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Cel

SVD - singular-value decomposition;Metoda rozwiązywania problemów (wartości własne rzeczywistej macierzysymetrycznej, rozwiązywanie ukłądu równań liniowych, najmniejsza odległość wmetodzie najmniejszych kwadratów, ...) jednocześnie diagnozująca problem.W szczególności, bardzo różne co do wielkości tzw. wartości singularne wskazująna liniowe zależności między danymi. Liniowość prowadzi do problemówobliczeniowych ponieważ małe zmiany w danych prowadzą do dużych zmianw wynikach.
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Przykład i

Rozpatrzmy 3 płaskie wektory:
A = (1, 0)T
B = (1, 0.1)T
C = (0.95, 0.1)T

Wektory C i B są bardzo podobne. Tworzą z wektorem A w przybliżeniu kąt 6◦.Jednak kiedy kąty między A+ B i A+C są prawie takie same, bliskie 0.07◦ to kątmiędzy A − B i A −C wynosi 26.57◦.
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Przykład ii

Z drugiej strony, wektory
A = (1, 0)T
D = (0, 1)T
E = (0, 0.95)T

dają dla A+D i A+ E oraz D −A i E − A kąty równe w przybliżeniu 1.5◦.
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Przykład iii

PodsumowanieSuma wektorów kolinearnych jest dobrze określona, ich różnica nie jest.Suma i różnica wektorów niekolinearnych jest dobrze określona.
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Algorytm SVD i

Praca z macierzami — dekompozycje macierzy.
Dekompozycja QR
A = QR, A(m×n), QTQ = QQT = 1m , Rij = 0 dla i > j .
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Algorytm SVD ii

Dekompozycja SVDJeśli R = SV , gdzie S(m×n), Sij = 0 dla i 6= j , V (n × n), VTV = VVT = 1n ÊÏ A = QRS.Ponieważ zera poniżej diagonali R i S powodują, że kolumny m + 1, . . . , n macierzy Q sądowolne, więc można je opuścić, otrzymując macierz U(m×n) taką, że UTU = 1n . Opuszczeniewierszy n + 1, . . . ,m obu macierzy R i S pozwala zapisać rozkład w postaci A = UR = USVT ,gdzie A(m×n), U(m×n) a UTU = 1n , R(n × n) jest macierzą górną trójkątną, S(n × n) jestdiagonalna, a V (n × n) jest ortogonalna.
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Algorytm SVD iii

Dekompozycja LU
A(n × n) = LU gdzie L - dolna macierz trójkątna, U - górna macierz trójkątna.
Dekompozycja CholeskiegoJeśli A jest symetryczna to A = LLT . (Postać skalowana: A = LDU , gdzie D -diagonalna.)

7



Algorytm SVD iv

ZadaniePokazać, że jeśli A = USVT to macierz A+ = VS+UT , gdzie S+
ii = 1/Sii dla Sii 6= 0i S+

ii = 0 dla Sii = 0 spełnia równości:
AA+A = A , (AA+)T = AA+ , A+AA+ = A+ , (A+A)T = A+A .
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Algorytm svd

Problem: Znaleźć macierz ortogonalną V (n × n), która transformuje macierz
A(m×n) w macierz B o ortogonalnych kolumnach bi , tzn.

B = AV = (b1, b2, . . . , bn) (1)
gdzie

bTi bj = S2
i δij (2)oraz

VVT = VTV = 1n . (3)Przyjmiemy, że Si są dodatnie i będziemy je nazywać wartościami singularnymimacierzy A.
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Algorytm svd

Wektory
uj = bjSj (niezerowe) (4)są jednostkowymi wektorami ortogonalnymi. Zbierając uj w macierz m×n, a Sj wmacierz diagonalną S można zapisać

B = US (5)
gdzie

UTU = 1n . (6)Dla pozostałych, zerowych wartości Sj , konstruujemy wektory uj ortogonalne dopozostałych lub przyjmujemy je jako bardzo małe. Kombinacje (1) i (6) daje
AV = US , lub A = USVT , (7)

co jest rozkładem SVD macierzy A.
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Metody

• Obroty
• Metoda Givensa
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Zastosowanie do problemu najmniejszych kwadratów

Problem. Rozwiązać układ równań Ax = b metodą najmniejszych kwadratów.Rozwiązanie. Zdefiniować wektor reszt r = b − Ax i znaleźć takie x by wektor r był minimalnyw sensie normy ||r||E = (rTr)1/2 = √∑i r2
i . SVD dla A pozwala zapisać rozwiązanie równania

Ax = b w postaci
x = VS+UTb , (8)gdzie S+

i = 1/Si dla Si 6= 0 i Si = 0 w przypadku Si = 0. Tak zdefiniowana S+ jest niepraktycznanumerycznie (zero jest rzadkim wynikiem...) Przyjmiemy, że
S+
i = {1/Si , dla Si > q ,0 , dla Si ≤ q ,

(9)
gdzie q jest zadane przez użytkownika.
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Przykłady...

Permitting S+ to depend on a user-defined tolerance places upon him/her the responsibility fordeciding the degree of linear dependence in his/her data. In an economic modelling situation,for instance, columns of U corresponding to small singular values are almost certain to belargely determined by errors or noise in the original data. On the other hand, the samecolumns when derived from the tracking of a satellite may contain very significant informationabout orbit perturbations. Therefore, it is not only difficult to provide an automatic definitionfor S+, it is inappropriate. J C Nash
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Przykłady... i

Znaleźć SVD macierzy
A =


1 11 11 11 −1


Obliczamy ATA

ATA =


1 11 11 11 −1
 = [ 4 22 4

]
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Przykłady... ii

i wartości własne ATA
|ATA − λI| = det ∣∣∣∣∣ 4− λ 22 4− λ

∣∣∣∣∣ = (2− λ)(6− λ)
Stąd √6 i √2 są wartościami singularnymi macierzy A. Wektory własne związanez wartościami własnymi 6 i 2 są równe

v1 = (1/√2, 1/√2)T , v2 = (1/√2, 1/√2)T .
Dalej

AAT =


2 2 2 02 2 2 02 2 2 00 0 0 2

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Przykłady... iii

Wektory własne jednostkowe należące do wartości własnych λ = 6 i λ = 2 są
u1 = 1/√3, 1/√3, 1/√3, 0)T , u2 = (0, 0, 0, 1)T .

Aby uzupełnić u1 i u2 do bazy ortonormalnej w R4 . . .Płaszczyzna x + y + z = 0 jest zbiorem wektorów w R3 ortogonalnych do wektora
n = (1, 1, 1)T . Jednym z takich wektorów jest σ1 = (1, −1, 0)T . Inny możnawyznaczyć z iloczynu wektorowego σ2 = σ1 × n = (−1, −1, 2). Normalizując obawektory i zanurzając je w R4 (zerowa 4-ta składowa) otrzymamy bazęortonormalną R4.
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Przykłady... iv

SVD macierzy A jest A = USVT , gdzie
U =


1/√3 0 1/√2 −1/√61/√3 0 −1/√2 −1/√61/√3 0 0 2/√60 1 0 1


S = [ √6 0 0 00 √2 0 0

]

V = [ 1/√2 √
/21/√2 −1/√2
]

Sprawdzić.
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Zadanie

Znaleźć SVD macierzy A = ( 1 21 2
)

Odpowiedź: U = [(1/√2, −1√2), (1/√2, 1/√2)], S = diag(√10, 0), V = [(1/√5, −2/√5), (2/√5, 1/√5)]
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Metoda najmniejszych kwadratów, χ2
Dane (xi, yi) , i = 1, 2, . . . , N modelujemy za pomocą linii prostej y(x) = a + bxminimalizując funkcję χ2:

χ2(a, b) = N∑
i=1
(
yi − a − bx

σi

)2 (10)
gdzie σi jest błędem wielkości yi . Wartości parametrów a i b otrzymamy,minimalizując χ2. Wprowadzając oznaczenia

S = N∑
i=1 1/σ2

i , Sx =∑xi/σ2
i , Sy =∑yi/σ2

i ,

Sxx =∑x2
i /σ2

i , Sxy =∑xiyi/σ2
i , (11)

otrzymamy
a = SxxSy − SxSxy∆ ,

b = SSxy − SxSy∆ , (12)
gdzie ∆ = SSxx − S2

x .



Błędy parametrów a i b i

Analiza propagacji błędów w danych yi pokazuje, że błędy w dowolnej funkcji
f = f (xi, yi) określa wariancja σ2

f

σ2
f = N∑

i=1 σ
2
i

(
∂f
∂yi

)
. (13)

W rozważanym przypadku
σ2
a = Sxx/∆ , σ2

b = S/∆ . (14)
Dodatkowo, tzw. kowariancja a i b jest

Cov(a, b) = −Sx/∆ . (15)
Współczynnik korelacji rab między nieokreślonością a i nieokreślonością b jestrówny

rab = −Sx√
SSxx

. (16)
rab > 0 – błędy w a i b są prawdopodobnie jednakowego znaku (korelacja)
rab < 0 — błędy sa przeciwnego znaku (antykorelacja).



Błędy parametrów a i b ii

Dobroć dopasowania modelu do danych (yi) pozwala ocenić znaczenie parametrów.Prawdopodobieństwo, że wartość χ2 (Równanie 10) jest przypadkowa jest daneprzez
Q(N − 22 , χ

22 ) , (17)
gdzie

Q(a, x) = Γ(a, x)Γ(a) . (18)
Tutaj Γ(. . . ) jest funkcją gamma Eulera lub niepełną funkcją gamma:

Γ(x) = ∫ ∞
0 tx−1e−t dt (19)

Γ(a, x) = ∫ x

0 e−t ta−1 dt . (20)



Metoda najmniejszych kwadratów, program

Formuły (12) wnoszą do obliczeń błędy numeryczne. Zapiszemy je inaczej (docelów programistycznych), definiując
ti = 1

σi

(
xi −

Sx
S

)
, i = 1, 2, . . . , N , Stt = N∑

i=1 t
2
i . (21)

Wtedy
b = 1

Stt

∑ tiyi
σi

, a = Sy − bSx
S (22)

σ2
a = 1

S

(1 + S2
x

SStt

)
, σ2

b = 1
Stt

, (23)
Cov(a, b) = − Sx

SStt
, rab = Cov(a, b)

σaσb
(24)

Zadania.
1. Sprawdzić formuły (21)–(24).2. Napisać program fit(...), który oblicza wielkości a, b, σ2

a , σ2
b , rab , orazCov(a, b) dla zbioru danych (xi, yi), i = 1, 2, ..., N .



Metoda najmniejszych kwadratów, SVD

Dane (ti, yi) , i = 1, 2, . . . ,m modelujemy za pomocą funkcji
f (t) = c1φ1(t) + c2φ2(t) + · · ·+ φn(t) , (25)

gdzie φj są zadanymi funkcjami, a ci parametrami modelu. Oznaczmy
aij = φj (ti) . (26)

Jeśli y oznacza wektor o elementach yi , a c wektor o składowych ci to równanie∑
j
cjφj (ti) ≈ yi , i = 1, 2, . . . ,m , (27)

przybliża dane (ti, yi). Można je zapisać w postaci
Ac ≈ y (28)

Równanie to rozwiążemy metodą SVD macierzy A.


	Dodatek

