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1. Unitary transformations (UT)

Application to the eigenproblems

where

I =8H5 @)= § 1wy

Unitary transformations preserve the eigenvalues.




1. Unitary transformations (UT)

Example 1

Exact diagonalization of the bilinear structures

A

H=c(el¢ +eéle)+Aaclel+axee

via the Bogoliubov transformation (1947)

A
A

Ct u v Ct
2T — At
c, —v U C|

This is often used for studying:
— fermion systems with the BCS-like structure,
— boson systems in presence of the BE condensate.




1. Unitary transformations (UT)

Example 2

Exact solution of the lattice vibrations coupled
to a single level state

A

H = e été + hw a'a + Vo é1é (at +

via the Lang-Firsov transformation (1962)

g = Yelrh s (a" — a)
hw

This result is often used as a starting point for studying
the influence of lattice vibrations on mobile electrons
in conductors and superconductors.
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1. Unitary transformations (UT)

REMARK:

These few examples are however rather exceptional.
In most cases the exact diagonalizations cannot be found

and we thus have to resort to some other methods.
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2. UT in a perturbative scheme

Suppose, that we want to solve the eigenvalue problem of

ﬂ:ﬂ0+AV,

an exactly solvable part

a perturbation (we can set A=1).

~

A

Applying the transformation S = e we have
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2. UT in a perturbative scheme

If we choose

and impose a constraint

AV + A, Hy| =0

then the transformed operator simplifies to

A

H = Hy+ 1 |A, V| + 0%

This is a routine procedure for the perturbative studies.
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[ — a continuous flow parameter.
The derivative
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3. Continuous unitary transformation (CUT)

H() =S HS'()
[ — a continuous flow parameter.
The derivative
dST(1)

—ZHST )+ SO A y7

dH(l)  dS(l)
dl dl

_ d*z E”s*(z)H(l) + H1)S()

T(l)

Using the unitary transform. identity S(1)ST(1) = 1, so that
ds(l) ST+ S(1) dS 25 — 0 we obtain the flow equation

210 — (1), B (D)

dl
() = ST(1) = —q' ().

d3(l)
di
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3. Continuous unitary transformation (CUT)

How one can guess a diagonalizing generator 1(1) ?

For operators

H = Huyjog + Hopy

one can choose

A1) = |Haiag(1), Hoss (V)]

and then

liml_wo E[off(l) =0

Other possible ways for constructing the generating operator 1) have been
discussed by various authors. For a detailed information see for instance:
S. Kehrein, Springer Tracts in Modern Physics 217, (2006);

F. Wegner, J. Phys. A: Math. Gen. 39, 8221 (2006).
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3. Continuous unitary transformation (CUT)

CUT schemes invented so far in physics:

* F. Wegner, Annalen der Physik 3, 77 (1994).
* S. Gtlazek and K. Wilson, Phys. Rev. D 49, 4214 (1994).

* A. Mielke, Eur. Phys. J. B5, 605 (1998).

Similar ideas have been also earlier independently developed
by mathematicians in the field of control theory. They are
known under the names:

* “double bracket flow”

R.W. Brockett, Lin. Alg. and its Appl. 146, 79 (1991).

* “Isospectral flow”

M.T. Chu and K.R. Driessel, J. Num. Anal. 27, 1050 (1990).
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An illustrative example of the CUT algorithm

2) Block-diagonalization of bounded matrices

2

Q

Q,

Q.
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4. Mathematical justification of CUT

We can express the operators H and 7) in a certain basis
of the orthonormal states |k) so, that

<klH|g> =
< klilg > =

From the flow equation we obtain

dhy q
dl

= Z (hkk+hq,q—2hp,p) hic,php,q

p

and in particular, for the diagonal elements

_hp
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Since the trace T'r (H™) is invariant under unitary transf.

0_ dTr(H?) d
— > —

we can write that

d
a hk,qhq,k

k,q#k




4. Mathematical justification of CUT

Since the trace T'r (H™) is invariant under unitary transf.

B d Tr(H?) B
= > =

—4) i ) (hik — haa)hig
k q

_2 Z(zhik — 2hprhgq) R,
_2 Z(hzk + h2 — 2hgrhgq)hy,

k.q

_22 (hk: kE — q q) hz,q
—2 an,q =~




4. Mathematical justification of CUT

Using a continuous unitary transf. a 1a Wegner,
the off-diagonal terms are monotonously reduced
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4. Mathematical justification of CUT

Using a continuous unitary transf. a 1a Wegner,
the off-diagonal terms are monotonously reduced

d

a Z |hk,q|2

k,q#k

Because of Zk, ak hi, q > 0, the derivative with respect
to [ is bounded from below therefore

Z hia =

: d 2 2
From relation = Zk,q;ﬁk |Pk,ql"=—2 > k. Mie.q
one finally obtains

lim; o Nk,q = O and lim;_, hk,q;,gk =0
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4. Mathematical justification of CUT

A pedagogical study of the CUT method efficiency
and its comparison to other known numerical procedures,
e.g. the Jacobi transformation, has been done by

S.R. White, J. Chem. Phys. 117, 7472 (2002).

This procedure has been further applied by the same author
to ab initio calculations in the quantum chemistry.




5. Correlation functions

In the quantum statistical physics one often needs to determine
various correlation functions

(A B)
with the Boltzmann averaging
() =Tr {e—ﬁﬁ...} /Tr {e—ﬁﬁ} .
where 3 = (kgT)™!.

This can be done making use of the invariance

Tr {e‘ﬁﬁé} = Tr {eg(l)e_ﬁﬁée_g(l)}

Tr {eS(z)e—gﬁe—S(z)es(z)ée—s(z) }

T {ePHOO®) |

where

H(l) = SO He50  O(1l) = €50 He—50




5. Correlation functions

SOME REMARKS:

*  The easiest way for calculating < ... > is the limit

| — oo when H (co) becomes (block-)diagonal.

*  All operators must be however transformed

* according to the flow equation:

290 = [a(), 0(1),
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6.1. BCS problem: an exercise

H = Z £l Gy — > (AkaT "y T Afé_y €
K

This (reduced BCS) Hamiltonian can be solved exactly

using e.g. the Bogoliubov transformation

Uk ékT —|— Uk CT —k|

—Vk Cxt T Uk il Tk

N.N. Bogoliubov, Sov. Phys. JETP7, 41 (1948)
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From the operator equation

& H = [ﬁ H}

we obtain a set of the flow equations

0 &(l) = 4&(1) |[Ax())?
A Ax(l) —41&(1)|* AL(1)

which yield the following identity

-y 112
IAL(D)] = |Ak|e_4fodl (€ ()] |

T. Domanski, http.//xxx.lanl.gov/cond-mat/0602236.
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6. Applications

6.2. Boson-fermion model: a challenging problem

H = Y (ex — ) elplro + > (Eq — 2p1) blbg
ko q

1
+ VN > Viq (blewicair +hc)
k,q

This type of Hamiltonian is obtained from the two-body
interactions applying the Hubbard-Stratonovich
transformation

The BF model is not solvable exactly.
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Hamiltonianat 0 < I < o©
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Outline of the procedure

In order to study the many-body effects we construct
the continuous canonical transformation e5() Fre—5®

to decouple the boson from fermion degrees of freedom.

Hamiltonian at | = oo

Hp(oco) + Hg(oo) + 0

T. Domarniski and J. Ranninger, Phys. Rev. B 63, 134505 (2001).




Flow of the boson-fermion coupling v_x x(1).

V—k,k(l) ‘
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T. Domariski, J. Ranninger, Phys. Rev. B 63, 134505 (2001).
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®

Near the Fermi energy there forms either a true gap (for
1" < 1T.)orapseudogap (for’l’ > I.), the latter being a
precursor of the phase transition.

T. Domanski & J. Ranninger, Physica C 387, 77 (2003).
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STM conductance of cuprates for tempertures below T.. |

Ch. Renner et al, Phys. Rev. Lett. 80, 149 (1998).
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Schematic view of the spectral function in the antinodal
direction for temperatures I’ < I'. obtained using
the boson-fermion model .

T. Domarnski and J. Ranninger, Phys. Rev. B70, 184513 (2004).
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A.G. Loeser, Z.-X. Shen et al, Phys. Rev. B56, 14185 (1997).
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* Concuding remarks

The method of continuous unitary transformation (CUT)
origins from a general scheme of the RG scaling

This non-perturbative technique is capable to study the
feedback effects between the fast and slow modes

It can be (and it is) used in theoretical physics,
in quantum chemistry as well as in the pure and
applied mathematics

For more specific details and useful links visit my webpage

http://kft.umcs.lublin.pl/doman \




