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Cel

SVD - singular-value decomposition;

Metoda rozwigzywania problemoéw (wartosci wlasne rzeczywistej macierzy
symetrycznej, rozwigzywanie ukladu réwnan liniowych, najmniejsza odlegtosé w
metodzie najmniejszych kwadratéw, ...) jednocze$nie diagnozujaca problem.

W szczegdlnodci, bardzo rézne co do wielkodci tzw. wartodci singularne wskazujaq
na liniowe zaleznosci miedzy danymi. Liniowo$¢ prowadzi do probleméw
obliczeniowych poniewaz mate zmiany w danych prowadza do duzych zmian

w wynikach.




Przyktad i

Rozpatrzmy 3 plaskie wektory:

A = (1,07
B = @017
Cc = (095017

Wektory C i B sa bardzo podobne. Tworza z wektorem A w przyblizeniu kat 6°.
Jednak kiedy katy miedzy A + Bi A + C sa prawie takie same, bliskie 0.07° to kat
miedzy A — Bi A — C wynosi 26.57°.



Przyktad ii

Z drugiej strony, wektory

A = (1,07
D = (o7
E = (0,097

dajadlaA+DiA+Eoraz D —-AiFE - A katy réwne w przyblizeniu 1.5°.



Przyktad iii

Podsumowanie
Suma wektordéw kolinearnych jest dobrze okreslona, ich réznica nie jest.
Suma i réznica wektoréw niekolinearnych jest dobrze okreslona.



Algorytm SVD i

Praca z macierzami — dekompozycje macierzy.

Dekompozycja QR
A=QR Amxn), QTQ=0QQT =1, Rij=0dlai > j.



Algorytm SVD ii

Dekompozycja SVD

Jesli R = SV, gdzie Sim x n), S;j =0dlai #j, Vin x n), V'V = VvV =1, — A = QRS.
Poniewaz zera ponizej diagonali R i S powodujg, Ze kolumny m + 1, ..., n macierzy Q sa
dowolne, wiec mozna je opuscié, otrzymujac macierz U(m x n) takq, ze UTU = 1,,. Opuszczenie
wierszy n +1,..., m obu macierzy R i S pozwala zapisaé¢ rozktad w postaci A = UR = USVT,
gdzie A(m x n), Um x n) a UTU = 1,, R(n x n) jest macierzq gérna tréjkatna, S(n x n) jest
diagonalna, a V(n x n) jest ortogonalna.



Algorytm SVD iii

Dekompozycja LU
A(n x n) = LU gdzie L - dolna macierz tréjkatna, U - gérna macierz trojkatna.

Dekompozycja Choleskiego
Jesli A jest symetryczna to A = LLT. (Posta¢ skalowana: A = LDU, gdzie D -
diagonalna.)



Algorytm SVD iv

Zadanie
Pokazaé, ze jedli A = USVT to macierz A* = VS*UT, gdzie St =1/Si dla S;; #0
i S = 0dla S;; = 0 spelnia réwnosci:

AATA =A, (AAT)T = AA*, ATAAT =A*, (ATA)T =ATA.



Algorytm svd

Problem: Znalez¢é macierz ortogonalna V(n x n), ktéra transformuje macierz
A(m x n) w macierz B o ortogonalnych kolumnach b;, tzn.

B =AV = (by,bg,...,bp) 1)

gdzie
blb; = S26i; )

oraz
vl = vTy =1,. (3)

Przyjmiemy, ze S; sq dodatnie i bedziemy je nazywac¢ wartosciami singularnymi
macierzy A.



Algorytm svd

Wektory
uj = b;S; (niezerowe) (4)

sq jednostkowymi wektorami ortogonalnymi. Zbierajgc u; w macierz m x n, a §; w
macierz diagonalng S mozna zapisaé

B=US (5)

gdzie
Utu =1,. (6)

Dla pozostatych, zerowych wartodci S;, konstruujemy wektory u; ortogonalne do
pozostalych lub przyjmujemy je jako bardzo mate. Kombinacje (1) i (6) daje

AV =US, lub A=USVT, (7)

co jest rozktadem SVD macierzy A.



e Obroty

e Metoda Givensa



Zastosowanie do problemu najmniejszych kwadratéow

Problem. Rozwigza¢ uktad réwnan Ax = b metoda najmniejszych kwadratdw.
Rozwigzanie. Zdefiniowa¢ wektor reszt r = b — Ax i znalez¢ takie x by wektor r byl minimalny
w sensie normy ||r||g = (r"r)!2 = /¥, r?. SVD dla A pozwala zapisaé¢ rozwiazanie réwnania
Ax = b w postaci

x=Vs'U"p, (8)
gdzie S =1/S;dla S; £ 01 S; = 0 w przypadku S; = 0. Tak zdefiniowana S* jest niepraktyczna
numerycznie (zero jest rzadkim wynikiem...) Przyjmiemy, ze

St =

i

{1/&, dla S >q, (©)

0 , da S§<q,

gdzie q jest zadane przez uzytkownika.



Przyktady...

Permitting S* to depend on a user-defined tolerance places upon him/her the responsibility for
deciding the degree of linear dependence in his/her data. In an economic modelling situation,
for instance, columns of U corresponding to small singular values are almost certain to be
largely determined by errors or noise in the original data. On the other hand, the same
columns when derived from the tracking of a satellite may contain very significant information
about orbit perturbations. Therefore, it is not only difficult to provide an automatic definition
for S+, it is inappropriate. ] C Nash



Przyktlady... i

Znalez¢ SVD macierzy

1 1
1 1
A=
1 1
1
Obliczamy ATA
1 1
1 1 L2
ATA = =
1 1 [ 2 4 }
1 -1



Przyktlady... ii

i wartosci whasne ATA

b—A 2

T — =
[ATA — AI| = det a

=(2-A)(06-2)

Stad V6 i V2 sq wartoéciami singularnymi macierzy A. Wektory wlasne zwigzane
z warto$ciami wlasnymi 6 i 2 sq réwne

v = (1V2ANT, v = (1/V2,1/V2)T.

Dalej

AAT =

O N NN
O N NN
O N NN
DO O O



Przyklady... iii

Wektory wlasne jednostkowe nalezgce do wartosci wlasnych A = 6i A = 2 sg

w = 1/V3,1/V3,1/V3,0T, uy=1(0,0,0,1)7.

Aby uzupehié uy i ug do bazy ortonormalnej w R* ...

Plaszezyzna x + y + z = 0 jest zbiorem wektoréw w R® ortogonalnych do wektora
n=(1,1,1)7. Jednym z takich wektoréw jest o1 = (1, —1,0)”. Inny mozna
wyznaczy¢ z iloczynu wektorowego 0p = 01 x n = (-1, —1,2). Normalizujac oba
wektory i zanurzajac je w R* (zerowa 4-ta sktadowa) otrzymamy baze
ortonormalng R*.



Przyktlady... iv

SVD macierzy A jest A = USVT, gdzie

1V3 0 1V2 —1/V6
13 0 —1V2 —1V6

U=l 1v3 o 0 2/V6
0 1 0 1

s_| V6 000

B 0 V2 0 0

vo | Ve Ve

Tl av2 a2

Sprawdzic.



Znalez¢ SVD macierzy A = <

N N
~

Odpowiedz U = [(1/V2, ~1V2), (1/V2,1/V2)), S = diag(v10,0), V = [(1/V/5, —2/V/5), (2/7/5,1/V/5)]



Metoda najmniejszych kwadratow, x*

Dane (x;,yi),i = 1,2,...,N modelujemy za pomoca linii prostej y(x) = a + bx
minimalizujac funkeje x2:

b =3 <u)2 (10)

6.
i=1 !

gdzie o; jest bledem wielkosci y;. Wartosci parametréw a i b otrzymamy,
minimalizujac ¥2. Wprowadzajac oznaczenia

N
S=Y1/e?, S =) xilo?, Sy=3 wilo?,
i=1
Spx = le?/c[?, Sey = foyi/df, (11)

otrzymamy
SxxSy — SxSuy
e
SSyy — S:Sy

b = T, (12)

I

gdzie A = SSyy — S%.



Bledy parametréow a i b i

Analiza propagacji btedéw w danych y; pokazuje, ze btedy w dowolnej funkeji
f = f(x;, yi) okresla wariancja 6](2

o,uiof(%). (13)
i=1
W rozwazanym przypadku
02 = SyxlA, of = SIA. (14)
Dodatkowo, tzw. kowariancja a i b jest
Cov(a,b) = =S¢ /A. (15)

Wspdtezynnik korelacji rqp, miedzy nieokreslonoscia a i nieokreslonoscia b jest
rowny
—Sy
Pap = —F——. 16
ab S er ( )
rqp > 0 — bltedy w a i b sq prawdopodobnie jednakowego znaku (korelacja)

rqb < 0 — bledy sa przeciwnego znaku (antykorelacja).



Bledy parametréow a i b ii

Dobro¢ dopasowania modelu do danych (y;) pozwala oceni¢ znaczenie parametrow.
Prawdopodobienstwo, ze wartoéé¢ x% (Réwnanie 10) jest przypadkowa jest dane

przez
N -2 y*
Q== %), (17)
gdzie
C(a,x)
Qla,x) = Tla) - (18)
Tutaj I'(...) jest funkcja gamma Eulera lub niepelng funkcja gamma:
(o9)
M) - / T (19)
0

X
Fla,x) = ]e—ftHdt. (20)
0



Metoda najmniejszych kwadratow, program

Formuty (12) wnosza do obliczen btedy numeryczne. Zapiszemy je inaczej (do
celéw programistycznych), definiujac

1 S -
ti=—<x,~——x>, i=1,2...,N,  Sy=)_t. (21)
O S i1
Wtedy
_ 1 tiyi _ Sy - be
b = 5 > o TS (22)
1 S2 1
2 x 2
= -1 , =, 23
Ca s< * sst,> % =3, 23)
B Sy _ Covla,b)
Cov(a,b) = ~ 55, rap = GaGb (24)
Zadania.

1. Sprawdzi¢ formuty (21)—(24).

2. Napisaé program fit(...), ktéry oblicza wielkoéci a, b, dg, dg, Pab, Oraz
Cov(a, b) dla zbioru danych (x;,y;), i =1,2,...,N.



Metoda najmniejszych kwadratow, SVD

Dane (t;,yi),i =1,2,..., m modelujemy za pomoca funkcji
f(t) = c11(t) + coa(t) + -+ + dnll), (25)
gdzie ¢; sq zadanymi funkcjami, a ¢; parametrami modelu. Oznaczmy
aij = ¢(ti). (26)
Jesli y oznacza wektor o elementach y;, a ¢ wektor o sktadowych c; to réwnanie

ch@‘(fi)%yi, i=1,2...,m, ©7)
i

przybliza dane (t;, y;). Mozna je zapisaé w postaci
Ac =y (28)

Roéwnanie to rozwigzemy metoda SVD macierzy A.



	Dodatek

