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• Wstęp

• Równowaga hydrostatyczna

• Równanie ciągłości masy

• Transport energii promieniowania

• Prawo zachowanie energii

• Przybliżenia (skala wielkości)
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Wstęp



Wstęp

Materia gwiazd w równowadze hydrostatycznej spełnia szereg równań
opisujących ich stan, proces transportu energii z ich wnętrza i opisujących
podstawowe prawa zachowania.

Równania struktury zależą od równań stanu, składu chemicznego, od tempa
produkcji energii, od nieprzeczystorści materii itd.

Cele: Równania struktury. Równania stanu. Tempo produkcji energii.

Struktura 2



Równowaga hydrostatyczna



Równowaga hydrostatyczna i

Symetria sferyczna
Ciśnienie, gęstość, temperatura, etc., zależą od odległośi od centrum gwiazdy r .

Warunek równowagi elementu masy (rysunek):

P(r) dA − [P(r) + dP] dA − �(r) dA dr g(r) = 0

gdzie
P(r) – ciśnienie
�(r) – gęstość
g(r) – przyspieszenie grawitacyjne

Struktura 3



Równowaga hydrostatyczna ii

Stąd
dP(r)

dr
= −�(r)g(r)

Wstawiając

g(r) =
GM(r)

r2

mamy
dP(r)

dr
= −

GM(r)�(r)

r2 (1)

gdzie M(r) jest masą zawartą w sferze o promieniu r .

Ostatnie równanie opisuje hydrostatyczną równowagę w gwiazdach.
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Ciągłość masy



Równanie ciągłości masy

W równowadze hydrostatycznej masa M(r) i gęstość �(r) są ze sobą związane

dM(r) = 4�r2�(r) dr

Stąd
dM(r)

dr
= 4�r2�(r) (2)

Równanie to nosi nazwą równania ciągłości masy lub zachowania masy.

Struktura 5



Transport energii w gwiazdach



Transport promieniowania. Podstawy i

Procesy transportu energii z wnętrza gwiazd:

• promieniowanie

• konwekcja; w pewnych warunkach

• przewodnictwo (białe karły, gwiazdy neutronowe).

Normalne gwiazdy (∼ gaz)

Fotony są rozpraszane, pochłaniane przez materię gwiazdy, ponownie
emitowane. Procesy te zależą od tzw. przekroju czynnego �

liczba oddziaływań fotonu z tarczami cząstek = n � dx

gdzie n jest gęstością cząstek, a dx drogą przebytą przez foton. Jeśli lewa
strona tej równości jest jedynką to dx nosi nazwą drogi swobodnej l , czyli

l =
1
n�
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Transport promieniowania. Podstawy ii

W ogólnym przypadku, dla różnych cząstek materii

l =
1∑
ni�i

def
=

1
��

Wielkość � jest nieprzeźroczystością materii (opacity).

Jednym z procesów, od których zależy � jest rozpraszanie fotonów na
elektronach, tzw. rozpraszanie thomsonowskie. Jego przekrój czynny

�T =
8�
3

�
e2

mec2

�
= 6; 7� 10−25cm2

nie zależy od temperatury i energii fotonu. Dla cząstek o masach m � me

przekrój � jest znikomo mały w porównaniu z przekrojem dla elektronów.

Przykład.
Przyjmując, że gaz słoneczny jest zjonizowanym wodorem mamy

ne � �

mH
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Transport promieniowania. Podstawy iii

Stąd droga swobodna fotonu wynosi (Obliczyć.):

l =
1

ne�
=

mH

��T
� 2cm

W rzeczywistości (nie tylko elektrony) l � 1mm= 0:1cm.
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Błądzenie przypadkowe i

Foton porusza się w materii chaotycznie – przypadkowe
kierunki emisjii/rozpraszania - błądzenie przypadkowe
(random walk). Przemieszczenie fotonu po N

oddziaływaniach:

~D = ~l1 + ~l2 + � � � + ~lN

~D2 = l21 + l22 + � � � + l2N + 2(~l1 � ~l2 + ~l1 � ~l3 + : : : ) (�)
Wartość średnia kwadratu przesunięcia (drugi człon w równaniu (*) znika):

hD2i = Nl2

Odległość liniowa przebyta przez foton po N zderzeniach

D = hD2i1=2 =
p
Nl
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Błądzenie przypadkowe ii

Przykład.
Ile czasu potrzebuje foton by wydostać się z centrum Słońca na jego
powierzchnię?
Mamy N = r2�=l2 – liczba kroków. Każdy krok średnio wymaga czasu l=c, a
więc (Obliczyć!)

� =
l

c

r2�
l2

� 52000lat

Jeśli reakcje jądrowe w Słońcu ustaną to fakt ten odnotujemy dopiero po 50000
lat . . .

Struktura 10



Przepływ energii i

Wypadkowy strumień energii promienistej gwiazdy – moc (jasność) L(r).

Różnica energii w warstwach r , r +�r wynosi 4��r�u (u - gęstość energii).
Czas by fotony przebyły drogę �r : (�r)2=lc. Stąd

L(r) � −
4�r2�r�u

(�r)2=lc
= −4�r2lc

�u

�r

Dokładny rachunek daje dodatkowy czynnik 1=3. Mamy więc

L(r)

4�r2 = −
cl

3
du

dr
(��)

– równanie dyfuzji; opisuje transport energii na powierzchnię gwiazdy.
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Przepływ energii ii

Ponieważ u jest bliskie gęstości energii ciała doskonale czarnego to

u � aT 4

Stąd
du

dr
=

du

dT

dT

dr
= 4�aT 3 dT

dr

Wstawiając to do równania (��) i kładąc l = (��)−1 otrzymamy

dT (r)

dr
= −

3L(r)�(r)�(r)
4�r2 4acT 3(r)

(3)
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Zachowanie energii



Zachowanie energii

Energia produkowana w gwiazdach pochodzi z reakcji jądrowych – fuzja.
Produkowaną gęstość mocy oznaczymy przez �(r). Zasada zachowania energii
w powłoce o grubości dr w odległości r od centrum

dL(r) = �(r) dm = �(r)�(r) 4�r2 dr

lub
dL(r)

dr
= 4�r2�(r)�(r) (4)

Równania ??, ??, ??, ?? są równaniami struktury gwiazdy.
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Podsumowanie



Równania struktury

dP(r)

dr
= −

GM(r)�(r)

r2

dM(r)

dr
= 4�r2�(r)

dT (r)

dr
= −

3L(r)�(r)�(r)
4�r2 4acT 3(r)

dL(r)

dr
= 4�r2�(r)�(r)

Warunki początkowe

M(r = 0) = 0; L(r = 0) = 0; P(r = r�) = 0; M(r = r�) = M�:

Dodatkowo, należy określić zależności

P = P(�;T ; skład); � = �(:::); � = �(:::)

Struktura 14



Równanie stanu



P(�;T ) i

Rozpowszechnienie wodoru, helu i pierwiastków cięższych:

X =
�H

�
; Y =

�He

�
; ZA =

�metale

�

Dla większości normalnych gwiazd działa przybliżenie nierelatywistycznego gazu
doskonałego

Pg = nkT =
�

m̄
kT

Ponieważ nH = X�=mH , nHe = Y �=4mH , nA = ZA�=AmH , to

n � 2nH + 3mHe +
∑ A

2
nA =

�

mH
(2X +

3
4
Y + 12Z )

(dla cięższych pierwiastków Z + 1 � A=2. Ponieważ X + Y + Z = 1 to

n =
�

2mH

�
3X +

Y

2
+ 1

�
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P(�;T ) ii

Przy całkowitej jonizacji

m̄

mH
=

�

nmH

2
1 + 3X + 0; 5Y

Słońce: X = 0; 71, Y = 0; 27, Z = 0; 02 i m̄=mH = 0; 61; a w centrum gdzie
wyczerpało się ∼ 50% wodoru X = 0; 35, Y = 0; 64, Z = 0; 02 i m̄=mH = 0; 61

Oprócz kinetycznego ciśnienia gazu istnieje ciśnienie promieniowania (patrz
Dodatek):

Prad =
1
3
u =

1
3
aT 4

Całkowite ciśnienie jest więc równe

P = Pg + Prad =
�kT

m̄
+

1
3
aT 4 :

a = 4�=c = 7; 6� 10−15 erg cm−3K−4 jest stałą promieniowania.

(Inne równanie stanu dla białych karłów i gwiazd neutronowych.)
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Nieprzeźroczystośc (opacity)



Nieprzeźroczystość

W gwiazdach normalnych nieprzeźroczystośc jest w głównej mierze związana
z rozpraszaniem fotonów na elektronach. Liczba elektronów w zjonizowanym
gazie

ne = nH + 2nHe +
∑ A

2
nA =

�

2mH
(1 + X )

� =
ne�T

�
=

�T

2mH
(1 + X ) = (1 + X )� 0; 2 cm2=g

W obszarach o niższych temperaturach i niepełnej jonizacji nieprzeźroczystość
jest wynikiem procesów absorpcji/emisji typu

• bound-bound (bb) – przejścia między stanami związanymi

• bound-free (bf) – jonizacja (←→)

• free-free (ff) – bremsstralung, ...

Uśrednienie po wszystkich długościach fal daje zależność (Kramers)

�bf ;ff ∼
�

T 3;5
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Konwekcja



Konwekcja

Konwekcja występuje w obszarach o niskiej temperaturze, w których istnieją
atomy i molekuły (również w obszarach centralnych gwiazd bardzo masywnych)
gdzie spełniony jest warunek

���dT
dr

��� > 
 − 1



T (r)

P(r)

���dP
dr

���
Tutaj 
 jest wykładnikiem adiabatycznym w równaniu stanu gazu P ∼ �
 .
Wzrasta liczba stopni swobody, rośnie 
, pojawia się konwekcja.

Słońce: 28% zewnętrznego promienia.

W obszarach konwekcyjnych równanie transportu (??) energii należy zamienić
na

dT

dr
=

 − 1



T (r)

P(r)

dP

dr
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Przybliżenia – relacje skalowania dla
gwiazd ciągu głównego



Skalowanie (na CG) i

Załóżmy, że rozwiązania równań struktury są postaci P(r) ∼ r� , M(r) ∼ r
 itd.
Wówczas rozwiązania pierwszych trzech równań są

Równanie struktury → przybliżenie Numer

dP(r)
dr = −GM(r)�(r)

r2 → P ∼ M�

r (A)

dM(r)
dr = 4�r2

�(r) → M ∼ r3
� (B)

dT(r)
dr = − 3L(r)�(r)�(r)

4�r2 4acT3(r) → L ∼ T4r
��

(C)

Otrzymane równania pozwalają zrozumieć obserwowane zależności typu
L ∼ M� lub L ∼ T 8 dla gwiazd ciągu głównego (CG) na diagramie H-R.
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Skalowanie (na CG) ii

P ∼
M�

r
; M ∼ r3� ; L ∼

T 4r

��

Dla gwiazd o średniej masie ciśnienie jest głównie kinetycznym ciśnieniem gazu,
a nieprzeźroczystość jest wynikiem rozpraszania fotonów na elektronach, czyli

P ∼ �T ; � = const

Porównanie z P ∼ M�=r daje
T ∼ M=r

Z równania dla L i przy wykorzystaniu wyrażenia dla M mamy

L ∼ M3

– zgodność z obserwacją dla gwiazd o M > M�.
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Skalowanie (na CG) iii

Ponieważ temperatura gwiazd ciągu głównego jest prawie stała to równanie
T ∼ M=r prowadzi do wniosku, że

r ∼ M

Dokładne modele potwierdzają, że T zmienia się o czynnik 4 dla zakresu mas
∼ 100 na CG (słabo). Wstawiając to do (B) otrzymujemy

� ∼ M−2

– gwiazdy mniej masywne są gęstsze, bardziej masywne rzadsze.
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Skalowanie (na CG) iv

W przypadku gwiazd o małej masie (a więc o dużej gęstości) nieprzeźroczystość
jest wynikiem rozpraszania typu bound-free oraz free-free, czyli

� ∼
�

T 3;5

Ponieważ T ∼const., r ∼ M i � ∼ M−2 to � ∼ � ∼ M−2 i dostajemy

L ∼
T 4r

��
∼

r

�2 ∼ M5

– zgodne z obserwacją dla gwiazd o małych masach.
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Skalowanie (na CG) v

W gwiazdach o dużej masie, mała gęstość powoduje, że ciśnienie jest głównie
ciśnieniem promieniowania

P ∼ T 4

a nieprzeźroczystość jest wynikiem rozpraszania na elektronach, �=const.
Porównując z P ∼ M�=r , i wstawiając T 4 w przybliżeniu dla L, otrzymamy

L ∼ M

– obserwowane zmniejszenie jasności dla gwiazd masywnych.
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Skalowanie (na CG) vi

Dalej, ponieważ L ∼ M5 i L ∼ M3 odpowiednio dla gwiazd małej i dużej masy
to, biorąc L ∼ M4, i korzystając z zależności r ∼ M dostajemy

�T 4 =
L

4�r3
�

∼
M4

M2 ∼ M2
∼ L1=2

a więc,

L ∼ T 8

– w zgodzie z obserwacjami.
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Problemy



Zadania

Liczba protonów w Słońcu.

nH ==
2� 1033g

1; 7� 10−24g
= 1057

Czynnik Maxwella-Boltzmanna dla typowych gwiazd

e−E=kT
∼ e−1000

∼ 10−434

Brak w Słońcu cząstek, które zgodnie z rozkladem M-B mogą reagować
tworząc He.

Potrzebny inny mechanizm reakcji. Tunelowanie.
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Dodatki



Ciśnienie promieniowania

Natężenie promieniowania Plancka

B =
c

4�
u

gdzie u jest gęstością energii.

Ciśnienie na ścianki radiatora

P =
F

A
=

dp=dt

A
=

∫�
�=2

B cos2 � sin � d� d� =
4�
3c

B =
1
3
u

Równanie to jest słuszna dla cząstek bezmasowych.
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Źródło energii gwiazd i

Reakcje fuzji. Najważniejsze: cykl p-p.

p + p → d + e+ + �e (+0,425 MeV)

Skala czasowa ∼ 1010 lat (oddziaływania słabe).

Pozytron prawie natychmiast anihiluje z elektronem promieniując 2 kwanty 

o energiach 0,511 MeV. Neutrino ucieka, unosząc średnio 0,26 MeV. Po około
1s deuteron reaguje z protonem, tworząc 3He:

p + d →3 He + 
 (+5,49 MeV)

W skali 300000 lat zachodzi kolejna reakcja

3He +3 He→4 He + p + p (+12,86 MeV)
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Źródło energii gwiazd ii

Dla utworzenia 4He potrzebne są dwie reakcje p + p i p + d . Wydzielona
energia jest więc równa

(4� 0; 511 + 2� 0; 425 + 2� 5; 49 + 12; 86) MeV = 26; 73 MeV

Po odjęciu energii anihilacji istniejących pierwotnie 2 elektronów = 2� 0; 511
MeV otrzymujemy energię równą różnicy mas 4 protonów i jądra 4He:

[m(4p) −m(4He)]c2 = 25; 71 MeV = 0; 7%m(4p)c2

Wydajność cyklu p-p jest więc równa 0; 7%.

Słońce: Czas wypromieniowania 10% masy w cyklu p-p

t =
0; 1� 0; 007�M�c2

L�
� 1010 lat

(Obliczyć.) Wniosek: Cykl p-p wystarcza na ∼10 miliardów lat.
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Tunelowanie



Tunelowanie i

Tunelowanie bariery kulombowskiej w reakcji p + p → d + e+ + �e . Średnia
energia protonów ∼ 1keV odpowiada temperaturze ∼ 107K (centralny obszar
Słońca). Energia stanu związanego d jest równa ∼ −2:2MeV . Bariera
kulombowska przybliżona barierą prostokątną.
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Tunelowanie ii

Równanie Schroedingera

h̄2

2�
r2 = [V (r) − E )] ] ; � =

mAmB

mA +mB

V (r) =
ZAZBe

2

r

Przybliżając berierę kulombowską przez barierę prostokątną:

hV (r)i =
∫r1

r0
4�r2V (r)dr∫r1
r0
4�r2dr

otrzymamy przybliżone równanie:

h̄2

2�
d2r 

dr2 � E

2
 

Rozwiązanie:

 = A
e�r

r
; � =

p
�E

h̄
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Tunelowanie iii

Licząc dokładnie (Zadanie), otrzymamy to samo wyrażenie dla  z czynnikiem
�=
p
2 w exponencie.

Prawdopodobieństwo tunelowania jest więc równe:

g(E ) � | (r0)|
2r2

0

| (r1)|2r2
1
=

e2�r0

e2�r1
� e−2�r1 = exp

�
−
2
p
�E

h̄

ZAZBe
2

E

�

Kładąc
EG = (��ZAZB)

22�c2

otrzymamy
g(E ) = e

p
EG=E

g(E ) nosi nazwą czynnika Gamowa. Dla 2 protonów

EG =
�
�

1
137� 1� 1

�2
2
1
2
mpc

2 � 500 keV

Słońce: g(E ) ∼ e−22 ∼ 10=10 (Porównaj z 10−434!!!)
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Szybkość reakcji



Prawdopodobieństwo reakcji i

Rys. (Nie ma proporcji...) kT = 1keV; g(E ) – 2 protony; f (E ) ∼funkcja
Gaussa.
Prawdopodobieństwo procesu: f (E ) ∼ P(E )� g(E )

EG = (��ZAZB)
22�c2

� = e2=h̄c � 1=137, g(E ) = e−
p

EG=E

2 protony: EG � 500keV).
Słońce: E ∼ 1keV→ g(E ) ∼ e−22 ∼ 10−10.
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gęstość mocy

Przybliżona gęstość mocy w funkcji temperatury, składu, gęstości:

� =
25=3p2p

3
�XAXB

m2
HAAAB

p
�
QS0

E
1=6
G

(kT )2=3
exp

�
−3

�
EG

4kT

�1=3
�

(5)
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Jasność Słońca z cyklu p-p

Wyrażenie (??) pozwala oszacować gęstość mocy cyklu p-p.

Obliczyć jasność L Słońca. Założenia: S0 ∼ 4� 10−46cm2keV, � = 150g/cm3,
XA = XB = X = 0; 5 (centrum Słońca), Q = 26; 2MeV, EG = 500keV,
� = mp=2, AA = AB = 1. Ponieważ rozważamy identyczne cząstki (protony),
więc wynik dzielimy przez 2 by uniknąc podwójnego sumowania. Powinniśmy
otrzymać

� = 10 erg s−1 g−1

Mnożąc przez masę rdzenia Słońca, np. przez 0; 2M� otrzymamy jasność
L ∼ 4� 1033 erg/s. (Pomiary dają: 3; 8� 1033 erg/s).
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1 electronvolt

Energia 1 eV: E = 1; 602192� 10−19 J
Długość fali: � = 12398; 54� 10−8cm
Liczba falowa: k = 8066; 02/cm
Częstość: � = 2; 417965� 1014/s
Temperatura: T = 11604; 8 K
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