Constructive feedback of superconductivity on

the Kondo effect in nanoscopic heterostructures

T. Domański

M. Curie-Skłodowska University (Lublin, Poland)

Bad Honnef, 16/10/2019

Constructive feedback of superconductivity on

the Kondo effect in nanoscopic heterostructures

Bad Honnef, 16/10/2019

Cooperation: Maciek Maśka (UŚ Katowice) & Irek Weymann (UAM Poznań)

OUTLINE

- dualities in electron systems
- \Rightarrow localized vs itinerant
- \Rightarrow particle vs hole

OUTLINE

- dualities in electron systems
- \Rightarrow localized vs itinerant
- \Rightarrow particle vs hole
- pairing vs Kondo
- \Rightarrow Kondo effect in proximitized quantum dot

OUTLINE

- dualities in electron systems
- \Rightarrow localized vs itinerant
- \Rightarrow particle vs hole
- pairing vs Kondo
- \Rightarrow Kondo effect in proximitized quantum dot
- role of topological effects
- \Rightarrow Majorana vs Kondo

Preliminaries

1. ITINERANT VS LOCALIZED ELECTRONS

Correlated quantum impurity embedded into the Fermi sea

can develop the many-body Kondo state with itinerant electrons (at $T < T_K$) due to the exchange (screening) interactions.

1. ITINERANT VS LOCALIZED ELECTRONS

Prototype (single impurity Anderson) model:

$$\hat{H} = \hat{H}_{imp} + \hat{H}_c + \hat{V}_{d-c}$$

Prototype (single impurity Anderson) model:

$$\hat{H} = \hat{H}_{imp} + \hat{H}_c + \hat{V}_{d-c}$$

where

$$\begin{split} \hat{H}_{imp} &= \sum_{\sigma} \epsilon_{d} \ \hat{d}_{\sigma}^{\dagger} \ \hat{d}_{\sigma} \ + \ U \ \hat{n}_{d\uparrow} \ \hat{n}_{d\downarrow} \qquad \text{correlated impurity} \\ \hat{H}_{c} &= \sum_{k,\sigma} \left(\epsilon_{k} - \mu \right) \hat{c}_{k\sigma}^{\dagger} \hat{c}_{k\sigma} \qquad \qquad \text{itinerant electrons} \\ \hat{V}_{d-c} &= \sum_{k,\sigma} \left(V_{k} \ \hat{d}_{\sigma}^{\dagger} \hat{c}_{k\sigma} + V_{k}^{*} \ \hat{c}_{k\sigma}^{\dagger} \hat{d}_{\sigma} \right) \qquad \qquad \text{hybridization} \end{split}$$

In superconductors the particle and hole degrees of freedom are mixed with one another via pairing (efficient near the Fermi level).

2. PARTICLE VS HOLE

In superconductors the particle and hole degrees of freedom are mixed with one another via pairing (efficient near the Fermi level).

Empirical evidence:

⇒ upon injecting an electron to superconductor

2. PARTICLE VS HOLE

In superconductors the particle and hole degrees of freedom are mixed with one another via pairing (efficient near the Fermi level).

Empirical evidence:

- ⇒ upon injecting an electron to superconductor
- \Rightarrow there is reflected a hole (Andreev scattering).

2. PARTICLE VS HOLE

Particle to hole conversion (Andreev scattering mechanism).

BCS ground state :

$$|\mathrm{BCS}
angle = \prod_k \left(u_k + v_k \ \hat{c}^\dagger_{k\uparrow} \ \hat{c}^\dagger_{-k\downarrow}
ight) \ |\mathrm{vacuum}
angle$$

BCS ground state :

$$|\mathrm{BCS}
angle = \prod_k \left(u_k + v_k \; \hat{c}^\dagger_{k\uparrow} \; \hat{c}^\dagger_{-k\downarrow}
ight) \; |\mathrm{vacuum}
angle$$

Effective (Bogoliubov) quasiparticles

BCS ground state :

$$|\mathrm{BCS}
angle = \prod_k \left(u_k + v_k \; \hat{c}^\dagger_{k\uparrow} \; \hat{c}^\dagger_{-k\downarrow}
ight) \; |\mathrm{vacuum}
angle$$

Effective (Bogoliubov) quasiparticles

formally due to

$$\hat{\gamma}_{k\uparrow} = u_k \hat{c}_{k\uparrow} + \tilde{v}_k \hat{b}_{q=0} \hat{c}^{\dagger}_{-k\downarrow}$$

 $\hat{\gamma}^{\dagger}_{-k\downarrow} = -\tilde{v}_k \hat{b}^{\dagger}_{q=0} \hat{c}_{k\uparrow} + u_k \hat{c}^{\dagger}_{-k\downarrow}$

'To screen or not to screen ?'

R. Maurand and Ch. Schönenberger, Physics 6, 75 (2013).

'To screen or not to screen ?'

R. Maurand and Ch. Schönenberger, Physics 6, 75 (2013).

Relevant issues:

 \Rightarrow electronic states near the Fermi level are missing,

'To screen or not to screen ?'

R. Maurand and Ch. Schönenberger, Physics 6, 75 (2013).

Relevant issues:

- \Rightarrow electronic states near the Fermi level are missing,
- ⇒ pairing and correlations can switch on/off the effective exchange potential due to quantum phase transition.

Impurity on a superconducting surface:

interplay between characteristic scales T_K and Δ_{sc}

Impurity on a superconducting surface: interplay between characteristic scales T_K and Δ_{sc}

 ⇒ Competition of superconducting phenomena and Kondo screening at the nanoscale
 K.J. Franke, G. Schulze, J.I. Pascual,
 Science <u>332</u>, 940 (2011). Impurity on a superconducting surface: interplay between characteristic scales T_K and Δ_{sc}

- ⇒ Competition of superconducting phenomena and Kondo screening at the nanoscale
 K.J. Franke, G. Schulze, J.I. Pascual,
 Science <u>332</u>, 940 (2011).
- ⇒ Scaling of Yu-Shiba-Rusinov energies in the weak-coupling Kondo regime
 N. Hatter, B.W. Heinrich, D. Rolf, K.J. Franke, Nature Communications <u>8</u>, 2016 (2017).

Part I: pairing vs Kondo

ANDREEV TUNNELING SPECTROSCOPY

For probing the subgap states one can measure conductance of tunneling current flowing via the quantum dot (QD) coupled between the normal (N) and superconducting (S) electrodes

ANDREEV TUNNELING SPECTROSCOPY

For probing the subgap states one can measure conductance of tunneling current flowing via the quantum dot (QD) coupled between the normal (N) and superconducting (S) electrodes

This is a particular realization of the single-electron-transistor.

CORRELATIONS VS PAIRING

The proximitized quantum dot can described by

$$\hat{H}_{\text{QD}} = \sum_{\sigma} \epsilon_d \; \hat{d}^{\dagger}_{\sigma} \; \hat{d}_{\sigma} \; + \; U_d \; \hat{n}_{d\uparrow} \hat{n}_{d\downarrow} - \left(\Delta_d \; \hat{d}^{\dagger}_{\uparrow} \hat{d}^{\dagger}_{\downarrow} + \text{h.c.}
ight)$$

CORRELATIONS VS PAIRING

The proximitized quantum dot can described by

$$\hat{H}_{QD} = \sum_{\sigma} \epsilon_d \; \hat{d}^{\dagger}_{\sigma} \; \hat{d}_{\sigma} \; + \; U_d \; \hat{n}_{d\uparrow} \hat{n}_{d\downarrow} - \left(\Delta_d \; \hat{d}^{\dagger}_{\uparrow} \hat{d}^{\dagger}_{\downarrow} + \mathrm{h.c.}
ight)$$

Eigen-states of this problem are represented by:

 $\begin{array}{ccc} |\uparrow\rangle & \text{and} & |\downarrow\rangle & \Leftarrow & \text{doublet states (spin <math>\frac{1}{2})} \\ u |0\rangle - v |\uparrow\downarrow\rangle \\ v |0\rangle + u |\uparrow\downarrow\rangle \end{array} & \Leftarrow & \text{singlet states (spin 0)} \end{array}$

CORRELATIONS VS PAIRING

The proximitized quantum dot can described by

$$\hat{H}_{QD} = \sum_{\sigma} \epsilon_d \; \hat{d}^{\dagger}_{\sigma} \; \hat{d}_{\sigma} \; + \; U_d \; \hat{n}_{d\uparrow} \hat{n}_{d\downarrow} - \left(\Delta_d \; \hat{d}^{\dagger}_{\uparrow} \hat{d}^{\dagger}_{\downarrow} + \mathrm{h.c.}
ight)$$

Eigen-states of this problem are represented by:

 $\begin{array}{ccc} |\uparrow\rangle & \text{and} & |\downarrow\rangle & \Leftarrow & \text{doublet states (spin <math>\frac{1}{2})} \\ u |0\rangle - v |\uparrow\downarrow\rangle \\ v |0\rangle + u |\uparrow\downarrow\rangle \end{array} & \Leftarrow & \text{singlet states (spin 0)} \end{array}$

Upon varrying the parameters ε_d , U_d or Γ_S there can be induced quantum phase transition between these doublet/singlet states.

Subgap spectrum of the correlated QD $\xi_d = \varepsilon_d + \frac{1}{2}U_d$

Subgap spectrum of the correlated QD $\xi_d = \varepsilon_d + \frac{1}{2}U_d$

Subgap spectrum of the correlated QD $\xi_d = \varepsilon_d + \frac{1}{2}U_d$

Singlet-doublet phase transition: NRG results

J. Bauer, A. Oguri & A.C. Hewson, J. Phys.: Condens. Matter 19, 486211 (2007).

Enhancement of the Kondo peak while approaching the quantum phase transition from the doublet side (for the half-filled QD).

SUBGAP KONDO EFFECT

Spectral function obtained from the NRG calculations (Budapest code).

SUBGAP KONDO EFFECT

Kondo temperature $T_K \simeq 0.3 \sqrt{\Gamma_N U_d} \exp \left[\frac{\pi \epsilon_d (\epsilon_d + U_d) + (\Gamma_S/2)^2}{\Gamma_N U_d} \right]$

SUBGAP KONDO EFFECT

Physical observability in the Andreev differential conductance

Quantum dot embedded in Josephson & Andreev circuits.

T. Domański ... V. Janiš & T. Novotný, Phys. Rev. B 95, 045104 (2017).

JOSEPHSON/ANDREEV HETEROSTRUCTURE

Phase-controlled scaling of the Kondo temperarture T_K

T. Domański ... V. Janiš & T. Novotný, Phys. Rev. B 95, 045104 (2017).

JOSEPHSON/ANDREEV HETEROSTRUCTURE

Spectrum of the half-filled quantum dot

T. Domański ... V. Janiš & T. Novotný, Phys. Rev. B 95, 045104 (2017).

• While approaching the doublet-singlet QPT:

- While approaching the doublet-singlet QPT:
- \Rightarrow effective exchange interactions are enhanced

- While approaching the doublet-singlet QPT:
- \Rightarrow effective exchange interactions are enhanced
- \Rightarrow strongly supporting the subgap Kondo effect

- While approaching the doublet-singlet QPT:
- \Rightarrow effective exchange interactions are enhanced
- \Rightarrow strongly supporting the subgap Kondo effect

Constructive feedback of electron pairing on the Kondo effect !

Part II: role of topological effects

Topological superconductivity can be driven e.g. by the spin-orbit Rashba interaction combined with the external magnetic field.

R. Lutchyn, J. Sau, S. Das Sarma, Phys. Rev. Lett. 105, 077001 (2010).Y. Oreg, G. Refael, F. von Oppen, Phys. Rev. Lett. 105, 177002 (2010).

TRANSITION FROM TRIVIAL TO TOPOLOGICAL PHASE

A pair of the Shiba (Andreev) states evolve into the Majorana qps

Mutation of the trivial bound states into the nontrivial Majorana modes

PROPERTIES OF MAJORANA QPS

- particle = antiparticle
- \Rightarrow neutral in charge
- \Rightarrow of zero energy
- fractional character
- \Rightarrow half occupied/empty
- spatially nonlocal
- \Rightarrow exist in pairs near boundaries/defects
- topologically protected
- \Rightarrow immune to dephasing/decoherence

$$\hat{\gamma}_{i,n}^{\dagger}=\hat{\gamma}_{i,n}$$

$$\hat{\gamma}_{i,n}^{\dagger} \; \hat{\gamma}_{i,n} = 1/2$$

SPATIAL PROFILE

Majorana qps are localized near the nanowire edges

R. Aguado, Riv. Nuovo Cim. 40, 523 (2017).

 $t_{35}/t = 1.0$ LDOS 20 15 10 5 0 1 0.04 10 20 0.02 30 ^Sit_e40 0.gqt 50 -0.02 60 -0.04 70

 $t_{35}/t = 0.8$ LDOS 20 15 10 5 0 1 0.04 10 20 0.02 30 ^Sit_e40 0.gqt 50 -0.02 60 -0.04 70

 $t_{35}/t = 0.6$

 $t_{35}/t = 0.4$

 $t_{35}/t = 0.2$

 $t_{35}/t = 0.1$

 $t_{35}/t = 0.0$

LEAKAGE OF MAJORANAS ON QUANTUM DOT

Coalescence of the Andreev into Majorana states

M.T. Deng, ..., and <u>Ch. Marcus</u>, Science **354**, 1557 (2016).

/ Niels Bohr Institute, Copenhagen, Denmark /

TRIVIAL VS MAJORANA BOUND STATES

Schematics of a quantum dot – nanowire hybrid structure.

A. Ptok, A. Kobiałka & T. Domański, Phys. Rev. 96, 195403 (2017).

DISTINGUISHING ANDREEV FROM MAJORANA

A. Ptok, A. Kobiałka & T. Domański, Phys. Rev. 96, 195403 (2017).

DISTINGUISHING ANDREEV FROM MAJORANA QPS

QD spectrum vs gate potential V_g for various spin-orbit couplings λ .

A. Ptok, A. Kobiałka & T. Domański, Phys. Rev. 96, 195403 (2017).

DISTINGUISHING ANDREEV FROM MAJORANA

M.T. Deng et al., Phys. Rev. B 98, 085125 (2018).

DISTINGUISHING ANDREEV FROM MAJORANA

D. Chevallier, ... and J. Klinovaja, Phys. Rev. B 97, 04504 (2018).

Can one confront Majorana with Kondo?

DESIGNING NANOWIRE ATOM-BY-ATOM

STM for Fe nanchain on superconducting Re

H. Kim, ..., and R. Wiesendanger, Science Adv. 4, eaar5251 (2018).

KONDO + MAJORANA + ELECTRON PAIRING

Schematic view of the STM-type configuration

KONDO AND MAJORANA PHYSICS

Possible setup for probing the Kondo – Majorana – pairing effects.

G. Górski, J. Barański, I. Weymann & T. Domański, Sci. Rep. 8, 15717 (2018).

KONDO VS PAIRING IN ABSENCE OF MAJORANA

Perturbative results for the proximitized quantum dot.

KONDO + PAIRING + MAJORANA

Perturbative results for the proximitized quantum dot.

KONDO + PAIRING + MAJORANA

Perturbative results for the proximitized quantum dot.

QUANTUM DOT SPECTRUM [SCI.REP. <u>8</u>, 15717 (2018)]

QUANTUM DOT SPECTRUM [SCI.REP. <u>8</u>, 15717 (2018)]

. €_____, 0.5 /

. €______,0,₽

> () 3 × 0.5

(3) → 0.5

0 2

10⁻³ 10⁻² 10⁻¹ 10⁰ 10¹

 ω/Γ_N

10⁻³ 10⁻² 10⁻¹ 10⁰ 10¹

 ω/Γ_N

10⁻³ 10⁻² 10⁻¹ 10⁰ 10 ω/Γ_N

10⁻³ 10⁻² 10⁻¹ 10⁰ 10¹

 $\omega/\Gamma_{\rm N}$

6

NRG data: the spin-resolved spectrum of the proximitized quantum dot.

spin-selective influence of Majorana on Kondo:

- spin-selective influence of Majorana on Kondo:
- \Rightarrow constructive for \downarrow electrons
- \Rightarrow destructive for \uparrow electrons
- spin-selective influence of Majorana on Kondo:
- \Rightarrow constructive for \downarrow electrons
- \Rightarrow destructive for \uparrow electrons
- empirical observability via:
- \Rightarrow selective equal spin Andreev reflections (SESAR)
- \Rightarrow originating from equal-spin intersite pairing

SELECTIVE EQUAL SPIN ANDREEV REFLECTIONS

Main idea of the SESAR spectroscopy

M. Maśka and T. Domański, Scientific Reports 7, 16193 (2017).

ACKNOWLEDGEMENTS

Majorana quasiparticles

- M. Maśka & A. Gorczyca-Goraj (Katowice),
 A. Kobiałka (Lublin), A. Ptok (Kraków),
 Sz. Głodzik (Lublin), N. Sedlmayr (Lublin).
- Quantum phase transition & Kondo effect
- ⇒ M. Barańska & J. Barański (Dęblin)
 - T. Novotný, M. Žonda & V. Janiš (Prague).
- Majorana vs Kondo
- ⇒ I. Weymann (Poznań), G. Górski (Rzeszów)

FURTHER PERSPECTIVES

Majorana modes propagating along magnetic islands

G. Ménard, ..., and <u>P. Simon</u>, Nature Commun. **8**, 2040 (2017). / **P. & M. Curie University (Paris, France)** /

FURTHER PERSPECTIVES

Majorana modes propagating along magnetic islands

G. Ménard, ..., and <u>P. Simon</u>, Nature Commun. **8**, 2040 (2017). / P. & M. Curie University (Paris, France) /

Kondo vs dispersive Majorana mode(s)