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PRELIMINARIES

Superconducting nanostructures



NANOSTRUCTURES WITH SUPERCONDUCTOR(S)

Quantum impurity on a surface of superconductor + STM tip
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STM is a tool to probe the spectra of impurities



NANOSTRUCTURES WITH SUPERCONDUCTOR(S)

normal metal (N) - quantum dot (QD) - superconductor (S)
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Tunneling by the electron-to-hole (Andreev) scattering.



NANOSTRUCTURES WITH SUPERCONDUCTOR(S)

superconductor (S) - quantum dot (QD) - superconductor (S)

Superconductor

A

Nanowire

Superconductor

Tunneling of Cooper pairs via bound states in Josephson junction.
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SUPERCONDUCTING PROXIMITY EFFECT

® Coupling of the localized (QD) to itinerant (SC) electrons induces:

—> on-dot pairing

® manifested spectroscopically by:

—> bound states inside the gap of SC

® originating from:
— leakage of Cooper pairs on QD (Andreev)
—> exchange int. of QD with SC (Yu-Shiba-Rusinov)



IMPURITY + CONVENTIONAL SUPERCONDUCTOR

Characteristic time-scales



IMPURITY + CONVENTIONAL SUPERCONDUCTOR

Characteristic time-scales

[ emergence of in-gap states ]



TIME-RESOLVED BOUND STATES

Protocols of non-equilibrium conditions:
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TIME-RESOLVED BOUND STATES

Protocols of non-equilibrium conditions:
—> variation of the coupling I's to superconductor
—> abrupt change of the gate potential Vg



BUILDUP OF IN-GAP STATES

Emergence of Andreev states due to the sudden coupling 0 — I's
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K. Wrzesniewski, B. Baran, R. Taranko, T. Domanski & I. Weymann, PRB 103, 155420 (2021).



BUILDUP OF IN-GAP STATES

Time-dependent observables driven by the quantum quench 0 — T's
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TIME-DEPENDENT TUNNELING CONDUCTANCE
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BOUND STATES OF CLASSICAL IMPURITY
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Correlation effects



Correlation effects

[ Experts: T. Novotny, M. Zonda, V. Pokorny, P. Zalom ]



SINGLY OCCUPIED VS BCS-TYPE CONFIGURATIONS
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SINGLY OCCUPIED VS BCS-TYPE CONFIGURATIONS

Quantum dot proximitized to superconductor can described by

Fop =Y eadl dy + Uy itaritay, — (Ts dLd] + he.)

o

Eigen-states of this problem are represented by:

1)  and |{) = doublet states (spin 1)
Z :gi -_|- Z :13 } ~ singlet states (spin 0)

Upon varrying the ratio ¢; /U, or T's /U, the doublet-singlet
transition can be induced between these ground states.



Dynamical phase transition



Dynamical phase transition

[ transition in time-domain ]
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GENERAL PROTOCOL

For t < 0 we assume the system Hj to be in its ground state:
H() |‘I’0> — Eg |‘Il()>

Next, at time ¢+ = 0, we impose an abrupt change (quench):
Hy, — H
For t > 0 the Schrédinger eqn i% |®(t)) = H|¥(t)) implies:
MOMET L )
Fidelity (similarity) of these states is:

(Wo| W (1)) = (Wole ™|, )

Loschmidt amplitude



QUENCH ACROSS STATIC QPT BOUNDARY
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K. Wrzesniewski, I. Weymann, N. Sedimayr & T. Domanski, Phys. Rev. B 105, 094514 (2022).



tNRG RESULTS: ABRUPT CHANGE OF I's
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K. Wrzesniewski, I. Weymann, N. Sedimayr & T. Domanski, Phys. Rev. B 105, 094514 (2022).
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CONCLUSIONS (PART 1)

Quantum impurity/dot embedded into bulk superconductor:

® induces the Rabi-type oscillations

(due to particle-hole mixing)

® |eading to the buildup (re-arrangement) of in-gap states

® which can undergo dynamical transitions

(qualitative changeover of the ground states)

These phenomena could be detected by the charge transport and

evidenced in time-resolved Andreev/Josephsnon conductance.



Part 2. topological superconductors

(Majorana-type quasiparticles)



MOTIVATION

The boundary modes (localized, chiral or Hinge states) of

topological superconductors realized in different dimensions
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Y. Zhao et al, Phys. Rev. B 110, 205111 (2024).




MOTIVATION

The boundary modes (localized, chiral or Hinge states) of

topological superconductors realized in different dimensions

Hinge state
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Y. Zhao et al, Phys. Rev. B 110, 205111 (2024).

can be detected, using the charge tunneling spectroscopies (with

attachment of external electrodes) in nonequilibrium conditions.
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HYBRID TOPOLOGICAL STRUCTURES

Topological superconductors can hybridize with
other (topologically trivial) objects:

—> through some interface,

—> forming boundary modes.

The simplest case:

—> single-level impurity + Majorana mode(s).



LEAKAGE OF MAJORANA MODE ON QUANTUM DOT

Hybrid structure: quantum dot + topological superconductor

Idea: Majorana mode is partly transferred onto quantum dot
where it can be detected by tunneling spectroscopy

M. Leijnse and K. Flensberg, Phys. Rev. B 84, 140501(R) (2011).



FIRST EXPERIMENTAL REALIZATION

Setup: Epitaxial Al shell (blue) grown on two facets of the hexa-
gonal InAs core (cyan), with a thickness of ~ 10 nm.
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Data: Transport measurements have been collected, varying
the magnetic field oriented parallelly to the nanowire.

M.T. Deng et al, Science 354, 1557 (2016).




EVIDENCE FOR MAJORANA LEAKAGE

Panel (A): Tunneling spectrum for resonant dot-wire coupling obtained
at ng = —8.5 V, Vg1 = 22 V, and ng = Vg3 = —10V.

Panel (B): Differential conductance at various values of the magnetic field.
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M.T. Deng et al, Science 354, 1557 (2016).



GATE-CONTROLLED BOUND STATES

Hybrid structure: trivial + topological segments of hanowire

Issue: bound states of trivial segment attached to topological sc
A. Ptok, A. Kobiatka, T. Domanski, Phys. Rev. B 96, 195430 (2017).



GATE-CONTROLLED BOUND STATES

Hybrid structure: trivial + topological segments of hanowire

Variation the trivial (Andreev) & topological (Majorana) states
vs the gate potential V, for several spin-orbit couplings .
A. Ptok, A. Kobiatka, T. Domanski, Phys. Rev. B 96, 195430 (2017).



What about correlations ?

/ induced by Coulomb repulsion /



CORRELATIONS VS LEAKAGE

Hybrid structure: Anderson impurity + topological superconductor
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Question: Does the Coulomb repulsion affect the Majorana
mode(s) leakage ?



CORRELATIONS VS LEAKAGE

Hybrid structure: Anderson impurity + topological superconductor
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-

Question: Does the Coulomb repulsion affect the Majorana
mode(s) leakage ? Is there any competition ?

J. Baranski, M. Baranska, T. Zienkiewicz & T. Domanski, J. Phys.: Cond. Matt. 37, 055302 (2025).



LOW ENERGY SCENARIO

For microscopic considerations we used the Anderson-type model
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LOW ENERGY SCENARIO

For microscopic considerations we used the Anderson-type model
2 & 37 A a & : o &
H = Hgp + A(d|f1 + Thd}) + i€
where the correlated quantum dot is described by
Hgop = E eddj;d,, + Ugnying
(o2
recasting the Majorana operators in terms of conventional fermions
i

O ST S S R
nl—ﬁ(f +f) d nz—ﬁ(f f)

Quasiparticle states of the quantum dot can be determined analytically.



SPIN-SENSITIVE LEAKAGE

Hybrid structure: Anderson impurity + topological nanowire
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Spectrum of spin-| electrons which are directly coupled to the

Majorana mode.



SPIN-SENSITIVE LEAKAGE

Hybrid structure: Anderson impurity + topological nanowire
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Spectrum of spin-|. electrons which are directly coupled to the
Majorana mode. Zero-energy mode appears near ¢; and ¢; + U,.
Notation: &; = e; + U, /2.




SPIN-SENSITIVE LEAKAGE

Hybrid structure: Anderson impurity + topological nanowire
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Spectrum of spin-1 electrons which are not directly coupled

to the Majorana mode.



SPIN-SENSITIVE LEAKAGE

Hybrid structure: Anderson impurity + topological nanowire
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Spectrum of spin-1 electrons which are not directly coupled

to the Majorana mode. Majorana features are missing.



Short topological nhanowire

/ overlapping Majorana modes /



OVERLAPPING MAJORANA MODES, ¢ # 0

Hybrid structure: quantum impurity + short topological nanowire
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Quasiparticle spectrum of the quantum dot obtained for ¢, # 0.
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Hybrid structure: quantum impurity + short topological nanowire
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d Cd
T tr<< O, ty v
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Quasiparticle spectrum of the quantum dot obtained for ¢, # 0.

Notice: bowtie features near the crossing points.




OVERLAPPING MAJORANA MODES, ¢ # 0

Hybrid structure: Anderson impurity + short topological nanowire
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OVERLAPPING MAJORANA MODES, ¢ # 0

Hybrid structure: Anderson impurity + short topological nanowire
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Quasiparticle spectrum of spin-| electrons obtained for ey # 0.

Appearance of two bowtie features inside the topological gap.




OVERLAPPING MAJORANA MODES, ¢ # 0

Hybrid structure: Anderson impurity + short topological nanowire
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OVERLAPPING MAJORANA MODES, ¢ # 0

Hybrid structure: Anderson impurity + short topological nanowire
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Quasiparticle spectrum of spin-1 electrons obtained for ey, # 0.

Majorana quasiparticles are completely absent.



Kondo vs Majorana

(means to distinguish them)



MAJORANA SIGNATURES IN AC-CONDUCTANCE

Quantum dot coupled to the topological nanowire under ac-voltage
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Question:
Can we resolve Majorana and Kondo states in ac-response ?

K.P. Wojcik, T. Domanski, . Weymann, Phys. Rev. B 109, 075432 (2024).



CONDUCTANCE OF ac-DRIVEN JUNCTION
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Spin-resolved conductance: Signatures of the Coulomb peak and
the Kondo effect can be clearly distinguished at finite-frequencies.

K.P. Wéjcik, T. Domanski, l. Weymann, Phys. Rev. B 109, 075432 (2024).



Time - resolved effects
(with Majorana modes)



TIME-RESOLVED LEAKAGE OF MAJORANA MODE

Hybrid structure: quantum dot attached to topological nanowire
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How much time does it take to transfer the Majorana mode on QD ?

Question:

J. Baranski, M. Baranska, T. Zienkiewicz, R. Taranko, T.Domanski, PRB 103, 235416 (2021).




TIME-RESOLVED LEAKAGE OF MAJORANA MODE

Transient effects:
—> att = 0 QD is coupled to the external N and S electrodes,
—> at t = 20 topological nanowire is attached to N-QD-S setup.
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(Majorana) states manifested in the differential conductance.



TIME-RESOLVED LEAKAGE OF MAJORANA MODE
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Time-dependent zero-bias conductance
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Majorana zero-bias feature establishes in about nhanoseconds.

J. Baranski, M. Baranska, T. Zienkiewicz, R. Taranko, T.Domanski, PRB 103, 235416 (2021).



Distant cross-correlations

/ transmitted via Majorana modes /



DYNAMICAL CROSS-CORRELATIONS

Two quantum dots interconnected via topological superconductor

N

topological  superconductor

F]\"
@ R ®
w_ w_r
Ts A

A2

S

Question: Is any nonlocal communication transmitted between
QD; and QD, through the Majorana boundary modes ?

R. Taranko, K. Wrze$niewski, I. Weymann, T. Domanski, Phys. Rev. B 110, 035413 (2024).



STEADY-LIMIT CONDUCTANCE
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Differential conductance G(V,t — oo) versus bias V for several
couplings A between QD; , and topological superconductor.

R. Taranko, K. Wrzesniewski, I. Weymann, T. Domanski, Phys. Rev. B 110, 035413 (2024).



TIME-RESOLVED CONDUCTANCE

Time-dependent conductance of the biased N-QD;-S junction
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Signatures of the (trivial) molecular bound states and

(topological) Majorana mode obtained fore; = 0, £, = 2.
R. Taranko, K. Wrze$niewski, I. Weymann, T. Domanski, Phys. Rev. B 110, 035413 (2024).




NONLOCAL CROSS-CORRELATIONS

Evolution of the interdot electron pairing Cy,(t) = <Eluliz¢ >
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The nonlocal electron pairing persists only over a short transient
time-scale. It could be detected by crossed Andreev refelections.

R. Taranko, K. Wrzesniewski, I. Weymann, T. Domanski, Phys. Rev. B 110, 035413 (2024).



Recent activities



MINIMAL KITAEV CHAIN

Effective triplet pairing can be realized using two quantum dots

interconnected by superconductor (Poor Man’s Majorana states)
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QD: w, wsox Tk U
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T. Dvir, ... & L.P. Kouwenhoven, Nature 614, 445 (2023).



MINIMAL KITAEV CHAIN

Two spin-polarized quantum dots in an InSb nanowire strongly

coupled by elastic co-tunneling and crossed Andreev reflection

T. Dvir, ... & L.P. Kouwenhoven, Nature 614, 445 (2023).




QUASIPARTICLE SPECTRUM OF QUANTUM DOTS

Issue: Molecular quasiparticle spectrum of the quantum dots
connected via the overlapping Majorana modes

G. Gorski, K.P. Wojcik, J. Baranski, . Weymann & T. Domanski, Sci. Rep. 14, 13848 (2024).



QUASIPARTICLE SPECTRUM OF QUANTUM DOTS
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Quasiparticles are shared by both quantum dots, however,

appearing with different spectral weights.
G. Gorski, K.P. Wojcik, J. Baranski, . Weymann & T. Domanski, Sci. Rep. 14, 13848 (2024).



QUANTUM ENTANGLEMENT OF DOUBLE DOTS

Setup: Quantum dots interconnected via short topological nanowire

o

Issue: Quantum dots acquire entanglement via Majorana qps

C. Jasiukiewicz, A. Sinner, |. Weymann, T. Domanski & L. Chotorlishvili,
Phys. Rev. B 111, 075415 (2025).



QUANTUM ENTANGLEMENT OF DOUBLE DOTS

Setup: Quantum dots interconnected via short topological nanowire
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Logarithmic negativity versus the energy levels QD’s obtained for ey 7# 0.



QUANTUM ENTANGLEMENT OF DOUBLE DOTS

Setup: Quantum dots interconnected via short topological nanowire
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SUMMARY (PART 2)

Quantum dots attached to topological superconductors:

—> allow for leakage of Majorana mode(s)

(no competition with on-site repulsion),

—> become nonlocally cross-correlated

(but only under non-equilibrium conditions),

—> acquire quantum entanglement

(solely via short topological superconductors).



