Stany związane

Andrzej Baran 18 stycznia 2017

UMCS

Macierzowy algorytm Numerowa

Algorytm Numerowa dla równania

$$\psi''(x) = f(x)\psi(x), \qquad (1)$$

(dla równania Schroedinger
a $f(x)=-2m(E-V(x))/\hbar^2)$ na sieci punktów x_i odległych
odjest

$$\psi_{i+1} = \frac{\psi_{i-1}(12 - d^2 f_{i-1}) - 2\psi_i(5d^2 f_i + 12)}{d^2 f_{i+1} - 12} + O(d^6)$$
(2)

gdzie np. $\psi_i = \psi(x_i)$. Można to przedstawić w postaci

$$-\frac{\hbar^2}{2m} \frac{(\psi_{i-1} - 2\psi_i + \psi_{i+1})}{d^2} + \frac{V_{i-1}\psi_{i-1} + 10V_i\psi_i + V_{i+1}\psi_{i+1}}{12}$$
$$= E \frac{(\psi_{i-1} + 10\psi_i + \psi_{i+1})}{12} . \tag{3}$$

Reprezentując ψ w postaci wektora $(\ldots, \psi_{i-1}, \psi_i, \psi_{i+1}, \ldots)$ i definiując macierze $A = (I_{-1} - 2I_0 + I_1)/d^2$, $B = (I_{-1} + 10I_0 + I_1)/12$, $V = \text{diag}(\ldots V_{i-1}, V_i, V_{i+1}, \ldots)$, gdzie I_p oznacza macierz jedynek na diagonali p i zer w pozostałej części, równanie to zapiszemy w postaci

$$-\frac{\hbar^2}{2m}A\psi + BV\psi = EB\psi.$$
(4)

Mnożąc przez B^{-1} mamy

$$-\frac{\hbar^2}{2m}B^{-1}A\psi + V\psi = E\psi.$$
(5)

Warunki brzegowe określimy, biorąc podmacierze $N \times N$ macierzy A, B. Odpowiada to warunkom $\psi_0 = \psi_{N+1} = 0$, co efektywnie oznacza umieszczenie potencjału w pudle o nieskończonych ścianach.

Alternatywą jest przyjęcie warunków okresowych z $A_{1,N} = A_{N,1} = 1/d^2$ i $B_{1,N} = B_{N,1} = 1/12$.

Chcemy znaleźć stany dla $E < E_{max}$. Minimalna długość fali de Broglie'a λ jest w tym wypadku równa $\lambda = h/\sqrt{2mE_{max}}$. Praktyka pokazuje, że wystarczającą dokładność otrzymuje się jeśli krok d sieci ma wartość równą jednego punktu na radian, tzn. $d = \lambda/2\pi$. Znajomość punktów zwrotnych x_t takich, że $V(x_t) = E_{max}$ oraz przyjęcie założenia, że w obszarach wzbronionych (E < V) dodajemy dodatkowo 2λ , daje dla liczby punktów sieci wartość $N = 2(x_t/d + 4\pi)$ zaokrągloną do liczby całkowitej.

Potencjał V = b|x| jest rozwiązywalny dokładnie co jest ważne dla sprawdzenia. R. Sch. jest

$$-\frac{\hbar}{2m}\frac{d^2\psi}{dx^2} + bx\psi = E\psi.$$
(6)

Przy oznaczeniach

$$x = as$$
, $a = \left(\frac{\hbar^2}{mb}\right)^{1/3}$, $W = \frac{\hbar^2}{ma^2}$, $\epsilon = \frac{E}{W}$, $\xi = (s - \epsilon)$ (7)

otrzymamy równanie Airy'ego, którego rozwiązaniem są funkcje Airy'ego: $Ai(\sqrt[3]{2}\xi)$ i $Bi(\sqrt[3]{2}\xi)$. Funkcja $Bi \to \infty$ dla $\xi \to \infty$ i nie jest wobec tego rozwiązaniem fizycznym, a więc

$$\psi_n(\xi) = C_n Ai(\sqrt[3]{2}\xi_n), \qquad (8)$$

gdzie C_n jest stałą normalizacyjną.

Rozwiązanie jest słuszne dla s > 0. Z własności symetrii potencjału wynika, że rozwiązania dla s < 0 otrzymamy z otrzymanych rozwiązań. Ponieważ

$$\psi^{even}(s) = \psi^{even}(-s), \qquad \psi^{odd}(s) = -\psi^{odd}(-s) \tag{9}$$

to żądamy by

$$\psi^{odd}(0) = Ai(-\sqrt[3]{2}\epsilon_k) = 0, \qquad \frac{d\psi_k^{even}}{ds} = Ai'(-\sqrt[3]{2}\epsilon_k) = 0, \qquad (10)$$

dla numerycznych rozwiązań nieunormowanych. Stałą normalizacyjn
ą ${\cal C}_n$ oblicza się w
g, wzoru

$$C_n = 2^{-1/3} \left[\int_{-\sqrt[3]{2}\epsilon_n}^{\infty} Ai(\xi_n)^2 d\xi_n \right]^{-1/2} .$$
 (11)

Równania (10) określają wartości własne dla rozwiązań *odd* i *even*. Dochodzimy do wniosku, że energie własne E_n są dane przez

$$E_n = \epsilon_n W = \epsilon_n \left(\frac{\hbar^2 b^2}{m}\right)^{1/2}.$$
 (12)

Rysunek 1: Przykład rozwiązań dokładnych w przypadku $V \sim |x|$ dla n = 50. Punkty odpowiadaja rozwiązaniu z wykorzystaniem macierzowego algorytmu Numerowa.

Rysunek 2: Błąd rozwiązań Numerowa w przypadku $V\sim |x|$ dla n=50.Pokazano różnicę $\psi_{\rm Numerow}-\psi_{\rm analityczne}.$

Tablica 1: Comparison of exact and numerical results for the quantized energies (in scaled units, see text) of the |x| potential. The numerical results are calculated on an N = 278 point grid with a spacing of 0.158 in scaled distance units.

	n=1	2	3	4	10	20	50
Exact	0.8086	1.8558	2.5781	3.2446	6.3053	10.182	18.947
Numerov	0.8099	1.8557	2.5785	3.2445	6.3049	10.181	18.936
3-pt	0.8089	1.8529	2.5728	3.2358	6.2717	10.094	18.63

W trzecim wierszu Tablicy zamieszczono wyniki obliczeń w przypadku zastąpienia drugiej pochodnej formułą 3-punktową, co jest równoważne przyjęciu, że macierz B = I. Wyniki dla dużych n są nieco gorsze od dokładnych wyników metody Numerova.

Zadania I

Napisać procedurę obliczania sferycznych funkcji Bessela $j_l(x)$ i $n_l(x)$. Wykorzystać związek rekurencyjny

$$s_{l+1}(x) + s_{l-1}(x) = \frac{2L+1}{x} s_l(x), \qquad (13)$$

gdzie s_l oznacza albo j_l , albo n_l . Wykorzystać wyrażenia dla j_l , n_l , l = 0, 1:

$$j_0(x) = \frac{\sin x}{x}, \qquad n_0(x) = -\frac{\cos x}{x}$$
 (14)

$$j_1(x) = \frac{\sin x}{x^2} - \frac{\cos x}{x}, \quad n_l(x) = \frac{\cos x}{x^2} - \frac{\sin x}{x}.$$
 (15)

Relacje rekurencyjne mają dwa niezależne rozwiązania, z których jedno może silnie rosnąć z l. Dlatego też, ze względu na błędy numeryczne, rozwiązanie, które nas interesuje, może być niestabilne (błędy zaokrągleń). Zdarza się to w przypadku j_l dla l znacznie większych niż x. Dla obliczenia j_l należy więc stosować metodę zstępującą. Kładziemy $s_{l_{\max}+1} = 0$, a $s_{l_{\max}} = \delta$, gdzie δ jest małą liczbą. Rekurencję prowadzimy w dół, aż do interesującej nas wartości l. Zauważmy, że normalizacja rozwiązania jest

Zadania II

wyznaczona przez δ , a więc jest w tym sensie dowolna. Aby uzyskać właściwą wartość j_l należy rekurencję prowadzić do l=0i następnie, korzystając z faktu, że $(j_0(x) - x j_1(x)) \cos x + x j_0(x) \sin x = 1$ wyznaczyć stałą normalizacyjną.

Górna wartość $L_{\max},$ od której zaczynamy rekurencję powinna być w miarę duża. Przyjąć, że

$$L_{\max} = \max\left\{ \left[\frac{3[x]}{2} + 20, l + 20 \right] \right\},\$$

gdzie [x] oznacza największą liczbę całkowitą mniejszą od x, a l odpowiada wartości l obliczanej funkcji Bessela.

Napisać funkcję obliczając
ą $j_l(\boldsymbol{x}).$ Sprawdzić wynik, przyjmując, że

 $j_5(1.5) = 6.69620596 \times 10^{-4}, \quad n_5(1.5) = -94.2361101.$

- J.L. Quiroz Gonzáles, D. Thompson: Getting started with Numerov Method, *Computers in Physics*, **11**, Sep/Oct 1997.
- Stephen B. Haley, An Underrated entanglement: Riccati and Schrödinger equations, Am. J. Phys., 65, March 1997, pp 237–243.
- Mohandas Pillai, Joshua Goglio, and Thad G. Walkera. Matrix Numerov method for solving Schrödinger's equation. Am. J. Phys., 80 (11), November 2012, p 1017-1019.
- Computation of special functions. Shanjie Zhang and Jianming Jin. John Wiley Sons, Inc. 1996.

Thank you!

Całkę z równania (11) dla normy można zapisać w postaci

$$I_m = \int_{-\sqrt[3]{2}\epsilon_m}^{\infty} Ai(s - \epsilon_m)^2 ds$$

= $\sum_{k=1}^m \int_{z_m}^{z_{m-1}} Ai^2(s) ds + \int_{z_1}^0 Ai^2(s) ds + \int_0^\infty Ai^2(s) ds$, (16)

gdzie z_k jest kolejnym zerem Ai(s), Ai'(s) (Patrz Rysunek (3). Ostatnią całkę można obliczyć analitycznie. Jest ona równa

$$\int_0^\infty Ai^2(s)ds = \frac{1}{3^{2/3}\Gamma^2(1/3)} = 0.06698748377966397.$$
(17)

Pozostałe całki oblicza się numerycznie metodą Gaussa lub Gaussa-Kronroda między kolejnymi zerami Ai, Ai' i miedzy z_1 i 0. Norma ψ

Rysunek 3: Funkcja Ai(s) i jej pochodna Ai'(s).

Zera funkcji Airy'ego znajdujemy numerycznie, korzystając, np. z procedur numerycznych z pracy Shanjie Zhang i Jianming Jin [4].