence of any fluctuations.



Pair fluctuations

One can describe the small fluctuations via Gaussian corrections.
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The effective physics

Without a specific pairing mechanism being established we propose

to describe the coherent (for T < Tc) or incoherent (for T > Tc)

fermion pairs using the phenomenological boson-fermion model.

The dark areas denote such parts of the I-st Brillouin zone

where the local (electron or hole) pairs exist.

V.B. Geshkenbein, L.B. Ioffe and A.I. Larkin, Phys. Rev. B 55, 3173 (1997).



Anisotropic energy gap

d-wave type symmetry ∆k = ∆(cos kx−cos ky) of the gap

J.E. Hoffman et al, Science 297, 1148 (2002).
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Outline of the procedure

In order to study the many-body effects we construct

the continuous canonical transformation e
ˆS(l)Ĥe−Ŝ(l)

to decouple the boson from fermion degrees of freedom.

Hamiltonian at l = ∞

ĤF (∞) + ĤB(∞) + 0

T. Domański and J. Ranninger, Phys. Rev. B 63, 134505 (2001).
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Single particle spectrum of conventional superconductors
consists of two Bogoliubov branches gapped around EF

(no fluctuation effects are here taken into account).



Bogoliubov-like spectrum

T = 0

-0.1 0 0.1

A
F (k

,ω
)

ω

T=0

Below the critical temperature Tc there exist two branches
of the single-particle excitation energies which (according
to the BCS theory) occur at ωk = ±

√

(εk − µ)2 + ∆2

k.

T. Domański and J. Ranninger, Phys. Rev. Lett. 91, 255301 (2003).



Bogoliubov-like spectrum

Tc < T < T
∗
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T=0.004

Above Tc the Bogoliubov-type spectrum still survives but one
of the branches ( the shaddow ) becomes overdamped. This
means that fermion pairs have no longer an infinite life-time.

T. Domański and J. Ranninger, Phys. Rev. Lett. 91, 255301 (2003).



Bogoliubov-like spectrum

Tc < T < T
∗

A
F (k

,ω
)

T=0.007

Above Tc the Bogoliubov-type spectrum still survives but one
of the branches ( the shaddow ) becomes overdamped. This
means that fermion pairs have no longer an infinite life-time.

T. Domański and J. Ranninger, Phys. Rev. Lett. 91, 255301 (2003).



Bogoliubov-like spectrum

T > T
∗

A
F (k

,ω
)

T=0.02

For temperatures far above Tc the Bogoliubov modes are
gone and there remains only a single quasiparticle peak
surrounded by an incoherent background.

T. Domański and J. Ranninger, Phys. Rev. Lett. 91, 255301 (2003).



Experimental data (Japanese group)
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H. Matsui, T. Sato, and T. Takahashi, Phys. Rev. Lett. 90, 217002 (2003).



Experimental data (Dresden group)

T < Tc Tc < T

T. Eckl et al, Phys. Rev. B 70, 094522 (2004).



The peak-dip-hump structure

A.G. Loeser, Z.-X. Shen et al, Phys. Rev. B 56, 14185 (1997).



Spectral function for T < Tc

Schematic view of the spectral function in the antinodal
direction for temperatures T < Tc obtained using
the boson-fermion model .

T. Domański and J. Ranninger, Phys. Rev. B 70, 184513 (2004).



The phenomenon of ”waterfalls”

J. Graf et al, Phys. Rev. Lett. 98, 067004 (2006).



Physical implications of the ”waterfalls”

D.S. Ionosov et al, cond-mat/0703223; A.A. Kordyuk et al, cond-mat/0702374.



”Waterfalls” can result from coupling to bosonic mode

T > T
∗
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T. Domański and J. Ranninger, Phys. Rev. B 70, 184503 (2004).
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The pair spectrum for T < Tc

0 0.1 0.2 0.3 0.4 0.5

−0.2

−0.1

0

0.1

0.2

incoherent background

inc. background

Eq

~

q

The quasiparticle peak is well separated from the incoherent
background and, in the limit q → 0, has a characteristic
dispersion Ẽq = c |q|. This Goldstone mode is a hallmark
of the symmetry broken state.

Such a unique situation could be observed in the case of ultracold fermion atoms,

otherwise the Coulomb repulsions lift this mode to the high plasmon frequency.



The pair spectrum for T ∗ > T > Tc

0 0.1 0.2 0.3 0.4 0.5

−0.2

−0.1

0

0.1

0.2

incoherent background

incoherent background

Eq
~

qqcrit

Above the transition temperature (for T ∗ > T > Tc):

? the qusiparticle peak overlaps at small momenta
with the incoherent background,

? for q → 0 the Goldstone mode disappears,

? remnant of the Goldstone mode is seen above qcrit.



The pair spectrum for T ∗ > T > Tc

−1 −0.5 0 0.5 1

−0.2

0

0.2
normal state
pseudogap state

qx

dEq/dqx

~

Remnant of the Goldstone branch in the dispersion
of fermion pairs above Tc .

T. Domański and A. Donabidowicz, (2007) in print.



Experimental evidence: 1

Residual Meissner effect observed experimentally
with use of the ultrafast magnetic fields.

J. Corson et al, Nature 398, 221 (1999).



Experimental evidence: 2
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The large Nernst effect measured above Tc.

Y. Wang et al, Science 299, 86 (2003).
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of the single particle states near the Fermi energy.

Strong quantum fluctuations suppress the long-range

coherence (ordering) while fermion pairs are preserved.

Besides the single particle features (Bogoliubov modes)

there should be visible also the collective features which

are characteristic for the superfluid state.

Precursor effects are robust for all superconductors but

their temperature extent varies from case to case.



Resonating Valence Bonds

Why not ?

P.W. Anderson, Phys. Rev. Lett. 96, 017001 (2006).


