
Planety
Prawa Keplera

0

Elipsa

• Merkury, Wenus, Ziemia,
Mars,…

• Bez inklinacji

• Orbity, niezmienniki

• Mimośród

• Semilatus rektum: l
semimajor axis: a

Elipsa

„okrąg skalowany
y-czynnikiem”

Równanie elipsy dla F
w centrum układu
współrzędnych:

Elipsa

Jak?

Więc

Perihelium, aphelium

R. Keplera

(II)

(Równanie Keplera)
Zadanie

(III)

JD2000

Dzień Juliański: 1-1-4712 —> …

jd = 2 456 579 = 20.03.2019 - 1szy dzień wiosny

dzień tygodnia = 1 + JD mod 7

Program

program inner_planets
 implicit none
 real, parameter :: PI = 3.14159265358979324
 real, parameter :: DEG = (180.0/PI)
 real, parameter :: RAD = PI/180.0
 character*7, dimension(4) :: planet
 real, dimension(4) :: e, de, L, dL, w, dw
 !
 integer :: i, x, year, month, day, j, julian
 real :: T, g2j, y, m, d
 real, dimension(4) :: ec, ma, ml, th, v
 ! --
 ! set constants - Keplerian elements from Standish + corrections
 ! (For other planets see the end of the file)
 planet = ["Mercury", "Venus ", "Earth ", "Mars "]
 e = [0.20563661, 0.00676399, 0.01673163, 0.09336511]
 de = [0.00002123,-0.00005107,-0.00003661, 0.00009149]
 L = [252.25166724, 181.97970850, 100.46691572, -4.56813164]
 dL = [149472.67486623, 58517.81560260, 35999.37306329, 19140.29934243]
 w = [77.45771895, 131.76755713, 102.93005885, -23.91744784]
 dw = [0.15940013, 0.05679648, 0.31795260, 0.45223625]
 ! --
 print*, "solar"
 print*, "True anomaly of Mercury, Venus, Earth and Mars"
 do
 print*, "Input date: day month year, e.g., 20 03 2019"
 read(*,*,err=1) day, month, year
 if (year<-3000 .or. year>3000) then
 print*, "Error: year outside allowed range -3000 <= year <= +3000!"
 stop
 end if
 write(*,"(i4,1h-,i2,1h-,i2)") year, month, day
 go to 2
 end do
1 print*,">>> Wrong input date. Try again"
2 continue

if (year==1582 .and. month==10 .and. day>4 .and. day<15) then
 print*, "This date never existed!"
 stop
 end if
 !
 ! julian day
 j = Julian(year,month,day)

 ! julian century
 x = j - Julian(2000,1,1) !2451545 = days since 2000-01-01
 T = (x+0.)/36525.0 ! julian centuries

 do i=1,4
 ec(i) = e(i)+de(i)*T ! eccentricity
 ml(i) = L(i)+dL(i)*T ! mean longitude
 v(i) = w(i)+dw(i)*T ! longitude of perihelion
 ma(i) = (ml(i)-v(i))*RAD ! mean anomaly
 th(i) = theta(ma(i),ec(i)) ! eccentric anomaly
 ! true anomaly
 ma(i) = 2*atan(sqrt((1+ec(i))/(1-ec(i)))*tan(th(i)/2))*DEG+v(i)
 end do

print*, "julian day: ", j
 do i=1,4
 write(*,"(a, a7,1x,2f9.3)") "Perihelium: ", planet(i), ma(i), v(i)
 end dD
containS
 …
end program inner_planets

! using g2j(...)
 !y = year; m = month; d = day + 0.5 ! add half a day here
 !j = int(g2j(y,m,d))
 !! Check
 !! 1957 October 4.81 should = 2436116.31
 !print*, '1957 October 4.81 should = 2436116.31 ',g2j(1957,10,4.81)
 !! 333 January 27 at 1200 hrs UT = 1842713.0
 !print*, '333 January 1200 hrs UT = 1842713.0 ', g2j(333,1,27.5)

! ---
 ! Solve Kepler equation
 ! ---
 function theta(m, e) ! solve Kepler equation
 implicit none
 ! theta - eps*sin theta = m
 real theta, m, e, t, d, dt
 if (m > PI) m = m - 2*PI ! normalize m to the range -PI <= m <= PI
 if (m < -PI) m = m + 2*PI
 t = m + e*sin(m)
 do while (abs(dt) > 1e-6)
 d = m - (t - e*sin(t))
 dt = d/(1-e*cos(t))
 t = t + dt
 end do
 theta = t
 return
 end function theta

! ---
! Julian - Gregorian date to Julian
! ---
function Julian(year, month, day)
 implicit none
 integer :: Julian, year, month, day, x
 integer, dimension(0:12) :: em
 em = [0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334]
 !
 ! Julian era
 if (year < 1582 .or. year == 1582 .and. month*100+day < 1005) then
 julian = 1721423 + day + em(month) + (year-1)*365 + gauss_floor(year-1,4)
 else ! Gregorian era
 x = year - 2001
 julian = 2451910 + day + em(month) + x*365 + gauss_floor(x,4) - &
 gauss_floor(x,100) + gauss_floor(x,400)
 end if
 if (month > 2) julian = julian + leap(year) ! correction for leap year
 !
contains
 function gauss_floor(a, b)
 implicit none
 integer a, b, gauss_floor
 ! (a/b) = Gauss parenthesis
 gauss_floor = a/b
 if (a < 0 .and. mod(a,b) .ne. 0) then ! negative numerator? -
 gauss_floor = gauss_floor - 1 ! substract 1
 end if
 end function gauss_floor
 function leap(y)
 implicit none
 integer y, leap, i
 ! leap = 1 if year is a leap year otherwise leap = 0
 i = 0
 if (mod(y,4) == 0) i = 1
 if (y > 1582 .and. mod(y,100) == 0 .and. mod(y,400) /= 0) i = 0
 leap = i
 end function leap
end function Julian

! ---
! g2j - Gregorian date to Julian
! ---
function g2j(year, month, day)
 implicit none
 real, intent(in) :: year, month, day
 real :: y,m,d,a,b
 real :: g2j
 !
 ! Here is a Fortran piece of code derived from Jean Meuus' book
 ! "Astronomical Algorithms" to compute the Julian Day (JD) for a
 ! given Gregorian date and time. This formula uses the astronomical
 ! definition of JD in that it includes the year '0', whereas the
 ! historical definition does not.
 !
 ! Convert a Gregorian Date to a Julian Day using Jean Meeus formula 7.1
 !
 y = year; m = month; d = day
 if (m < 3) then
 y = y-1
 m = m+12
 end if
 if (y >= 1582) then
 a = int(y / 100)
 b = 2. - a + int(a / 4)
 else
 b = 0
 end if
 g2j = int(365.25 * (y + 4716)) + &
 int(30.6001 * (m + 1)) + d + b - 1524.5
 return

 !! Examples:
 !! 1957 October 4.81 should = 2436116.31
 !! 333 January 27 at 1200 hrs UT = 1842713.0

end function g2j

Pozycje planet

20 20.03.2019 - wiosna

Całkujemy

Po jednym obiegu: czyli

R. Keplera

 FUNCTION JD(L,M,N,J1G0)

C OBLICZA DZIEN JULIANSKI Z DATY KALENDARZA GREGORIANSKIEGO [J1G0
C = 0] LUB JULIANSKIEGO [J1G0 = 1] (L = ROK, M = MIESIAC, N =
C DZIEN MIESIACA). ALGORYTM DZIALA POPRAWNIE OD 1 MARCA -100100 R.
C (OBU KALENDARZY).
C
 JD=(L+(M-8)/6+100100)*1461/4+(153*MOD(M+9,12)+2)/5+N-34840408
 IF(J1G0.LE.0) JD = JD-(L+100100+(M-8)/6)/100*3/4+752
 RETURN
 END
 SUBROUTINE DATA(JD,L,M,N,J1G0)

C OBLICZA DATE GREGORIANSKA LUB JULIANSKA (L = ROK, M = MIESIAC
C [STYCZEN: M=1], N = DZIEN MIESIACA) Z DNIA JULIANSKIEGO (JD) W
C POLUDNIE. STOSOWALNOSC OD JD = -34839655, TJ. OD ROKU -100100
C KALENDARZA GREGORIANSKIEGO [J1G0=0] ALBO JULIANSKIEGO [J1G0=1].
C
 J = 4*JD+139361631
 IF(J1G0.LE.0) J = J+(4*JD+183187720)/146097*3/4*4-3908
 I = MOD(J,1461)/4*5+308
 N = MOD(I,153)/5+1
 M = MOD(I/153,12)+1
 L = J/1461-100100+(8-M)/6
 RETURN
 END

https://www.astro.uni.torun.pl/~kb/Artykuly/PA/Juldat.htm
Postępy Astronomii
Tom XXXV (1987), Zeszyt 4, 275–279.
K. Borkowski. DNI JULIAŃSKIE I DATY KALENDARZOWE

http://postepy.camk.edu.pl/

