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Bulk superconductors
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BCS (non-Fermi liquid) ground state :
IBCS) = H <uk + v E,tT ET_N) |vacuum)
k

|vk|?> = probablity of occupied momenta (k 1, —k |)

|ux|* = probablity of unoccupied momenta (k 1, —k )
quasiparticle = coherent superposition of a particle and hole
Yt = uklir + vkET_u

’AYT_H = _vk&kT +ukaT_k¢

Charge is conserved modulo-2e due to Bose-Einstein condensation of Cooper pairs
A _ ~ ~ 7 ~f
Y+ = UkCrpr + Uk quoC_u

’A)’iu = —0 b;:o Cret -l-uk&T_u
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H. Matsui et al, Phys. Rev. Lett. 90, 217002 (2003).
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PARTICLE VS HOLE

In all superconductors the particle and hole degrees of freedom
are mixed with one another (this is particularly evident near Er)




Magnetic impurities in superconductors
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Magnetic impurities existing in bulk superconductors are pair-breakers.

Typical spectrum of a single impurity in s-wave superconductor:

2
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J |
/\ l‘l
A -E, 0 +E, +A

Bound states appearing in the subgap region E € (—A, A)

p(w)

are dubbed Yu-Shiba-Rusinov (or Andreev) quasiparticles.



TOPOGRAPHY AND SPATIAL EXTENT

Empirical data obtained from STM measurements for NbSe,

—electron-like |
—— hole-like

10 1
V (meV) distance (nm)

a) bound states extending to 10 nm (from impurity)
b) alternating particle and hole spectral weights

G.C. Menard et al., Nature Phys. 11, 1013 (2015).



MAGNETIC OBJECTS IN SUPERCONDUCTORS

Other entities in superconductors, like magnetic chains
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Other entities in superconductors, like magnetic chains
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develop their in-gap bound states in a form of the Shiba-bands.

In particular, the proper magnetic textures in chains and islands
can guarantee the topologically non-trivial character, hosting
the Majorana-type boundary modes !



A few examples ...



1. Rashba nanowires



TOPOLOGICAL SUPERCONDUCTING NANOWIRE

Intersite pairing of identical spin electrons can be driven e.g. by
spin-orbit (Rashba) interaction in presence of external magnetic
field, using semiconducting nanowires proximitized to conventional

s-wave superconductor.

S-wave superconductor
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Effective quasiparticle states of the Rashba nanowire




TRANSITION TO TOPOLOGICAL PHASE

Effective quasiparticle states of the Rashba nanowire

closing/reopening of a gap < band-invertion of topological insulators

M.M. Maska, A. Gorczyca-Goraj, J. Tworzydto, T. Domanski, PRB 95, 045429 (2017).



SPATIAL PROFILE OF MAJORANA QPS

Majorana qps are localized near the edges

e—2x/;§
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R. Aguado, Riv. Nuovo Cim. 40, 523 (2017).



EXAMPLE OF EMPIRICAL REALIZATION

Differential conductance dI/dV obtained for InSb
nanowire at 70 mK upon varying a magnetic field.

V. Mourik, ..., and L.P. Kouwenhoven, Science 336, 1003 (2012).

/ Technical Univ. Delft, Netherlands /



EXAMPLE OF EMPIRICAL REALIZATION

Litographically fabricated Al nanowire contacted to InAs

(¢)500 g

G (2¢%h) .

0 005 01 0.15

F. Nichele, ..., and Ch. Marcus, Phys. Rev. Lett. 119, 136803 (2017).

/ Niels Bohr Institute, Copenhagen, Denmark /



2. Selforganised magnetic chains



MAGNETIC CHAINS ON SUPERCONDUCTORS

Magnetic atoms (like Fe) on a surface of s-wave superconductor
(for example Pb) arrange themselves into such spiral order,
where topological superconducting phase is selfsustained

ppmddmd

Pb
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MICROSCOPIC MODEL

Itinerant electrons in the chain of magnetic impurities placed on a surface

of isotropic superconductor can be described by the Hamiltonian:

H= - t> (& ene +He) —ud & 0

1,0 i,O’
+ Y 8-&+ ) (adhel, +He)
i i

Here S; are the classical magnetic moments and §; = ] Yo Ela&’aga,-,g

denote the spins of mobile electrons
:> J is the coupling between magnetic atoms and itinerant electrons

:> A is the proximity induced on-site pairing
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OUTLINE OF COMPUTATIONAL PROCEDURE

We have focused on coplanar arrangement of the magnetic moments

Si = S (cos ¢, sin ¢y, 0)

assuming S to be large, while the product JS was imposed to be finite

(classical treatment of magnetic moments).
We selfconsistently determined the spiral texture of a ground state:
= ¢pi=iagq

where a is the lattice constant and the spiral pitch g strongly depends

on the model parameters pu, A.



HELICAL SELFORGANISATION (TOPOFILIA)

A. Gorczyca-Goraj, T. Domanski & M.M. Maska, Phys. Rev. B 99, 235430 (2019).
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SPIRAL ORDER AT FINITE TEMPERATURES

Structure factor: ~ A(q) = 13, €7079(S; - Sy)
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Structure factor: ~ A(q) = 13, €7079(S; - Sy)
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SPIRAL ORDER AT FINITE TEMPERATURES

Structure factor: ~ A(q) = 13, €7079(S; - Sy)
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TEMPERATURE EFFECT ON MAJORANA QPS
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ROLE OF THERMAL EFFECTS

Upon increasing the temperature one observes:
—> closing of the topological energy gap
—> overdamping of the Majorana qps

—> changeover of topological Z, humber



ROLE OF THERMAL EFFECTS

Upon increasing the temperature one observes:
—> closing of the topological energy gap
—> overdamping of the Majorana qps

—> changeover of topological Z, humber

In realistic situations (using, for instance, Fe atoms deposited on

superconducting Pb) the topological phase should survive up to:

— T.~5K



3. Selforganised magnetic ladders



TOPOLOGICAL MAGNETIC LADDER

Let’s consider magnetic ladder deposited on conventinal superconductor.

M.M. Maska, N. Sedimayr, A. Kobiatka, T. Domanski, Phys. Rev. B 103, 235419 (2021).
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MICROSCOPIC MODEL

Itinerant electrons on the magnetic ladder which is proximitized to

superconducting substrate can be described by the Hamiltonian:

Ho= Y (z el st + Elpotine + H) 0 Y e
j

i,o bbfror
2.8 et at
28 F A (e ey +He)

i,f L]

where S; ; are classical magnetic moments, and
—> wherei = 1,2, ... N enumerates sites along the wires

:> j € {1, 2} refers to the legs
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OUTLINE OF COMPUTATIONAL PROCEDURE

We have investigated a coplanar arrangement of the magnetic moments
= .
Sij = S (cos ¢ij, sin ¢;j, 0)

assuming S to be large, and imposing the product JS to be finite.

We have selfconsistently determined the helical configuration of a ground

state, characterized by:
:> ¢i1=1igq (g is the spiral pitch)

:> dip =iq+ Agq (Agq is phase difference between the legs)



MAGNETIC SELFORGANIZATION

The ground state pitch vector 4, and relative phase Ag. obtained with

respect of the chemical potential 1« and pairing potential A.
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MAGNETIC SELFORGANIZATION

The ground state pitch vector 4, and relative phase Ag. obtained with

respect of the chemical potential 1« and pairing potential A.

2)2.0
1.5

< 1.0

0.0

o [in units of ]

Most parts of the diagrams correspond either to ferromagnetic or antiferromagnetic

order, except small regions where the helical order is developed (of our interest).

3m/4

/2

/4



TOPOLOGICAL INVARIANT

In the thermodynamic limit (N — o) we have determine the topological Z

invariant of this system, which belongs to class Alll.

)20 2
v
1.5 1
4104 Ae=m7 Ag. = 1

R

0.0 T T T

=)

Two (separate) regions of the topological superconducting phase are characterized

by either antiparallel or parallel spiral arrangements of the magnetic ladder.



TOPOFILIA

For both these regions of (A, 1) the system is in a topologically nontrivial
superconducting state, hosting the zero-energy boundary modes.

a) b)

0.4 044
0.2 0.2 1
© 0.0 0.0 1
—0.2 —024R
—0.4 —0.4
0.0
c) d)
—474 A
—475 —8041
o
—476
a7 ] —806
0.0 0.5 1.0 0.0 0.5 1.0
a/m a/m

Eigenenergies (top) and total energy (bottom) for . = 0.9 (left) and . = 2.8 (right).



TRANSITION TO/FROM TOPOLOGICAL PHASE

Variation of eigenenergies
en against p for A = 0.3

Variation of 4, and Ag.




TRANSITION TO/FROM TOPOLOGICAL PHASE

Variation of eigenenergies
en against p for A = 0.3

Variation of 4, and Ag.

Discontinuous transitions to/from topological phase without gap closing!
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Total energy as function of g and Ag

obtained for A = 0.3t and several p.

The red arrow indicates (g., Agy).
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MAIN FINDINGS

We predict unconventional transition to/from topological
superconducting phase of selforganized magnetic ladder

—> without any closing/reopening of energy gap

Upon varying the chemical potential (by electrostatic means)
the emerging topological phase is characterized by:

—> either parallel or antiparallel helical structures

These topological phases differ by the value of:
—> topologoical invariant Z

M.M. Maska, N. Sedimayr, A. Kobiatka, T. Domanski, Phys. Rev. B 103, 235419 (2021).



BEYOND COPLANAR CONFIGURATIONS

a)u = 0.2
b) p = 0.6
c)p = 1.6
d) p =3.2

Unconstrained spin configurations obtained by the simulated annealing algorithm,
performing the Metropolis Monte Carlo calculations (at low temperatures).
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BOUNDARY ZERO-ENERGY MODES

The local Majorana polarization P; j, = (¢ |C#; j|¢, ), where 7; ; is the projection onto site i

of j-th chain and C stands for the particle-hole operator. Results are obtained for ;. = 3.2.

The topological superconducting phase & its boundary zero-
energy modes are robust against a lack of coplanar helicity.



Higher-dimensional topological textures



TWO-DIMENSIONAL MAGNETIC STRUCTURES

Magnetic island of Co atoms deposited on the superconducting Pb surface

Diameter of island:

5—-10 nm

G. Ménard, ..., and P. Simon, Nature Commun. 8, 2040 (2017).
Pierre & Marie Curie University (Paris, France)



PROPAGATING MAJORANA EDGE MODES

Magnetic island of Fe atoms deposited on the superconducting Re surface

A B ¢

P,

A. Palacio-Morales, ... & R. Wiesendanger, Science Adv. 5, eaav6600 (2019).
University of Hamburg (Germany)



VAN DER WAALS HETEROSTRUCTURES

Ferromagnetic island CrBr; deposited on superconducting NbSe;

a STM tip b E E c
Monolayer \V / \ / \ /
ferromagnet \ ek - WM i
CrBr,

3
Rashba le) = ul > M le(k) — | <M
c E E
5 \/_\,f\/ \/\/\/
©
A k4
Chiral edge Q

NbSe, modes @

Trivial Topological

oCr
(AL >3 o Br

ONb
0 Se

dl/dV (normalized)

Sample bias (mV)

S. Kezilebieke ... Sz. Gtodzik ... P. Lilienroth, Nature 424, 588 (2020).



MAGNETIC SKYRMION-TYPE TEXTURES

Scenario for topological superconductivity induced in 2D magnetic thin film

hosting a skyrmion deposited on conventional s-wave superconductor
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Scenario for topological superconductivity induced in 2D magnetic thin film

hosting a skyrmion deposited on conventional s-wave superconductor
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TOPOLOGICAL SUPERCOND. IN SKYRMION LATTICES
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FINAL CONCLUSIONS

Magnetism and superconductivity

—> can constructively cooperate

—> inducing novel (topological) states of matter
—> hosting the exotic boundary modes

—> which are promising for quantum computing



