Trogir (Croatia), 18 - Sept - 2015

Superconductivity in nanoscopic systems

Tadeusz Domański

Marie Curie-Skłodowska University, Lublin, Poland

http://kft.umcs.lublin.pl/doman/lectures

A few questions:

A few questions:

how can we obtain nano-superconductivity

/ proximity effect /

A few questions:

how can we obtain nano-superconductivity

/ proximity effect /

how can we observe nano-superconductivity

/ spectroscopic signatures /

A few questions:

how can we obtain nano-superconductivity
/ proximity effect /

how can we observe nano-superconductivity

/ spectroscopic signatures /

where can we use nano-superconductors

/ practical aspects /

1. Nano-superconductivity:

 \Rightarrow how to obtain it ?

Superconducting state – of bulk materials

Superconducting state – of bulk materials

k ideal d.c. conductance

Superconducting state – of bulk materials

ideal d.c. conductance

ideal diamagnetism

/perfect screening of the d.c. magnetic field/

Superconducting state

of bulk materials

The pairing mechanisms originate from:

1. phonon-exchange

/ classical superconductors, MgB_2 , ... /

2. magnon-exchange

/ heavy fermion compounds /

3. strong correlations

/ spin exchange $\frac{2t_{ij}^2}{U}$ in the high T_c superconductors /

.. other exotic processes

/ ultracold atoms, nuclei, gluon-quark plasma /

Superconducting state

of bulk materials

The pairing mechanisms originate from:

1. phonon-exchange

/ classical superconductors, MgB $_2, \ldots$ /

2. magnon-exchange

/ heavy fermion compounds /

3. strong correlations

/ spin exchange $\frac{2t_{ij}^2}{U}$ in the high T_c superconductors /

... other exotic processes

/ ultracold atoms, nuclei, gluon-quark plasma /

Onset of the fermion pairing often goes hand in hand with appearance of the superconductivity/superfluidity, but it doesn't have to be a rule.

Proximity effect – induced superconductivity

Proximity effect

induced superconductivity

Any material brought in contact with superconductor

Proximity effect

induced superconductivity

Any material brought in contact with superconductor

absorbs the paired electrons up to distances $\sim \xi_n$.

Proximity effect

induced superconductivity

Any material brought in contact with superconductor

absorbs the paired electrons up to distances $\sim \xi_n$.

Spatial size L of nanoscopic objects is $L \ll \xi_n$!

2. Nano-superconductivity:

 \Rightarrow how can we observe it ?

- specific issues

Superconductivity in nanosystems – specific issues

1. Quantum Size Effect → discrete energy spectrum

Superconductivity in nanosystems – specific issues

1. Quantum Size Effect \longrightarrow discrete energy spectrum

- specific issues

2. Coulomb blockade (electron pairing vs repulsion)

The odd / even electron number plays the important and qualitative role !

specific issues

2. Coulomb blockade (electron pairing vs repulsion)

The odd / even electron number plays the important and qualitative role !

Coulomb potential U_C is usually much smaller than Δ , therefore its influence can be in practice observed only indirectly, via :

$$|\uparrow
angle \quad \iff \quad |u\,|0
angle - v\,|\uparrow\downarrow
angle$$

(quantum phase transition)

specific issues

2. Coulomb blockade (electron pairing vs repulsion)

The odd / even electron number plays the important and qualitative role !

Coulomb potential U_C is usually much smaller than Δ , therefore its influence can be in practice observed only indirectly, via :

$$\ket{\uparrow} \quad \Longleftrightarrow \quad \ket{u\ket{0}} - v\ket{\uparrow\downarrow}$$

(quantum phase transition)

Physical consequences:

 \Rightarrow inversion of the Josephson current (in S-QD-S junctions)

⇒ activation/blocking of the Kondo effect (in N-QD-S junctions)

specific issues

3. Pairing vs Kondo state ('to screen or not to screen')

specific issues

3. Pairing vs Kondo state ('to screen or not to screen')

 \Rightarrow states near the Fermi level are depleted

 \Rightarrow electron pairing vs the Kondo state (nontrivial relation)

Theoretical model – single Anderson impurity

Theoretical model – single Anderson impurity

The single quantum impurity (dot) coupled to superconducting reservoir

 ε_d – energy level, U – Coulomb potential, Γ_S – hybridization

Theoretical model – single Anderson impurity

Hamiltonian

$$egin{array}{rcl} \hat{H} &=& \sum_{\sigma} \epsilon_d \hat{d}^{\dagger}_{\sigma} \hat{d}_{\sigma} + U \; \hat{n}_{d\uparrow} \; \hat{n}_{d\downarrow} \ &+& \sum_{{f k},\sigma} \left(V_{f k} \; \hat{d}^{\dagger}_{\sigma} \hat{c}_{{f k}\sigma} + V^{*}_{f k} \; \hat{c}^{\dagger}_{{f k}\sigma} \hat{d}_{\sigma}
ight) + \hat{H}_S \end{array}$$

where

$$\hat{H}_{S} = \sum_{k,\sigma} \left(\varepsilon_{k} - \mu \right) \hat{c}_{k\sigma}^{\dagger} \hat{c}_{k\sigma} - \sum_{k} \left(\Delta \hat{c}_{k\uparrow}^{\dagger} \ \hat{c}_{k\downarrow}^{\dagger} + \text{h.c.} \right)$$

describes the BCS-type superconductor.

Microscopic description – exact solution for U = 0

Microscopic description

– exact solution for U=0

Spectrum consists of:

 \Rightarrow a continuum at energies $-\Delta < \omega < \Delta$

 \Rightarrow in-gap resonances (Andreev bound states)

Microscopic description

- exact solution for U=0

Spectrum consists of:

 \Rightarrow a continuum at energies $-\Delta < \omega < \Delta$

 \Rightarrow in-gap resonances (Andreev/Shiba states)

Microscopic description - exact solution for U=0

Energies of the in-gap resonances (Andreev bound states)

J. Phys.: Condens. Matter **25**, 435305 (2013).

Microscopic description – exact solution for U=0

Differential conductance of nanotubes coupled to vanadium (S) and gold (N) / external magnetic field changes a magnitude of the pairing gap $\Delta(B)$ /

Eduardo J.H. Lee, ..., S. De Franceschi, Nature Nanotechnology 9, 79 (2014).

Spectroscopic tools

- probing nano-superconductors

To probe the in-gap states one can study the electron transport through a quantum dot (QD) coupled between the normal (N) and superconducting (S) electrodes

This N–QD–S setup has been practically studied in several experiments.

N - QD - S junctions – pairing vs Coulomb repulsion

R. Žitko, J.S. Lim, R. López, and R. Aguado, Phys. Rev. B 91, 045441 (2015).

N - QD - S junctions – pairing vs Coulomb repulsion

R. Žitko, J.S. Lim, R. López, and R. Aguado, Phys. Rev. B 91, 045441 (2015).

N - QD - S junctions – pairing vs Coulomb repulsion

R. Žitko, J.S. Lim, R. López, and R. Aguado, Phys. Rev. B **91**, 045441 (2015).

N - QD - S junctions – pairing vs Coulomb repulsion

T. Domański, I. Weymann & M. Barańska, arXiv:1507.01851 (2015) preprint.

Our and R. Žitko's studies reveal that: T_K is enhanced by Γ_S

3. Nano-superconductivity:

⇒ some practical aspects

Schematic illustration of the Andreev-type scattering

Andreev-type scattering can be also considered in more complex junctions

Andreev-type scattering can be also considered in more complex junctions

incident electron

Andreev-type scattering can be also considered in more complex junctions

incident electron

Andreev-type scattering can be also considered in more complex junctions

incident electron

crossed Andreev refl.

Non-local transport – planar junctions

planar junctions

These ET/CAR processes have first considered in the planar junctions

planar junctions

Experimental realization (Delft group)

S. Russo, M. Kroug, T. M. Klapwijk & A.F. Morpurgo, *Phys. Rev. Lett.* **95**, 027002 (2005).

planar junctions

Experimental realization

S. Russo, M. Kroug, T. M. Klapwijk & A.F. Morpurgo, *Phys. Rev. Lett.* **95**, 027002 (2005).

planar junctions

Experimental realization (Karlsruhe group)

J. Brauer, F. Hübler, M. Smetanin, D. Beckman, D. & H. von Löhneysen, *Phys. Rev. B* 81, 024515 (2010).

planar junctions

Experimental realization (Karlsruhe group)

J. Brauer, F. Hübler, M. Smetanin, D. Beckman, D. & H. von Löhneysen, Phys. Rev. B 81, 024515 (2010).

- with quantum dots

• with quantum dots

Cooper pairs are split, preserving entanglement of individual electrons.

L. Hofstetter, S. Csonka, J. Nygård, C. Schönenberger, Nature 461, 960 (2009).

J. Schindele, A. Baumgartner, C. Schönenberger, Phys. Rev. Lett. 109, 157002 (2012).

... and many other groups.

- with quantum dots

Possible channels of the Cooper pair splitting

L.G. Herrmann et al, Phys. Rev. Lett. **104**, 026801 (2010).

- with quantum dots

These processes are similar to the crossed Andreev scattering

and cause the strong non-local transport properties.

Non-local transport – crossed Andreev refelections

Non-local transport – crossed Andreev refelections

Quantum impurity in the 3-terminal configuration

L, R – normal electrodes, S – superconducting reservoir, QD – quantum dot

G. Michałek, T. Domański, B.R. Bułka & K.I. Wysokiński, Scientific Reports 5, 14572 (2015).

crossed Andreev refelections

Transmittance of the non-local transport channels

ET – single electron transfer, **CAR** – crossed Andreev reflection

crossed Andreev refelections

Non-local resistance in the linear response limit.

crossed Andreev refelections

Transmittance of the non-local transport channels

ET – single electron transfer, **CAR** – crossed Andreev reflection

crossed Andreev refelections

Non-local resistance in the linear response limit.

$$R_{RS,LS}\equiv V_{RS}/I_{LS}$$

Negative resistance for strong enough coupling Γ_S and $\varepsilon_0 \sim 0$!

Non-local transport – crossed Andreev refelections

Beyond the linear response regime.

Inverse sign of the non-local voltage for strong enough coupling Γ_S .

Andreev reflections –

other perspectives

Andreev reflections

- other perspectives

Crossed Andreev reflections enable the separation of charge from heat currents

F. Mazza, S. Valentini, R. Bosisio, G. Benenti, V. Giovannetti, R. Fazio and F. Tadddei, Phys. Rev. B 91, 245435 (2015).

Andreev reflections

other perspectives

On-chip nanoscopic thermometer operating down to 7 mK.

Nanoscopic superconductors:

Nanoscopic superconductors:

can be induced by the proximity effect

Nanoscopic superconductors:

can be induced by the proximity effect

are manifested via the in-gap (Andreev/Shiba) quasiparticles

- can be induced by the proximity effect
- > are manifested via the in-gap (Andreev/Shiba) quasiparticles

The anomalous (subgap) tunneling can reveal:

- can be induced by the proximity effect
- > are manifested via the in-gap (Andreev/Shiba) quasiparticles

The anomalous (subgap) tunneling can reveal:

 \Rightarrow strong non-local properties (e.g. negative resistance)

can be induced by the proximity effect

are manifested via the in-gap (Andreev/Shiba) quasiparticles

The anomalous (subgap) tunneling can reveal:

- \Rightarrow strong non-local properties (e.g. negative resistance)
- \Rightarrow separation of the charge from heat currents

can be induced by the proximity effect

are manifested via the in-gap (Andreev/Shiba) quasiparticles

The anomalous (subgap) tunneling can reveal:

- \Rightarrow strong non-local properties (e.g. negative resistance)
- \Rightarrow separation of the charge from heat currents
- \Rightarrow realization of exotic quasiparticles (e.g. Majorana-type)

can be induced by the proximity effect

are manifested via the in-gap (Andreev/Shiba) quasiparticles

The anomalous (subgap) tunneling can reveal:

- \Rightarrow strong non-local properties (e.g. negative resistance)
- \Rightarrow separation of the charge from heat currents
- realization of exotic quasiparticles (e.g. Majorana-type)

http://kft.umcs.lublin.pl/doman/lectures

Quantum wire deposited on s-wave superconductor

D. Chevallier, P. Simon, and C. Bena, Phys. Rev. B 88, 165401 (2013).

Spectrum of a quantum wire has a series of Andreev states.

Spin-orbit coupling can induce the Majorana-type quasiparticles.

Majorana quasiparticles appear at the edges of a quantum wire.

D. Chevallier, P. Simon, and C. Bena, Phys. Rev. B 88, 165401 (2013).

Quasiparticles at the edge of a quantum wire for varying magnetic field.

J. Liu, A.C. Potter, K.T. Law, and P.A. Lee, Phys. Rev. Lett. 109, 267002 (2012).

Quasiparticles at the edge of a quantum wire for varying magnetic field.

T.D. Stanescu, R.M. Lutchyn, and S. Das Sarma, Phys. Rev. B 84, 144522 (2011).

Experimental results

– for Majorana quasiparticles

Experimental results

for Majorana quasiparticles

A chain of iron atoms deposited on a surface of superconducting lead

STM measurements provided evidence for:

 \Rightarrow Majorana bound states at the edges of a chain.

S. Nadj-Perge, ..., and <u>A. Yazdani</u>, Science **346**, 602 (2014).

/ Princeton University, Princeton (NJ), USA /

Experimental results

for Majorana quasiparticles

InSb nanowire between a metal (gold) and a superconductor (Nb-Ti-N)

dI/dV measured at 70 mK for varying magnetic field B indicated: \Rightarrow a zero-bias enhancement due to Majorana state

V. Mourik, ..., and L.P. Kouwenhoven, Science **336**, 1003 (2012).

/ Kavli Institute of Nanoscience, Delft Univ., Netherlands /