Planety

Prawa Keplera

Elipsa

e Merkury, Wenus, Ziemia,
Mars,...

e Bez inklinacji

e Orbity, niezmienniki

e Mimosrod

o Semilatus rektum: [

semimajor axis: a . 2

Elipsa

a
z2 1 (_y)2 — 2

b

,OKrag skalowany
y-czynnikiem”

b/a =1/1— g2

Rownanie elipsy dla F [
w centrum uktadu r
wspotirzednych:

. V1 — g2
sinf = SN

1+ ecoso 2N\

COS P + € | AMABNE
cos 0 = < F T

1+ €ecoso /
ind — V1 —¢e2sinf

1 —e¢cosf

cosf — ¢ ? _ JLte Q

COS ¢ = tamZ_\/l—stam2

1 —ecos@

Punkt Q:
asinf = ay/b
acosf@=x+e

Wiec

rsin @

sinf) = y/b = 7

xr —+ €
cos 0 = = ...
a

Jak?

V1 — g2

- 1+ ecoso

Perihelium, aphelium

R. Keplera

L=7rXxrv

j;:TX'i'::O

Viadt =r*dt o=G(M+m) (1)
2 . .
f —esinf = % (t — to) (Rownza:éz I:(i::plera)

a’ G(M + m)
o (1)
T 472

JD2000

Dzien Julianski: 1-1-4712 —> ...
jd =2 456 579 = 20.03.2019 - 1szy dzien wiosny

dzien tygodnia =1 + JD mod 7

Program

program inner_planets
implicit none

real, parameter t: PI = 3.14159265358979324
real, parameter :: DEG = (180.0/PI)

real, parameter :: RAD = PI/180.0
character*7, dimension(4) :: planet

real, dimension(4) :: e, de, L, dL, w, dw

integer :: i, x, year, month, day, j, julian

real :: T, g2j, y, m, d

real, dimension(4) :: ec, ma, ml, th, v

| e
! set constants - Keplerian elements from Standish + corrections

! (For other planets see the end of the file)

planet = ["Mercury", "Venus ", "Earth ", "Mars "1

e [0.20563661, 0.00676399, 0.01673163, 0.09336511]

de = [0.00002123,-0.00005107,-0.00003661, 0.00009149]

L = [252.25166724, 181.97970850, 100.46691572, -4.56813164]
dL = [149472.67486623, 58517.81560260, 35999.37306329, 19140.29934243]
w = [77.45771895, 131.76755713, 102.93005885, -23.91744784]

dw = [0.15940013, 0.05679648, 0.31795260, 0.45223625]

print*, "solar"
print*, "True anomaly of Mercury, Venus, Earth and Mars"

do
print*, "Input date: day month year, e.g., 20 03 2019"
read(*,*,err=1) day, month, year
if (year<-3000 .or. year>3000) then
print*, "Error: year outside allowed range -3000 <= year <= +3000!"
stop
end if
write(*,"(i4,1h-,i2,1h-,i2)") year, month, day
go to 2
end do

1 print*,">>> Wrong input date. Try again"”
2 continue

if (year==1582 .and. month==10 .and. day>4 .and. day<15) then
print*, "This date never existed!"”

stop
end if
!
! julian day
j = Julian(year,month,day)
! julian century
x = j - Julian(2000,1,1) !2451545 = days since 2000-01-01
T = (x+0.)/36525.0 ! julian centuries
do i=1,4
ec(i) = e(i)+de(i)*T eccentricity

mean longitude
longitude of perihelion
mean anomaly

eccentric anomaly

ml(i) = L(i)+dL(i)*T

v(i) w(i)+dw(i)*T

ma(i) = (ml(i)-v(i))*RAD

th(i) = theta(ma(i),ec(i))

! true anomaly

ma(i) = 2*atan(sqrt((l+ec(i))/(l-ec(i)))*tan(th(i)/2))*DEG+v (i)
end do

print*, "julian day: ", j
do i=1,4
write(*,"(a, a7,1x,2£9.3)") "Perihelium: ", planet(i), ma(i), v(i)
end dD
contains

end program inner_planets

using g2j(...)

ly = year; m = month; d = day + 0.5 ! add half a day here

j = int(g2j(y,m,d))

!
! 1957 October 4.81 should = 2436116.31
print*, '1957 October 4.81 should = 2436116.31
! 333 January 27 at 1200 hrs UT = 1842713.0

P

',g25(1957,10,4.81)

rint*, '333 January 1200 hrs UT = 1842713.0 ', g2j(333,1,27.5)

Solve Kepler equation

function theta(m, e)

implicit none
! theta - eps*sin theta =
real theta, m, e, t, d, dt
if (m > PI) m = m - 2*PI
if (m < -PI) m = m + 2*PI
t =m+ e*sin(m)
do while (abs(dt) > 1le-6)
d =m- (t - e*sin(t))
dt = d/(l-e*cos(t))
t =t + dt
end do
theta = t
return

end function theta

m

solve Kepler equation

normalize m to the range -PI <= m <= PI

|
! Julian - Gregorian date to Julian
| e o = = = = = = = = = = = = = = = = o — — — — ——— —
function Julian(year, month, day)
implicit none
integer :: Julian, year, month, day, x
integer, dimension(0:12) :: em
em = [0, O, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334]
|

! Julian era
if (year < 1582 .or. year == 1582 .and. month*100+day < 1005) then
julian = 1721423 + day + em(month) + (year-1)*365 + gauss_floor(year-1,4)
else ! Gregorian era
x = year - 2001
julian = 2451910 + day + em(month) + x*365 + gauss_floor(x,4) - &
gauss_floor(x,100) + gauss_floor(x,400)
end if

if (month > 2) julian = julian + leap(year) ! correction for leap year
|

contains

function gauss_floor(a, b)
implicit none
integer a, b, gauss_floor
! (a/b) = Gauss parenthesis
gauss_floor = a/b
if (a < 0 .and. mod(a,b) .ne. 0) then

gauss_floor = gauss_floor - 1

end if

end function gauss_floor

function leap(y)
implicit none
integer y, leap, i
! leap = 1 if year is a leap year otherwise leap = 0

negative numerator? -
substract 1

i=0

if (mod(y,4) == 0) i =1

if (y > 1582 .and. mod(y,100) == .and. mod(y,400) /= 0) i =0
leap = i

end function leap
end function Julian

function g2j(year, month, day)
implicit none
real, intent(in)
real
real

year, month, day
y/m,d,a,b
g2j

Here is a Fortran piece of code derived from Jean Meuus' book
"Astronomical Algorithms" to compute the Julian Day (JD) for a
given Gregorian date and time. This formula uses the astronomical
definition of JD in that it includes the year '0', whereas the
historical definition does not.

= year; m = month; d = day
f (m < 3) then
y =vy-1
m = m+l2
end if
if (y >= 1582) then
a = int(y / 100)
b=2. -a+ int(a / 4)
else
b=20
end if
g2j = int(365.25 * (y + 4716)) + &
int(30.6001 * (m + 1)) + d + b - 1524.5
return

!
!
!
!
!
!
!
! Convert a Gregorian Date to a Julian Day using Jean Meeus formula 7.1
|
y
i

Examples:
1957 October 4.81 should = 2436116.31
333 January 27 at 1200 hrs UT = 1842713.0

end function g2j

Pozycje planet

R. Keplera \/ZE dt =12 dqﬁ
r =a(l — € cos)
[
1 + €cos ¢

Viadt =a*(1 — € cos0)? do
—a’\/1 — €2(1 — e cos 0) db
Via

Catkujemy t=60 —ecsind
a2y 1 — g2
Po jednymobiegu: 6 =27 oraz t=T czyli
2T ,
—t =60 —¢csinf

T

(ol ol e eI

FUNCTION JD(L,M,N,J1GO)

OBLICZA DZIEN JULIANSKI Z DATY KALENDARZA GREGORIANSKIEGO [J1GO
= 0] LUB JULIANSKIEGO [J1GO = 1] (L = ROK, M = MIESIAC, N =
DZIEN MIESIACA). ALGORYTM DZIALA POPRAWNIE OD 1 MARCA -100100 R.
(OBU KALENDARZY).

JD=(L+(M-8)/6+100100)*1461/4+(153*MOD (M+9,12)+2) /5+N-34840408
IF(J1GO0.LE.O) JD = JD-(L+100100+(M-8)/6)/100*3/4+752
RETURN

END

SUBROUTINE DATA(JD,L,M,N,J1GO)

OBLICZA DATE GREGORIANSKA LUB JULIANSKA (L = ROK, M = MIESIAC
[STYCZEN: M=1], N = DZIEN MIESIACA) Z DNIA JULIANSKIEGO (JD) W
POLUDNIE. STOSOWALNOSC OD JD = -34839655, TJ. OD ROKU -100100
KALENDARZA GREGORIANSKIEGO [J1GO=0] ALBO JULIANSKIEGO [J1GO=1].

J = 4*JD+139361631

IF (J1G0.LE.O) J = J+(4*JD+183187720)/146097+*3/4*4-3908
I = MOD(J,1461)/4*5+308

N = MOD(I,153)/5+1

M = MOD(I/153,12)+1

L = J/1461-100100+(8-M)/6

RETURN

END

https://www.astro.uni.torun.pl/~kb/Artykuly/PA/Juldat.htm

Postepy Astronomii
Tom XXXV (1987), Zeszyt 4,275-279.
K. Borkowski. DNI JULIANSKIE I DATY KALENDARZOWE

http://postepy.camk.edu.pl/

