Application of a continuous unitary transformation in the quantum statistics

T. DOMAŃSKI

M. Curie-Skłodowska University, 20-031 Lublin, Poland

Outline

Outline

Unitary transformation

Outline

Unitary transformation

Perturbative scheme

Outline

Unitary transformation

Perturbative scheme

Continuous unitary transformation (CUT)

Outline

Unitary transformation

Perturbative scheme

Continuous unitary transformation (CUT)

Mathematical justification of CUT

Outline

Unitary transformation

Perturbative scheme

Continuous unitary transformation (CUT)

Mathematical justification of CUT

Applications

1. Unitary transformations (UT)

Application to the eigenproblems

$$
\begin{aligned}
\hat{H}\left|\Psi_{n}\right\rangle & =E_{n}\left|\Psi_{n}\right\rangle \\
& \downarrow \\
\hat{S} \hat{H} \hat{S}^{-1} \hat{S}\left|\Psi_{n}\right\rangle & =E_{n} \hat{S}\left|\Psi_{n}\right\rangle \\
& \downarrow \\
\hat{\tilde{H}}\left|\tilde{\Psi}_{n}\right\rangle & =E_{n}\left|\tilde{\Psi}_{n}\right\rangle
\end{aligned}
$$

where

$$
\hat{\tilde{H}} \equiv \hat{S} \hat{H} \hat{S}^{-1} \quad\left|\tilde{\Psi}_{n}\right\rangle \equiv \hat{S}|\Psi\rangle
$$

Unitary transformations preserve the eigenvalues.

1. Unitary transformations (UT)

Example 1

Exact diagonalization of the bilinear structures

$$
\hat{H}=\varepsilon\left(\hat{c}_{\uparrow}^{\dagger} \hat{c}_{\uparrow}+\hat{c}_{\downarrow}^{\dagger} \hat{c}_{\downarrow}\right)+\Delta \hat{c}_{\uparrow}^{\dagger} \hat{c}_{\downarrow}^{\dagger}+\Delta^{*} \hat{c}_{\downarrow} \hat{c}_{\uparrow}
$$

via the Bogoliubov transformation (1947)

$$
\binom{\hat{\tilde{\boldsymbol{c}}}_{\uparrow}}{\hat{\tilde{c}}_{\downarrow}^{\dagger}}=\left[\begin{array}{cc}
\boldsymbol{u} & \boldsymbol{v} \\
-\boldsymbol{v} & \boldsymbol{u}
\end{array}\right]\binom{\hat{\boldsymbol{c}}_{\uparrow}}{\hat{\boldsymbol{c}}_{\downarrow}^{\dagger}}
$$

This is often used for studying:

- fermion systems with the BCS-like structure,
- boson systems in presence of the BE condensate.

1. Unitary transformations (UT)

Example 2

Exact solution of the lattice vibrations coupled to a single level state

$$
\hat{H}=\varepsilon \hat{c}^{\dagger} \hat{c}+\hbar \omega \hat{a}^{\dagger} \hat{a}+V_{e l-p h} \hat{c}^{\dagger} \hat{c}\left(\hat{a}^{\dagger}+\hat{a}\right)
$$

via the Lang-Firsov transformation (1962)

$$
\hat{S}=\frac{V_{e l-p h}}{\hbar \omega} \hat{c}^{\dagger} \hat{c}\left(\hat{a}^{\dagger}-\hat{a}\right)
$$

This result is often used as a starting point for studying the influence of lattice vibrations on mobile electrons in conductors and superconductors.

1. Unitary transformations (UT)

REMARK:

1. Unitary transformations (UT)

REMARK:

These few examples are however rather exceptional.

1. Unitary transformations (UT)

REMARK:

These few examples are however rather exceptional. In most cases the exact diagonalizations cannot be found

1. Unitary transformations (UT)

REMARK:

These few examples are however rather exceptional. In most cases the exact diagonalizations cannot be found and we thus have to resort to some other methods.

2. UT in a perturbative scheme

Suppose, that we want to solve the eigenvalue problem of

$$
\hat{H}=\hat{H}_{0}+\lambda \hat{V},
$$

2. UT in a perturbative scheme

Suppose, that we want to solve the eigenvalue problem of

$$
\hat{H}=\hat{H}_{0}+\lambda \hat{V},
$$

where
$\hat{\boldsymbol{H}}_{0}-$ an exactly solvable part
$\boldsymbol{\lambda} \hat{\boldsymbol{V}}-$ a perturbation (we can set $\boldsymbol{\lambda}=1$).

2. UT in a perturbative scheme

Suppose, that we want to solve the eigenvalue problem of

$$
\hat{H}=\hat{H}_{0}+\lambda \hat{V},
$$

where

$$
\begin{aligned}
\hat{H}_{0} & - \text { an exactly solvable part } \\
\lambda \hat{V} & - \text { a perturbation (we can set } \lambda=1 \text {). }
\end{aligned}
$$

Applying the transformation $\hat{S}=e^{\hat{A}}$ we have

$$
\begin{aligned}
\hat{\tilde{H}} & =e^{\hat{A}} \hat{H} e^{-\hat{A}} \\
& =\left(1+\hat{A}+\frac{\hat{A}^{2}}{2}+\ldots\right) \hat{H}\left(1-\hat{A}+\frac{\hat{A}^{2}}{2}-\ldots\right) \\
& =\hat{H}+[\hat{A}, \hat{H}]+\frac{1}{2}[\hat{A},[\hat{A}, \hat{H}]]+\ldots
\end{aligned}
$$

2. UT in a perturbative scheme

If we choose

$\hat{A} \propto \lambda$

2. UT in a perturbative scheme

If we choose

$\hat{A} \propto \lambda$

and impose a constraint

$$
\lambda \hat{V}+\left[\hat{A}, \hat{H}_{0}\right]=0
$$

2. UT in a perturbative scheme

If we choose

$\hat{A} \propto \lambda$

and impose a constraint

$$
\lambda \hat{V}+\left[\hat{A}, \hat{H}_{0}\right]=0
$$

then the transformed operator simplifies to

$$
\hat{\tilde{H}}=\hat{H}_{0}+\frac{1}{2}[\hat{A}, \lambda \hat{V}]+O\left(\lambda^{3}\right)
$$

2. UT in a perturbative scheme

If we choose

$$
\hat{A} \propto \lambda
$$

and impose a constraint

$$
\lambda \hat{V}+\left[\hat{A}, \hat{H}_{0}\right]=0
$$

then the transformed operator simplifies to

$$
\hat{\tilde{H}}=\hat{H}_{0}+\frac{1}{2}[\hat{A}, \lambda \hat{V}]+O\left(\lambda^{3}\right)
$$

This is a routine procedure for the perturbative studies.

3. Continuous unitary transformation (CUT)

Let $\quad \hat{H}(l)=\hat{S}(l) \hat{H} \hat{S}^{\dagger}(l)$

3. Continuous unitary transformation (CUT)

Let $\quad \hat{\boldsymbol{H}}(l)=\hat{\boldsymbol{S}}(l) \hat{\boldsymbol{H}} \hat{\boldsymbol{S}}^{\dagger}(l)$
l - a continuous flow parameter.

3. Continuous unitary transformation (CUT)

Let $\quad \hat{\boldsymbol{H}}(l)=\hat{\boldsymbol{S}}(l) \hat{\boldsymbol{H}} \hat{\boldsymbol{S}}^{\dagger}(l)$
l - a continuous flow parameter.
The derivative

$$
\begin{aligned}
\frac{d \hat{H}(l)}{d l} & =\frac{d \hat{S}(l)}{d l} \hat{\boldsymbol{H}} \hat{S}^{\dagger}(l)+\hat{S}(l) \hat{H} \frac{d \hat{S}^{\dagger}(l)}{d l} \\
& =\frac{d \hat{S}(l)}{d l} \hat{S}^{\dagger}(l) \hat{H}(l)+\hat{H}(l) \hat{S}(l) \frac{d \hat{S}^{\dagger}(l)}{d l}
\end{aligned}
$$

3. Continuous unitary transformation (CUT)

Let

$\hat{H}(l)=\hat{S}(l) \hat{H} \hat{S}^{\dagger}(l)$

l - a continuous flow parameter.
The derivative

$$
\begin{aligned}
\frac{d \hat{H}(l)}{d l} & =\frac{d \hat{S}(l)}{d l} \hat{H} \hat{S}^{\dagger}(l)+\hat{S}(l) \hat{H} \frac{d \hat{S}^{\dagger}(l)}{d l} \\
& =\frac{d \hat{S}(l)}{d l} \hat{S}^{\dagger}(l) \hat{H}(l)+\hat{H}(l) \hat{S}(l) \frac{d \hat{S}^{\dagger}(l)}{d l}
\end{aligned}
$$

Using the unitary transform. identity $\hat{S}(l) \hat{S}^{\dagger}(l)=1$, so that $\frac{d \hat{S}(l)}{d l} \hat{S}^{\dagger}(l)+\hat{S}(l) \frac{d \hat{S}^{\dagger}(l)}{d l}=0$ we obtain the flow equation

3. Continuous unitary transformation (CUT)

Let

$$
\hat{H}(l)=\hat{S}(l) \hat{H} \hat{S}^{\dagger}(l)
$$

l - a continuous flow parameter.
The derivative

$$
\begin{aligned}
\frac{d \hat{H}(l)}{d l} & =\frac{d \hat{S}(l)}{d l} \hat{H} \hat{S}^{\dagger}(l)+\hat{S}(l) \hat{H} \frac{d \hat{S}^{\dagger}(l)}{d l} \\
& =\frac{d \hat{S}(l)}{d l} \hat{S}^{\dagger}(l) \hat{H}(l)+\hat{H}(l) \hat{S}(l) \frac{d \hat{S}^{\dagger}(l)}{d l}
\end{aligned}
$$

Using the unitary transform. identity $\hat{S}(l) \hat{S}^{\dagger}(l)=1$, so that $\frac{d \hat{S}(l)}{d l} \hat{S}^{\dagger}(l)+\hat{S}(l) \frac{d \hat{S}^{\dagger}(l)}{d l}=0$ we obtain the flow equation

$$
\frac{d \hat{H}(l)}{d l}=[\hat{\eta}(l), \hat{H}(l)]
$$

3. Continuous unitary transformation (CUT)

Let

$$
\hat{H}(l)=\hat{S}(l) \hat{H} \hat{S}^{\dagger}(l)
$$

l - a continuous flow parameter.
The derivative

$$
\begin{aligned}
\frac{d \hat{H}(l)}{d l} & =\frac{d \hat{S}(l)}{d l} \hat{H} \hat{S}^{\dagger}(l)+\hat{S}(l) \hat{H} \frac{d \hat{S}^{\dagger}(l)}{d l} \\
& =\frac{d \hat{S}(l)}{d l} \hat{S}^{\dagger}(l) \hat{H}(l)+\hat{H}(l) \hat{S}(l) \frac{d \hat{S}^{\dagger}(l)}{d l}
\end{aligned}
$$

Using the unitary transform. identity $\hat{S}(l) \hat{S}^{\dagger}(l)=1$, so that $\frac{d \hat{S}(l)}{d l} \hat{S}^{\dagger}(l)+\hat{S}(l) \frac{d \hat{S}^{\dagger}(l)}{d l}=0$ we obtain the flow equation

$$
\frac{d \hat{H}(l)}{d l}=[\hat{\eta}(l), \hat{H}(l)]
$$

where

$$
\hat{\eta}(l)=\frac{d \hat{S}(l)}{d l} \hat{S}^{\dagger}(l)=-\hat{\eta}^{\dagger}(l)
$$

3. Continuous unitary transformation (CUT)

How one can guess a diagonalizing generator $\eta(l)$?

3. Continuous unitary transformation (CUT)

How one can guess a diagonalizing generator $\eta(l)$?

For operators

$$
\hat{\boldsymbol{H}}=\hat{\boldsymbol{H}}_{\text {diag }}+\hat{\boldsymbol{H}}_{\text {off }}
$$

one can choose

$$
\hat{\eta}(l)=\left[\hat{H}_{\text {diag }}(l), \hat{H}_{o f f}(l)\right]
$$

and then

$$
\lim _{l \rightarrow \infty} \hat{H}_{o f f}(l)=0
$$

3. Continuous unitary transformation (CUT)

How one can guess a diagonalizing generator $\eta(l)$?

For operators

$$
\hat{H}=\hat{H}_{\text {diag }}+\hat{H}_{o f f}
$$

one can choose

$$
\hat{\eta}(l)=\left[\hat{\boldsymbol{H}}_{\text {diag }}(l), \hat{H}_{o f f}(l)\right]
$$

and then

$$
\lim _{l \rightarrow \infty} \hat{H}_{o f f}(l)=0
$$

Other possible ways for constructing the generating operator $\hat{\eta}$ have been discussed by various authors. For a detailed information see for instance:
S. Kehrein, Springer Tracts in Modern Physics 217, (2006);
F. Wegner, J. Phys. A: Math. Gen. 39, 8221 (2006).

3. Continuous unitary transformation (CUT)

CUT schemes invented so far in physics:
F. Wegner, Annalen der Physik 3, 77 (1994).

3. Continuous unitary transformation (CUT)

CUT schemes invented so far in physics:
F. Wegner, Annalen der Physik 3, 77 (1994).
S. Głazek and K. Wilson, Phys. Rev. D 49, 4214 (1994).

3. Continuous unitary transformation (CUT)

CUT schemes invented so far in physics:
F. Wegner, Annalen der Physik 3, 77 (1994).
S. Głazek and K. Wilson, Phys. Rev. D 49, 4214 (1994).
A. Mielke, Eur. Phys. J. B 5, 605 (1998).

3. Continuous unitary transformation (CUT)

CUT schemes invented so far in physics:
F. Wegner, Annalen der Physik 3, 77 (1994).
S. Głazek and K. Wilson, Phys. Rev. D 49, 4214 (1994).
A. Mielke, Eur. Phys. J. B5, 605 (1998).

3. Continuous unitary transformation (CUT)

CUT schemes invented so far in physics:
F. Wegner, Annalen der Physik 3, 77 (1994).
S. Głazek and K. Wilson, Phys. Rev. D 49, 4214 (1994).
A. Mielke, Eur. Phys. J. B 5, 605 (1998).

Similar ideas have been also earlier independently developed by mathematicians in the field of control theory. They are known under the names:

```
"double bracket flow"
R.W. Brockett, Lin. Alg. and its Appl. 146, 79 (1991).
"isospectral flow"
M.T. Chu and K.R. Driessel, J. Num. Anal. 27, 1050 (1990).
```


3. Continuous unitary transformation (CUT)

An illustrative example of the CUT algorithm

3. Continuous unitary transformation (CUT)

An illustrative example of the CUT algorithm

1) Reduction to a block-diagonal structure

3. Continuous unitary transformation (CUT)

An illustrative example of the CUT algorithm

1) Reduction to a block-diagonal structure

3. Continuous unitary transformation (CUT)

An illustrative example of the CUT algorithm

1) Reduction to a block-diagonal structure

3. Continuous unitary transformation (CUT)

An illustrative example of the CUT algorithm

3. Continuous unitary transformation (CUT)

An illustrative example of the CUT algorithm
2) Block-diagonalization of bounded matrices

3. Continuous unitary transformation (CUT)

An illustrative example of the CUT algorithm
2) Block-diagonalization of bounded matrices

3. Continuous unitary transformation (CUT)

An illustrative example of the CUT algorithm
2) Block-diagonalization of bounded matrices

4. Mathematical justification of CUT

We can express the operators $\hat{\boldsymbol{H}}$ and $\hat{\boldsymbol{\eta}}$ in a certain basis of the orthonormal states $|\mathbf{k}\rangle$ so, that

$$
\begin{aligned}
<k|\hat{H}| q> & \equiv h_{k, q} \\
<k|\hat{\eta}| \boldsymbol{q}> & =h_{k k} h_{k q}-h_{k q} h_{q q}=\left(h_{k, k}-h_{q, q}\right) h_{k, q}
\end{aligned}
$$

4. Mathematical justification of CUT

We can express the operators $\hat{\boldsymbol{H}}$ and $\hat{\boldsymbol{\eta}}$ in a certain basis of the orthonormal states $|\mathbf{k}\rangle$ so, that

$$
\begin{aligned}
<k|\hat{H}| q> & \equiv h_{k, q} \\
<k|\hat{\eta}| \boldsymbol{q}> & =h_{k k} h_{k q}-h_{k q} h_{q q}=\left(h_{k, k}-h_{q, q}\right) h_{k, q}
\end{aligned}
$$

From the flow equation we obtain

$$
\frac{d h_{k, q}}{d l}=\sum_{p}\left(h_{k k}+h_{q, q}-2 h_{p, p}\right) h_{k, p} h_{p, q}
$$

4. Mathematical justification of CUT

We can express the operators $\hat{\boldsymbol{H}}$ and $\hat{\boldsymbol{\eta}}$ in a certain basis of the orthonormal states $|\mathbf{k}\rangle$ so, that

$$
\begin{aligned}
<k|\hat{H}| q> & \equiv h_{k, q} \\
<k|\hat{\eta}| q> & =h_{k k} h_{k q}-h_{k q} h_{q q}=\left(h_{k, k}-h_{q, q}\right) h_{k, q}
\end{aligned}
$$

From the flow equation we obtain

$$
\frac{d h_{k, q}}{d l}=\sum_{p}\left(h_{k k}+h_{q, q}-2 h_{p, p}\right) h_{k, p} h_{p, q}
$$

and in particular, for the diagonal elements

$$
\begin{equation*}
\frac{d h_{k, k}}{d l}=2 \sum_{p}\left(h_{k, k}-h_{p, p}\right) h_{k, p}^{2} \tag{1}
\end{equation*}
$$

4. Mathematical justification of CUT

Since the trace $\operatorname{Tr}\left(\hat{\boldsymbol{H}}^{\boldsymbol{n}}\right)$ is invariant under unitary transf.

$$
\begin{equation*}
0=\frac{d \operatorname{Tr}\left(\hat{H}^{2}\right)}{d l}=\frac{d}{d l} \sum_{k, q} h_{k, q} h_{q, k} \tag{2}
\end{equation*}
$$

4. Mathematical justification of CUT

Since the trace $\operatorname{Tr}\left(\hat{\boldsymbol{H}}^{\boldsymbol{n}}\right)$ is invariant under unitary transf.

$$
\begin{equation*}
0=\frac{d \operatorname{Tr}\left(\hat{H}^{2}\right)}{d l}=\frac{d}{d l} \sum_{k, q} h_{k, q} h_{q, k} \tag{2}
\end{equation*}
$$

we can write that

$$
\begin{aligned}
\frac{d}{d l} \sum_{k, q \neq k} h_{k, q} h_{q, k} & =-\frac{d}{d l} \sum_{k} h_{k, k}^{2} \\
& =-2 \sum_{k} h_{k, k} \frac{d h_{k, k}}{d l}
\end{aligned}
$$

4. Mathematical justification of CUT

Since the trace $\operatorname{Tr}\left(\hat{\boldsymbol{H}}^{\boldsymbol{n}}\right)$ is invariant under unitary transf.

$$
\begin{equation*}
0=\frac{d \operatorname{Tr}\left(\hat{H}^{2}\right)}{d l}=\frac{d}{d l} \sum_{k, q} h_{k, q} h_{q, k} \tag{2}
\end{equation*}
$$

Applying (2) to the flow equation (1) we arrive at

$$
\begin{align*}
\frac{d}{d l} \sum_{k, q \neq k}\left|h_{k, q}\right|^{2} & =-4 \sum_{k} h_{k k} \sum_{q}\left(h_{k k}-h_{q q}\right) h_{k q}^{2} \\
& =-2 \sum_{k, q}\left(2 h_{k k}^{2}-2 h_{k k} h_{q q}\right) h_{k q}^{2} \\
& =-2 \sum_{k, q}\left(h_{k k}^{2}+h_{q q}^{2}-2 h_{k k} h_{q q}\right) h_{k q}^{2} \\
& =-2 \sum_{k, q}\left(h_{k, k}-h_{q, q}\right)^{2} h_{k, q}^{2} \\
& =-2 \sum_{k, q} \eta_{k, q}^{2} \leq 0
\end{align*}
$$

4. Mathematical justification of CUT

Using a continuous unitary transf. a lá Wegner, the off-diagonal terms are monotonously reduced

$$
\frac{d}{d l} \sum_{k, q \neq k}\left|h_{k, q}\right|^{2} \leq 0
$$

4. Mathematical justification of CUT

Using a continuous unitary transf. a lá Wegner, the off-diagonal terms are monotonously reduced

$$
\frac{d}{d l} \sum_{k, q \neq k}\left|h_{k, q}\right|^{2} \leq 0
$$

Because of $\sum_{k, q \neq k} \boldsymbol{h}_{\boldsymbol{k}, \boldsymbol{q}}^{2} \geq \mathbf{0}$, the derivative with respect to l is bounded from below therefore

$$
\lim _{l \rightarrow \infty} \frac{d}{d l} \sum_{k, q \neq k} h_{k, q}^{2}=0
$$

4. Mathematical justification of CUT

Using a continuous unitary transf. a lá Wegner, the off-diagonal terms are monotonously reduced

$$
\frac{d}{d l} \sum_{k, q \neq k}\left|h_{k, q}\right|^{2} \leq 0
$$

Because of $\sum_{k, q \neq k} \boldsymbol{h}_{\boldsymbol{k}, \boldsymbol{q}}^{2} \geq \mathbf{0}$, the derivative with respect to l is bounded from below therefore

$$
\lim _{l \rightarrow \infty} \frac{d}{d l} \sum_{k, q \neq k} h_{k, q}^{2}=0
$$

From relation $\frac{d}{d l} \sum_{k, q \neq k}\left|h_{k, q}\right|^{2}=-2 \sum_{k, q} \eta_{k, q}^{2}$ one finally obtains

$$
\lim _{l \rightarrow \infty} \eta_{k, q}=0 \text { and } \lim _{l \rightarrow \infty} h_{k, q \neq k}=0
$$

4. Mathematical justification of CUT

A pedagogical study of the CUT method efficiency and its comparison to other known numerical procedures, e.g. the Jacobi transformation, has been done by

4. Mathematical justification of CUT

A pedagogical study of the CUT method efficiency and its comparison to other known numerical procedures, e.g. the Jacobi transformation, has been done by
S.R. White, J. Chem. Phys. 117, 7472 (2002).

4. Mathematical justification of CUT

A pedagogical study of the CUT method efficiency and its comparison to other known numerical procedures, e.g. the Jacobi transformation, has been done by
S.R. White, J. Chem. Phys. 117, 7472 (2002).

This procedure has been further applied by the same author to $a b$ initio calculations in the quantum chemistry.

5. Correlation functions

In the quantum statistical physics one often needs to determine various correlation functions

$$
\langle\hat{A} \hat{B}\rangle
$$

with the Boltzmann averaging

$$
\langle\ldots\rangle=\operatorname{Tr}\left\{e^{-\beta \hat{H}} \ldots\right\} / \operatorname{Tr}\left\{e^{-\beta \hat{H}}\right\}
$$

where $\beta=\left(k_{B} T\right)^{-1}$.
This can be done making use of the invariance

$$
\begin{aligned}
\operatorname{Tr}\left\{e^{-\beta \hat{H}} \hat{O}\right\} & =\operatorname{Tr}\left\{e^{\hat{S}(l)} e^{-\beta \hat{H}} \hat{O} e^{-\hat{S}(l)}\right\} \\
& =\operatorname{Tr}\left\{e^{\hat{\boldsymbol{S}}(l)} e^{-\beta \hat{H}} e^{-\hat{S}(l)} e^{\hat{S}(l)} \hat{O} e^{-\hat{S}(l)}\right\} \\
& =\operatorname{Tr}\left\{e^{-\beta \hat{H}(l)} \hat{O}(l)\right\}
\end{aligned}
$$

where

$$
\hat{H}(l)=e^{\hat{S}(l)} \hat{H} e^{-\hat{S}(l)} \quad \hat{O}(l)=e^{\hat{S}(l)} \hat{O} e^{-\hat{S}(l)}
$$

5. Correlation functions

SOME REMARKS:

* The easiest way for calculating $<\ldots\rangle$ is the limit $l \longrightarrow \infty$ when $\hat{H}(\infty)$ becomes (block-)diagonal.
* All operators must be however transformed

$$
\hat{O} \longrightarrow \ldots \longrightarrow \hat{O}(l) \longrightarrow \ldots \longrightarrow \hat{O}(\infty)
$$

* according to the flow equation:

$$
\frac{\partial \hat{O}(l)}{\partial l}=[\hat{\eta}(l), \hat{O}(l)]
$$

6. Applications

6.1. BCS problem: an exercise

6. Applications

6.1. BCS problem: an exercise

$$
\hat{H}=\sum_{\mathrm{k}, \sigma} \xi_{k} \hat{c}_{\mathrm{k} \sigma}^{\dagger} \hat{c}_{\mathrm{k} \sigma}-\sum_{\mathrm{k}}\left(\Delta_{\mathrm{k}} \hat{c}_{\mathrm{k} \uparrow}^{\dagger} \hat{c}_{-\mathrm{k} \downarrow}^{\dagger}+\Delta_{\mathrm{k}}^{*} \hat{c}_{-k \downarrow} \hat{c}_{\mathrm{c}} \mid\right.
$$

6. Applications

6.1. BCS problem: an exercise

$$
\hat{H}=\sum_{\mathrm{k}, \sigma} \xi_{\mathrm{k}} \hat{c}_{\mathbf{k} \sigma}^{\dagger} \hat{c}_{\mathbf{k} \sigma}-\sum_{\mathrm{k}}\left(\Delta_{\mathrm{k}} \hat{c}_{\mathbf{k} \uparrow}^{\dagger} \hat{c}_{-\mathrm{k} \downarrow}^{\dagger}+\Delta_{\mathrm{k}}^{*} \hat{c}_{-\mathrm{k} \downarrow} \hat{c}_{\mathrm{c}}{ }_{\mathrm{k}}\right.
$$

This (reduced BCS) Hamiltonian can be solved exactly using e.g. the Bogoliubov transformation

6. Applications

6.1. BCS problem: an exercise

$$
\hat{H}=\sum_{\mathrm{k}, \sigma} \xi_{\mathrm{k}} \hat{c}_{\mathrm{k} \sigma}^{\dagger} \hat{c}_{\mathrm{k} \sigma}-\sum_{\mathbf{k}}\left(\Delta_{\mathrm{k}} \hat{c}_{\mathrm{k} \uparrow}^{\dagger} \hat{c}_{-\mathrm{k} \downarrow}^{\dagger}+\Delta_{\mathrm{k}}^{*} \hat{c}_{-\mathrm{k} \downarrow} \hat{c}_{\mathrm{c}} \mid\right.
$$

This (reduced BCS) Hamiltonian can be solved exactly using e.g. the Bogoliubov transformation

$$
\begin{aligned}
\hat{c}_{\mathrm{k} \uparrow} & =\boldsymbol{u}_{\mathrm{k}} \hat{\boldsymbol{c}}_{\mathrm{k} \uparrow}+\boldsymbol{v}_{\mathrm{k}} \hat{c}_{-\mathrm{k} \downarrow}^{\dagger} \\
\hat{c}_{-\mathrm{k} \downarrow}^{\dagger} & =-\boldsymbol{v}_{\mathrm{k}} \hat{c}_{\mathrm{k} \uparrow}+\boldsymbol{u}_{\mathrm{k}} \hat{c}_{-\mathrm{k} \downarrow}^{\dagger}
\end{aligned}
$$

6. Applications

6.1. BCS problem: an exercise

$$
\hat{H}=\sum_{\mathrm{k}, \sigma} \xi_{k} \hat{c}_{k \sigma}^{\dagger} \hat{c}_{k \sigma}-\sum_{\mathrm{k}}\left(\Delta_{\mathrm{k}} \hat{c}_{\mathrm{k} \uparrow}^{\dagger} \hat{c}_{-\mathrm{k} \downarrow}^{\dagger}+\Delta_{\mathrm{k}}^{*} \hat{c}_{-k \downarrow} \hat{c}_{k} h\right.
$$

This (reduced BCS) Hamiltonian can be solved exactly using e.g. the Bogoliubov transformation

$$
\begin{aligned}
\hat{c}_{\mathrm{k} \uparrow} & =\boldsymbol{u}_{\mathrm{k}} \hat{\boldsymbol{c}}_{\mathrm{k} \uparrow}+\boldsymbol{v}_{\mathrm{k}} \hat{\boldsymbol{c}}_{-\mathrm{k} \downarrow}^{\dagger} \\
\hat{c}_{-\mathrm{k} \downarrow}^{\dagger} & =-\boldsymbol{v}_{\mathrm{k}} \hat{c}_{\mathrm{k} \uparrow}+\boldsymbol{u}_{\mathrm{k}} \hat{c}_{-\mathrm{k} \downarrow}^{\dagger}
\end{aligned}
$$

From the operator equation

$$
o_{1, \dot{A}=[[\tilde{r}, \tilde{H}]}
$$

From the operator equation

$$
\partial_{l} \hat{H}=[\hat{\eta}, \hat{H}]
$$

we obtain a set of the flow equations

$$
\begin{aligned}
\partial_{l} \xi_{\mathrm{k}}(l) & =4 \xi_{\mathrm{k}}(l)\left|\Delta_{\mathrm{k}}(l)\right|^{2} \\
\partial_{l} \Delta_{\mathrm{k}}(l) & =-4\left|\xi_{\mathrm{k}}(l)\right|^{2} \Delta_{\mathrm{k}}^{*}(l)
\end{aligned}
$$

From the operator equation

$$
\partial_{l} \hat{\boldsymbol{H}}=[\hat{\eta}, \hat{\boldsymbol{H}}]
$$

we obtain a set of the flow equations

$$
\begin{aligned}
\partial_{l} \xi_{\mathrm{k}}(l) & =4 \xi_{\mathrm{k}}(l)\left|\Delta_{\mathrm{k}}(l)\right|^{2} \\
\partial_{l} \Delta_{\mathrm{k}}(l) & =-4\left|\xi_{\mathrm{k}}(l)\right|^{2} \Delta_{\mathrm{k}}^{*}(l)
\end{aligned}
$$

which yield the following identity

$$
\left|\Delta_{\mathrm{k}}(l)\right|=\left|\Delta_{\mathrm{k}}\right| e^{-4} \int_{0}^{l} d l^{\prime}\left[\xi_{\mathrm{k}}\left(l^{\prime}\right)\right]^{2} .
$$

From the operator equation

$$
\partial_{l} \hat{\boldsymbol{H}}=[\hat{\eta}, \hat{\boldsymbol{H}}]
$$

we obtain a set of the flow equations

$$
\begin{aligned}
\partial_{l} \xi_{\mathrm{k}}(l) & =4 \xi_{\mathrm{k}}(l)\left|\Delta_{\mathrm{k}}(l)\right|^{2} \\
\partial_{l} \Delta_{\mathrm{k}}(l) & =-4\left|\xi_{\mathrm{k}}(l)\right|^{2} \Delta_{\mathrm{k}}^{*}(l)
\end{aligned}
$$

which yield the following identity

$$
\left|\Delta_{\mathrm{k}}(l)\right|=\left|\Delta_{\mathrm{k}}\right| e^{-4 \int_{0}^{l} d l^{\prime}\left[\xi_{\mathrm{k}}\left(l^{\prime}\right)\right]^{2}}
$$

T. Domański, http://xxx.lanl.gov/cond-mat/0602236.

6. Applications

6.2. Boson-fermion model: a challenging problem

6. Applications

6.2. Boson-fermion model: a challenging problem

$$
\begin{aligned}
H & =\sum_{\mathrm{k} \sigma}\left(\varepsilon_{\mathrm{k}}-\mu\right) c_{\mathrm{k} \sigma}^{\dagger} c_{\mathrm{k} \sigma}+\sum_{\mathrm{q}}\left(E_{\mathrm{q}}-2 \mu\right) b_{\mathrm{q}}^{\dagger} b_{\mathrm{q}} \\
& +\frac{1}{\sqrt{N}} \sum_{\mathrm{k}, \mathrm{q}} v_{\mathrm{k}, \mathrm{q}}\left(b_{\mathrm{q}}^{\dagger} c_{\mathrm{k}, \downarrow} c_{\mathrm{q}-\mathrm{k}, \uparrow}+\text { h.c. }\right)
\end{aligned}
$$

6. Applications

6.2. Boson-fermion model: a challenging problem

$$
\begin{aligned}
H & =\sum_{\mathrm{k} \sigma}\left(\varepsilon_{\mathrm{k}}-\mu\right) c_{\mathrm{k} \sigma}^{\dagger} c_{\mathrm{k} \sigma}+\sum_{\mathrm{q}}\left(E_{\mathrm{q}}-2 \mu\right) b_{\mathrm{q}}^{\dagger} b_{\mathrm{q}} \\
& +\frac{1}{\sqrt{N}} \sum_{\mathrm{k}, \mathrm{q}} v_{\mathrm{k}, \mathrm{q}}\left(b_{\mathrm{q}}^{\dagger} c_{\mathrm{k}, \downarrow} c_{\mathrm{q}-\mathrm{k}, \uparrow}+\text { h.c. }\right)
\end{aligned}
$$

This type of Hamiltonian is obtained from the two-body interactions applying the Hubbard-Stratonovich transformation

6. Applications

6.2. Boson-fermion model: a challenging problem

$$
\begin{aligned}
H & =\sum_{\mathrm{k} \sigma}\left(\varepsilon_{\mathrm{k}}-\mu\right) c_{\mathrm{k} \sigma}^{\dagger} c_{\mathrm{k} \sigma}+\sum_{\mathrm{q}}\left(E_{\mathrm{q}}-2 \mu\right) b_{\mathrm{q}}^{\dagger} b_{\mathrm{q}} \\
& +\frac{1}{\sqrt{N}} \sum_{\mathrm{k}, \mathrm{q}} v_{\mathrm{k}, \mathrm{q}}\left(b_{\mathrm{q}}^{\dagger} c_{\mathrm{k}, \downarrow} c_{\mathrm{q}-\mathrm{k}, \uparrow}+\text { h.c. }\right)
\end{aligned}
$$

This type of Hamiltonian is obtained from the two-body interactions applying the Hubbard-Stratonovich transformation

$$
b_{\mathrm{q}}^{\dagger} \equiv \sum_{\mathbf{k}^{\prime}} c_{\mathrm{q}-\mathrm{k}^{\prime}, \uparrow}^{\dagger} c_{\mathrm{k}^{\prime}, \downarrow}^{\dagger}
$$

6. Applications

6.2. Boson-fermion model: a challenging problem

$$
\begin{aligned}
H & =\sum_{\mathrm{k} \sigma}\left(\varepsilon_{\mathrm{k}}-\mu\right) c_{\mathrm{k} \sigma}^{\dagger} c_{\mathrm{k} \sigma}+\sum_{\mathrm{q}}\left(E_{\mathrm{q}}-2 \mu\right) b_{\mathrm{q}}^{\dagger} b_{\mathrm{q}} \\
& +\frac{1}{\sqrt{N}} \sum_{\mathrm{k}, \mathrm{q}} v_{\mathrm{k}, \mathrm{q}}\left(b_{\mathrm{q}}^{\dagger} c_{\mathrm{k}, \downarrow} c_{\mathrm{q}-\mathrm{k}, \uparrow}+\text { h.c. }\right)
\end{aligned}
$$

This type of Hamiltonian is obtained from the two-body interactions applying the Hubbard-Stratonovich transformation

$$
b_{\mathbf{q}}^{\dagger} \equiv \sum_{\mathbf{k}^{\prime}} c_{\mathbf{q}-\mathbf{k}^{\prime}, \uparrow}^{\dagger} c_{\mathbf{k}^{\prime}, \downarrow}^{\dagger}
$$

The BF model is not solvable exactly.

Outline of the procedure

In order to study the many-body effects we construct

Outline of the procedure

In order to study the many-body effects we construct the continuous canonical transformation $e^{\hat{S}(l)} \hat{H} e^{-\hat{S}(l)}$

Outline of the procedure

In order to study the many-body effects we construct the continuous canonical transformation $e^{\hat{S}(l)} \hat{H} e^{-\hat{S}(l)}$ to decouple the boson from fermion degrees of freedom.

Outline of the procedure

In order to study the many-body effects we construct the continuous canonical transformation $e^{\hat{S}(l)} \hat{H} e^{-\hat{S}(l)}$ to decouple the boson from fermion degrees of freedom.

$$
\begin{aligned}
& \text { Hamiltonian at } l=0 \\
& \hat{\boldsymbol{H}}_{\boldsymbol{F}}+\hat{\boldsymbol{H}}_{\boldsymbol{B}}+\hat{\boldsymbol{V}}_{\boldsymbol{B F}}
\end{aligned}
$$

Outline of the procedure

In order to study the many-body effects we construct the continuous canonical transformation $e^{\hat{S}(l)} \hat{H} e^{-\hat{S}(l)}$ to decouple the boson from fermion degrees of freedom.

$$
\begin{aligned}
& \text { Hamiltonian at } 0<l<\infty \\
& \hat{\boldsymbol{H}}_{F}(l)+\hat{\boldsymbol{H}}_{B}(l)+\hat{\boldsymbol{V}}_{B F}(l)
\end{aligned}
$$

Outline of the procedure

In order to study the many-body effects we construct the continuous canonical transformation $e^{\hat{S}(l)} \hat{H} e^{-\hat{S}(l)}$ to decouple the boson from fermion degrees of freedom.

$$
\begin{aligned}
& \text { Hamiltonian at } l=\infty \\
& \hat{\boldsymbol{H}}_{\boldsymbol{F}}(\infty)+\hat{\boldsymbol{H}}_{B}(\infty)+0
\end{aligned}
$$

Outline of the procedure

In order to study the many-body effects we construct the continuous canonical transformation $e^{\hat{S}(l)} \hat{H} e^{-\hat{S}(l)}$ to decouple the boson from fermion degrees of freedom.

$$
\begin{aligned}
& \text { Hamiltonian at } l=\infty \\
& \hat{\boldsymbol{H}}_{\boldsymbol{F}}(\infty)+\hat{\boldsymbol{H}}_{B}(\infty)+0
\end{aligned}
$$

T. Domański and J. Ranninger, Phys. Rev. B 63, 134505 (2001).

Flow of the boson-fermion coupling $v_{-\mathbf{k}, \mathbf{k}}(l)$.

T. Domański, J. Ranninger, Phys. Rev. B 63, 134505 (2001).

Near the Fermi energy there forms either a true gap (for $T<T_{c}$) or a pseudogap (for $T>T_{c}$), the latter being a precursor of the phase transition.
T. Domański \& J. Ranninger, Physica C 387, 77 (2003).

STM conductance of cuprates for tempertures below T_{c}.

Ch. Renner et al, Phys. Rev. Lett. 80, 149 (1998).

ARPES intensity for $T<T_{c}$

Schematic view of the spectral function in the antinodal direction for temperatures $T<T_{c}$ obtained using the boson-fermion model .
T. Domański and J. Ranninger, Phys. Rev. B 70, 184513 (2004).

Experimental data

A.G. Loeser, Z.-X. Shen et al, Phys. Rev. B 56, 14185 (1997).

Concuding remarks

Concuding remarks

The method of continuous unitary transformation (CUT) origins from a general scheme of the RG scaling

Concuding remarks

The method of continuous unitary transformation (CUT) origins from a general scheme of the RG scaling

This non-perturbative technique is capable to study the feedback effects between the fast and slow modes

Concuding remarks

The method of continuous unitary transformation (CUT) origins from a general scheme of the RG scaling

This non-perturbative technique is capable to study the feedback effects between the fast and slow modes

It can be (and it is) used in theoretical physics, in quantum chemistry as well as in the pure and applied mathematics

Concuding remarks

The method of continuous unitary transformation (CUT) origins from a general scheme of the RG scaling

This non-perturbative technique is capable to study the feedback effects between the fast and slow modes

It can be (and it is) used in theoretical physics, in quantum chemistry as well as in the pure and applied mathematics

For more specific details and useful links visit my webpage

