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8. C.
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INTRODUCTION

In this monograph an attempt is made to develop the theory of
stellar structure from a consistent point of view and, as far as possi-
ble, rigorously. This and considerations of space have placed a some-
what severe restriction on the problems that are to come under re-
view, while requiring at the same time a detailed treatment of other
aspects of the subject. Thus, on the physical side, questions requir-
ing the application of relatively advanced methods of statistical me-
chanics have to be avoided, while, on the astronomical side, ques-
tions concerned with problems of the type of stellar rotation and
stellar variability or stability have had to be entirely omitted. This
may seem a drawback, but, on the other hand, there is more space
to develop the fundamentals with which the reader should be thor-
oughly familiar. In this introduction we shall make some comments
on the type of problems with which we shall be mainly concerned
and then outline the plan and scope of the monograph.

As we have already indicated, we shall restrict ourselves to the
consideration of stars which are in equilibrium and which are in a
steady state. Such an equilibrium configuration can be character-
ized by three parameters: its mass, M its radius, R; and its luminos-
ity, L (L being defined as the amount of radiant energy, expressed in
ergs, radiated by the star per second to the space outside). It is
beyond the scope of the monograph to discuss how the values of
these parameters for individual stars are determined in practice.
We shall assume, however, that we do have sets of values of these
quantities for a number of stars. Stellar structure deals with these
results of observational astronomy.

Our first problem, then, is to present the observational material
in some form suitable for further discussion. There are two plots
which we shall find useful: (¢) the mass-luminosity diagram, and
(b) the mass-radius diagram. In diagram (a) it is customary to plot
log M (M expressed in solar units) against, essentially, 2.5 log L
(in practice, the absolute bolometric magnitude). In diagram (b) we
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2 STUDY OF STELLAR STRUCTURE

plot log M against log R (R expressed in solar units). In Figures 1
and 2 we have collected together the results of observations; the
material presented has been provided by Dr. G. P. Kuiper.

The ultimate objects of studies in stellar structure are the follow-
ing:

1. To derive the complete march of the physical variables (the
density, p; the temperature, 7'; etc.), on the one hand, and the vari-
ation of the chemical composition (the relative abundances of the
different elements), on the other, throughout the entire configura-
tion.

2. To describe quantitatively the kind of steady state (radiative,
convective, etc.) that exists, eventually as a function of the radius
vector r.

3. To specify the fundamental physical processes that are re-
sponsible for the setting-up of the steady states described under (2).

4. To evaluate quantitatively the irreversible processes that must
be taking place which should be responsible for the continual loss of
energy at the rate L by a star.

It is clear that complete and entirely satisfactory answers to all
the foregoing problems require detailed information about physical
phenomena which we do not have at the present time; even if we
possessed this information, we should be faced with a mathematical
problem of a very high order of complexity. From one point of view
the most serious lack of information (at least until recently) con-
cerns the nature of the physical processes involved under (4) above.

The question now arises as to how we can formulate, at least
provisionally, the fundamental problem of stellar structure the solu-
tion of which will not only be of value but will also enable us to make
substantial progress toward the solution of the complete problem.
In other words, we need to formulate a somewhat restricted prob-
lem of stellar structure. The problem we shall consider is: Can we
establish some relation between all three parameters, L, M, and R?
That we can hope to make some progress toward the solution of
this problem can be seen in the following way. When we observe a
star, we see that in a prescribed spherical volume of radius R an
amount of material of total mass M is inclosed; we also know that
through this mass there occurs a continual streaming-out of a cer-
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INTRODUCTION 5

tain mean flux of radiant energy specified by the luminosity, L.
By hypothesis the star is in a steady state. The question we can
then ask is: “How is it that a certain specified march of the net
flux of radiant energy is able to support (against the gravitational
attraction) an amount of mass equal to M inside a spherical volume
of precisely the radius, R?”’ It will be noticed that some uncertainty
has already been introduced. The luminosity, L, specifies the net
flux of energy given by L/4mR* at the boundary of the star; we can,
of course, take this as an index of a certain average flux that exists
in the interior, but the solution of the mathematical problem of
equilibrium would require a knowledge of the complete march of
the function L(r) and not merely a certain unspecified average de-
pending on L. It is precisely for this reason that progress toward the
solution of the restricted problem is made by means of the study of
stellar models.

From the observed L and M we infer that each gram of the stellar
material liberates on the average an amount of energy, é = L/M.
It may be safely assumed that e(r)—the rate of liberation of energy
per gram of the material at the point r—is zero in the outer parts
of the star where the physical conditions are relatively “mild,” so
that L(r) = L in the outer parts of the star (these parts constitute
the stellar envelope studied in chapter viii). Presumably, L(r) de-
creases inward in such a way that e(r) = L(r)/M(r) tends to some
finite value as 7 — o, with or without a maximum for » > o (in
the latter case e(o) will be the maximum value of the function €(r)).
Two obvious limiting cases suggest themselves: (a) e(r) = & =
Constant, and (b) €(r) = o, r & o. The former case corresponds
to a uniform distribution of the energy sources, while the latter
leads us to the case where all the energy sources are concentrated
at the center (this is the “point-source model”).

We can investigate these two limiting cases as well as other, “in-
termediate,” stellar models. After studying such models we attempt
to abstract from the ensemble of the results thus obtained features
which can be regarded as common to all the models. It would be
safe to conclude that such common features must have some coun-
terpart in nature; this is the manner in which progress has been
made. One rather unexpected feature introduces an essential simpli-
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fication. We shall discuss the origin of this simplification later
(chaps. ii, vii, and viii); but it may be stated here that it follows
from very general considerations that the majority of the normal
stars, such as the sun and Capella, are gaseous and that radiation
pressure as a factor in the equation of the hydrostatic equilibrium
can be neglected (though, of course, it is important in determining
the temperature gradient set up). This last circumstance in turn re-
veals another unexpected feature: the form of the relation between
L, M, and R is independent of the stellar model considered. We shall
not go farther into the consideration of these matters, but enough
has been said to show that progress toward the solution of the re-
stricted problem is in fact possible.

There is one other matter of importance to which we shall draw
attention: we cannot assume beforehand that the chemical compo-
sition of all the stars is the same. Actually, under stellar conditions
matter is generally so highly ionized that, as we shall see in greater
detail in chapter vii, the uncertainty in the chemical composition
is essentially due to the uncertainty in the abundance of the two
lightest elements, namely, hydrogen and helium. The abundance of
the lightest elements has then to be considered as a fresh parameter
in the discussion. We can thus summarize by saying that our funda-
mental problem is to seek a theoretical relation of the kind

F[L, M, R, abundance of hydrogen and helium] = o . 0

Our main object, then, is to describe the theory and the methods
that have been developed toward this end.

We shall now proceed to outline the general plan:

The monograph divides itself into two distinct parts: the “classi-
cal” (chaps. i-iv) and the “modern” (chaps. v-xii). Furthermore,
of the twelve chapters, two (chaps. i and x) deal essentially with
physical theories (the laws of thermodynamics and quantum statis-
tics, respectively), and chapter v deals also with a physical theory
(the formal theory of radiation) presented, however, from an astro-
physical angle. The last, chapter xii, on stellar energy, is on a plane
different from the rest in that it summarizes the recent work on some
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of the most thorny problems of the subject. In greater detail the
contents of each of the chapters are as follows:

Chapter i.—The laws of thermodynamics are here presented fol-
lowing Carathéodory’s axiomatic standpoint. The reasons for includ-
ing this chapter are twofold: first, there exists no treatise in English
which gives Carathéodory’s theory; and second, in the writer’s view
Carathéodory’s theory is not merely an alternative, but elegant, ap-
proach to thermodynamics but is the only physically correct approach
to the second law. Incidentally, the logical rigor and the beauty of
Carathéodory’s theory may be regarded as an example of the stand-
ard of perfection which should be demanded eventually of any physi-
cal theory, including the theory of stellar structure.

Chapter 4i.—In this chapter we consider a number of physical
theorems, the adiabatic and the polytropic laws, the virial theorem,
homologous transformations, etc., and some immediate applications
to the general theory of stellar structure.

Chapter iii.—Here we attempt to go as far as possible with our
problem without any special assumptions except that the stars are
in hydrostatic equilibrium. It is made clear in this chapter that no
special assumptions are required to derive the orders of magnitude
of the most important physical quantities which describe the struc-
ture of a star.

Chapter iv.—This chapter presents what is perhaps the most im-
portant contribution which “stellar structure”” has made to applied
mathematics. It represents, largely, the work of the great pioneers—
Ritter, Emden, and Kelvin. As Schwarzschild has said, the theory
of polytropes is a beautiful example of the flowering of a complete
mathematical theory out of a physical problem. The bibliographical
note for this chapter has been made rather extensive, as there ap-
pears to be, at the present time, a great deal of confusion with re-
gard to the historical developments of the subject. It may be stated
further that no fundamentally new contribution has been made to
the subject since the publication of Emden’s book (1go7).

Chapter v.—Here the formal theory of radiation is presented and
the equations of radiative equilibrium are derived. The number of
final results obtained is small, but the amount of formal develop-
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ments required is rather considerable; for accuracy and precision
they cannot, however, be avoided.

Chapter vi.—In this chapter “gaseous stars” are considered. Some
general theorems for stars in radiative equilibrium are obtained, and
a fundamental formula—the luminosity formula—is derived. This
last is made the starting-point of the whole discussion.

Chapter vii.—Here the general theory (which leads to a definite
relation of the type I) is used to derive from the observational ma-
terial the abundances of the lightest elements for individual stars,
and an attempt is made to draw some general conclusions. The em-
phasis thus laid on Strémgren’s work on the varying abundance of
the lightest elements from star to star is one of the more important
features of the monograph. In discussing this theory it is important
to realize that the theory of the stellar absorption coefficient and of
the mean molecular weight (which are also described in this chapter)
have been developed as accurately as is necessary for the purposes
at hand.

Chapter viii.—In this chapter the theory of stellar envelopes is
made an independent starting-point for the theory of gaseous stars.
This serves partly to confirm the results described in chapter vii and
partly to go beyond the range of that theory.

Chapter ix.—Some further stellar models are considered in this
chapter which partly confirm the results of chapter vi and partly
extend them.

Chapter x.—A rather detailed account of the Gibbs statistical
mechanics (the quantum mechanical version) is given in this chap-
ter. In view of the astrophysical applications the theory is developed
to take account of the relativistic effects from the outset.

Chapter xi.—The theory of degeneracy developed in chapter x is
here applied to elucidate the structure of the white dwarfs. For the
white dwarfs the structure depends, to a good approximation, only
on M, R, and the abundance of the lightest elements. This result
arises essentially from the circumstance of the white dwarfs being
highly “underluminous.”

Chapter xii.—In this chapter some general trends in the current
investigations on the problem of stellar energy are outlined. There
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are, as yet, no very definitive results to report, but some general ideas
which are likely to prove fruitful in the future developments of the
subject are considered.

The foregoing brief comments on the contents of each of the chap-
ters may be supplemented by their introductory paragraphs, where
more specific statements of the problems considered are made.

In concluding this brief outline of the monograph, it should be
emphasized again that the particular arrangement of the subject
matter has arisen in the attempt to present the subject from a uni-
fied standpoint. This, in turn, has required a somewhat detailed
treatment of certain aspects of the subject which may not appear
to deserve that prominence. However, in the opinion of the writer
the general standpoint taken appears to be the only fruitful one
under the present limitations of our knowledge.

Finally, in the actual developments an attempt has been made to
give the full details, both of mathematical derivations and of physi-
cal theories, as far as this has proved feasible. This method may in-
volve the disadvantage that there is a danger of the reader losing
the general perspective in the details of the solution of a mathemati-
cal problem or in the arguments of a physical theory. It will there-
fore be advantageous—even though it may not be strictly necessary
—if the reader acquires during the study of the monograph some
familiarity with the general results. For an attractive account, which
in several respects runs parallel to the more detailed treatment of
the monograph, reference may be made to B. Stromgren, “Die Theo-
rie des Sterninnern und die Entwicklung der Sterne,” Ergebnisse der
Exakien Naturwissenschaften, 16, 465, 1937.

We shall now consider two “technical” matters concerning the
monograph.

1. Bibliographical notes—With regard to references to the litera-
ture, it was decided to resist the temptation of making it a rule to
give running references in the text; actually only a very few refer-
ences are made. This has resulted in a more continuous arrangement
of the arguments than would otherwise have been possible. How-
ever, at the end of each chapter bibliographical notes are appended
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in which specific references to each particular section are made. Tt
should, moreover, be stated that it has not been the intention even
to attempt to give a complete list of references; only those investiga-
tions are quoted which have been incorporated in the text or the
results of which further amplify the points concerned.

2. The numbering of the sections and the equations.—The equations
and the sections in the different chapters have been numbered sepa-
rately. References to equations or sections (§) in the same chapter
are made by giving the appropriate numbers, e.g., equation (37)
or § 10; references to equations or sections in a different chapter are
distinguished by giving the chapter number as a Roman numeral,
e.g., equation (37), v (or more simply as (37), v), or § 10, v.



CHAPTER 1
THE LAWS OF THERMODYNAMICS

In this chapter we shall be concerned mainly with the first and
the second laws of thermodynamics. In our presentation of the fun-
damental principles of thermodynamics we shall follow Carathéo-
dory’s axiomatic point of view. This axiomatic presentation of the
laws of thermodynamics has the advantage of reducing the number
of new undefinables to a minimum and achieves at the same time
the maximum logical simplicity. Since a proper appreciation of the
meaning and content of the laws of thermodynamics is necessary
for the developments in the succeeding chapters, we shall accord-
ingly develop the fundamental ideas ab initio.

1. We shall consider only the simplest of thermodynamical sys-
tems, namely, those composed of chemically noninteracting mixtures
of gases and liquids. We shall assume that the elementary notions
concerning mass, force, pressure, work, and volume are familiar; we
shall, however, define accurately the purely thermal notions, such as
“temperature,” “quantity of heat,” etc.

In the purely mechanical discussions of the equilibrium of a body
—as, for instance, in hydrodynamics—the inner state of a fluid of
known mass is determined when we know its specific volume, ¥, the
volume per unit mass of the fluid. But this is not generally true, as
we can alter the pressure exerted by a gas without altering its
specific volume, V. For this purpose it is necessary to consider physi-
cal processes which are associated with “‘heating.” In thermodynam-
ics such physical situations are realized, and we introduce both the
pressure, p, and the volume, V, as independent variables. Thus, V
and p specify completely the inner state of a system.

We assume that individual systems can be isolated from the out-
side world by means of inclosures, or that two parts of a given system
can be separated by walls. Though we shall not include these in-
closures or walls as a part of the thermodynamical system, we shall
yet have to make certain specific ideal requirements for these parti-
tions. We shall have to consider two types of such partitions.

Ix
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a) Adiabatic inclosures.—If a body is inclosed in an adiabatic in-
closure and if it is in equilibrium, then, in the absence of external
fields of forces, the only way in which we can change the inner state
of the body is by means of actual displacements of at least some
finite part of the walls of the inclosure. If we assume the notion of
heat, this means that the only way in which we can change the
inner state of a body in an adiabatic inclosure is by doing external
work, and that, furthermore, the walls of the inclosure are opaque
to the communication of heat.

b) Diathermic partitions.—If two bodies are inclosed in an adia-
batic inclosure but are mutually separated by a diathermic wall,
then a certain definite relation between the four parameters p,, V,;
2, V. (defining the state of the two bodies, respectively) must exist
in order that there may be equilibrium; the relation depends on the
nature of the two bodies only. Thus, we must have

F(py, Viy ps, Vo) = 0. (1)

We shall say that two bodies are in “thermal contact” if they are
both inclosed in the same adiabatic inclosure but are separated by
a diathermic wall. Equation (1) then expresses the condition for
thermal equilibrium.

Thus, it is empirically found that, if two perfect gases are in ther-
mal contact, we always have

PXI/I - le,z = 0.

2. Empirical temperature.—Experience shows the following char-
acteristic of thermal equilibrium. If (p,, V), (p., V), (B, V), and
(P2, V) define two distinct states of two different systems (not nec-
essarily those of two different bodies) and if both (p,, V) and
(p2, V) are in thermal equilibrium with (3,, V,), and if, further,
(#1, V1) is in thermal equilibrium with (3,, V), then it is always true
that (¢, V.) will be in thermal equilibrium with (,, 7,). This sim-
ply means that, if two bodies are separately in thermal equilibrium
with a third body, then the two original bodies, if brought into ther-
mal contact, would also be in thermal equilibrium. By equation (1),
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which specifies the condition for thermal equilibrium, the foregoing
means that the equations

F(?h Vs, b v!) =0, F(pz Vs 29 Vl) =0, 1

F(Ply Vl) ﬁz, Vz) =0, J (2)

imply the validity of
F(PZ) V27 ﬁ’) T/:2) =0. (3)

But this s then, and only then, possible if the relation F(p, V, p, V)
= o has the form -

Hp, V) — Up, V) =o0.- (4)

In (4) ¢t and I are not uniquely determined, for the condition of
equilibrium, (4), can also be written as

Tt(p, V)] = T3, V)1, 4

where T(x) can be any arbitrary function in .

Of all the possible forms which the condition of equilibrium can
take, let us choose arbitrarily one particular form and write it in
the form (4). The values ¢(p, V) and (5, V) define on an arbitrary
scale the empirical temperature of the two bodies; if the two bodies
are in thermal contact and are in equilibrium, then we should always
have the equality of the empirical temperatures. If

then in equilibrium
t=1. (6)

The equations (s) define in the (p, V) and in the (5, V) planes, re-
spectively, a one-parametric family of curves which are called “iso-
thermals.” The equations (5) are called the “equations of state.”
If the empirical temperature scale is once selected and defined,
then we can always choose any two of the three variables p, V, and ¢
as the independent variables defining the state of a system. In the
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same way two arbitrary functions of the physical variables vV,
and ¢ would also suffice to specify a state of the system.

3. The First Law of Thermodynamics.—The experiments of Joule
establish the following circumstance:

In order to bring a body (or a system of bodies) from a prescribed
initial state to another prescribed final state adiabatically, then the
same constant amount of mechanical work (or an equivalent electrical
work), which is independent of how the change is carried out and which
depends only on the prescribed initial and final states, has to be done.

Let the initial state be specified by p,, V., .. .. , and the final
state by p., Vi, . ... Let the work done to carry out the change of
state adiabatically be W. Then, according to the first law, if we keep
the initial state fixed, W depends only on the final state. We can
therefore write

W=U-U,, (7

where U is a function of the parameters determining the state of the
system—p and V, if there is only one body—and U, is its value in
the initial state. U, thus defined, is called the “internal energy’’ of
the system.

If we define our unit of heat as the mechanical work (expressed
in ergs) required to change the (empirical) temperature, ¢, of water
of unit volume (at constant volume) between two definite values,
then we obtain the so called “mechanical equivalent of heat.”

4. Quantity of heat.—Suppose that we know the internal energy
as a function of the physical parameters from a series of calorimetric
experiments, as, for instance, Joule’s experiments. Suppose, now,
that in some given arbitrary nonadiabatic process the internal
energy of a system changes by (U — U,); further, let W be the
amount of work done on the system. Then we say that a quantity
Q of heat, where

Q=(U_U0)_Wy (8)
has been supplied to the system.

We see that the notion of the quantity of heat has no independent
meaning apart from the First Law of Thermodynamics. (U — U,)
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is a physical quantity which can be determined experimentally,
while the notion of Q is a derived one.

5. The internal energy of a system of bodies—1If two or more bodies
are isolated from each other adiabatically, then by definition the
energy of the system is equal to the sum of the energies of the indi-
vidual bodies:

U=U 1 +‘ U 2. (9)

In general, when the two bodies are brought into contact, the energy
is not additive; it is easy to see, however, that the deviation must be
proportional to the common surface area of the bodies, and hence, for
large volumes the deviations from the additive law can be neglected.

6. Stationary and quasi-statical processes—In the formulation of
the first law we assumed that the work done can in principle be meas-
ured. But to evaluate the work done during a given process we need
an apparatus to register continuously the forces exerted on, and the
displacements of, the walls of the inclosure, for the work done is
simply the integral over the product of the force and the displace-
ment. In practice this limits us to only two essentially distinct pro-
cedures for which we can measure the work done. These are:

a) Stationary processes.—For example, as in Joule’s experiments,
there is a stirrer which rotates in the fluid at a constant rate. This
would give rise to a stationary system of currents in which the stirrer
experiences a constant friction. If we neglect the relatively small
acceleration in the beginning and the end of the interval during
which the stirrer rotates, then the work done is simply the product
of the torque times the rate of working of the stirrer.

b) Quasi-statical processes—We conduct the process infinitely
slowly, so that we can regard the state of the system at any given
moment as one of equilibrium. We refer to such processes as “quasi-
statical processes.” They are generally referred to as “reversible
processes” because, in general, quasi-statical processes can be con-
ducted in the reverse sense. We shall refer to a process as ‘‘nonstati-
cal” if it is not quasi-statical.

7. Infinitesimal quasi-statical adiabatic changes—If we have a
body inclosed in an adiabatic inclosure, and if we do an infinitesimal
amount of mechanical work, dW (by displacing the walls of the in-
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closure), carried out quasi-statically, then we say that we have car-
ried out an “infinitesimal quasi-statical adiabatic change.” If dur-
ing such an infinitesimal quasi-statical adiabatic change the change
in volume amounts to dV, then clearly

dW = —pdV , (10)
where p is the equilibrium pressure. Then, according to the first law,
dQ = dU + pdV =o. (11)

For a system of two bodies which are both inclosed in the same
adiabatic inclosure but which are separated from ome another by
means of a diathermic wall, we have, since both Q and U are addi-
tive,

dQ = dQ: + dQ.,
dUr+ dU, + p.dV,+ p.dV,=o. (12)

I

Finite quasi-statical adiabatic changes are simply continuous se-
quences of equilibrium states and therefore are curves in the phase-
space (i.e., the p, V plane for a single body) which satisfy at each
point equations of the form (1 1) or (12). Equations (11) and (12)
are called the ‘“equations of the adiabatics.”

If we consider U as a function of V and ¢, then

U = (gg) av + (%’71) d . (13)

Hence (11) takes the form
oU aU
dQ=<a—I;+p>dV+—(gdt=o. (14)
Equation (12) has interest only when the two bodies are in thermal

contact. The system then can be described by three independent
variables, V,, V,, and ¢, the common empirical temperature:

ps, Vi) = ps, Vo) = 8. (15)
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Equation (12) can then be written as

dQ = (‘;’If— + P1> av, + (‘;Z + pz) av,

(16)
i (aU, +auz>dt —0.

a ot

Equations (14) and (16) are the equations of the adiabatics. Equa-
tions of the form (14) and (16) are called “Pfaffian differential equa-
tions.” We must now study some mathematical properties of these
differential equations.

8. Mathematical theorems on Pfaffian differential equations.—We
shall consider first a Pfaffian differential expression in two variables
x and y:

dQ = X(x, y)dx + Y(x, y)dy, (17)

which has the same form as equation (14). The integral of dQ be-
tween two points 1 and 2 depends in general on the path of the

I

2
integration. Hence f dQ cannot in general be written as Q(x., ¥.)

— Q(x,, .), which means that dQ is not “integrable.” This in turn
means that dQ in general is not a perfect differential of the function
Q(x, y). If dQ were a perfect differential, we should have dQ = do,
where ¢ is a function of ¥ and y; we should have further

do do

Comparing (17) and (18), we have

g

3 , 3
X,9) =55 Y@= ay’ (19)

or

8X _ &0 _ oY

oy ~oxdy 0w’ (z0)

Condition (20) between the coefficients in the Pfaffian expression
need not, of course, be true.
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Corresponding to (17), the Pfaffian equation in two variables is

dQ = Xdx + Ydy = o, (21)
or
dy _ _X
dx YV’ (22)

The right-hand side of equation (22) is a known function of x and ¥,
and hence the Pfaffian equation (21) defines a definite direction at
each point in the (x, ) plane. The solving of the equation simply
consists of drawing a system of curves in the (, y) plane such that
at any point the tangent to the curve (at that point) has the same
direction as that specified by (21). Hence, the solution of the equa-
tion (21) defines a one-parametric family of curves in the (x, ¥)
plane. The solution can therefore be written as o(x, ) = ¢ = con-
stant. Then

dos | o dy _
ox Tayds = (23)

From (22) and (23) we easily find, that

v - x99 XY (24)

where 7(x, y) is a factor depending on x and y. Equation (24) can
also be written as

X=-r~;; Y=Tj' (25)
Inserting (25) into (17), we have

do da
aQ = T<b} dx + 3y dy) = rdo , (26)

or
LR (27)

Le., if we divide the Pfaffian expression (17) by 7, we obtain a
perfect differential. A factor, 7, which has this property is called
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an “integrating denominator.” A Pfaffian differential expression,
then, in two variables always admits of an integrating denominator.

If we replace o by another function of ¢, say S[e(x, ¥)], then S =
¢ = constant will again represent the solutions of the differential
equation. In that case

_dS,, 4540
as = i do = do 1 (28)
= 9@ (29)
T(x,9) <’ ?
where
d
T, 9) = (%) 75 - (30)

Therefore, T is also an integrating denominator. Hence, if a Piaffian
expression admits of one integrating denominator, it must admit of
an infinity of them. This result is easily seen to be true for a Pfaffian
expression in any number of variables.

We shall now proceed to consider a Pfaffian expression in three
variables. (The generalization to more than three variables is im-
mediate.) Consider the Pfaffian expression

dQ = Xdx + Vdy + Zds, (31)

where X, ¥, and Z are functions of the variables x, y, and z. Our
thermodynamical equation (16) is of this form. The ratio dx:dy:dz
defines a definite direction in the (z, v, z) space. The equation
dQ = o, corresponding to (31), specifies that dx, dy, and dz must
satisfy a linear equation at each point in the space, and hence
specifies a certain tangential plane at each point in the (x, ¥, 2)
space. A solution of a Pfaffian equation, dQ = o, passing through
a given point, (#, ¥, z), must lie in the tangential plane through that
point; but its direction in the tangential plane is arbitrary.

Now, dQ in general will not be a perfect differential. If it were,
dQ = do, where ¢ is some function of x, ¥, 2, s0 that

a a a
dQ=d¢r(x,y,z)=b§dx+b—;dy+5§dz.
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Hence, by comparison with (31),

da Y_aa _ Og

X=bx’ “b—y) Z_a_z) (32)

or
oV _oz  oz_ox ox _ov G
9z dy’ ax 3z’ dy  ox 33

The relations (33) need not be valid for arbitrary functions X, ¥, Z.

But we can ask: Does the Pfaffian expression admit of an inte-
grating denominator? In other words, can we determine a function,
7, of x, ¥, and z such that

;&5=d0=g§cdx+g—;dy+g—:dz ? (34)
If we can determine an integrating denominator 7(x, y, z), then
every solution of the differential equation dQ = o would also be
a solution of do = o; or the solution can be written in the form
o(x, y, 3) = ¢ = constant; i.e., the solutions can be any arbitrary
curve lying on any one of the one-parametric family of surfaces
o(x, y, 2) = c. It is, however, important to realize that we cannot,
in general, find integrating denominators for Pfaffian expressions in
more than two variables. This can be verified by the following ex-
ample. Consider the equation

dQ = —ydx + xdy + kdz = o, (35)
where % is a constant. If the Pfaffian expression (35) admitted of

an integrating denominator r, then

Lo Yt iy 1 i ao (36)

T

is a perfect differential. Hence, we should have

9 _ _y. 9o _zx. . 9o _k
x 7’ ay 1’ 9z 1’ (37)

We have
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or
or or
ar=xg T Y5 (39)
Again
O Y\ _yor_o(k\_ _kor
62( T> T 29z 3x(7> T 7 ox’ (40)
or
or _ _yor
ax  kaz’ (41)
Similarly,
s(by_ ke _a(n)_ _xor )
Ay\r dy dz\r) 193’ 42
or
ar  x Ot
3y " kdz’ (43)

From (39), (41), and (43) we have r = o, thus leading to a con-
tradiction.

By means of such examples we realize that Pfaffian expressions
in three (or more) variables will not in general admit of integrating
denominators except under very special circumstances. It is neces-
sary to appreciate this, for precisely such special circumstances ob-
tain in thermodynamics.

We have seen that the Pfaffian differential expressions fall into
two classes, those which admit of integrating denominators and
those which do not. We must look for a less abstract characteristic
of this difference. Consider a Pfaffian equation in two variables.
Then through every point in the (x, ) plane there passes just one
curve of the family o(x, ¥) = ¢. Hence from any given point in the
plane we cannot certainly reach all the neighboring points by means
of curves which satisfy the Pfaffian equation. We shall refer to this
circumstance by the statement that not all the neighboring points
are accessible from a given point.

Now consider a Pfaffian expression in three variables. If it ad-
mits of an integrating denominator, the situation is the same as in
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the plane; all the solutions lie on one or other of the family of sur-
faces a(x, 3, ) = ¢, so that we cannot reach all points in the neigh-
borhood of a given point. Only those points will be accessible which
are on the surface belonging to the family o(x, ¥, z) = ¢, which
passes through the point under consideration.

We now ask the converse question: If in the neighborhood of a
point (however near) there are points which are inaccessible to it
along curves which are solutions of the Pfaffian equation, then does
the Pfaffian expression admit of an integrating denominator? Cara-
théodory has shown that the answer to the foregoing question is in
the affirmative. The proof is as follows:

All those points which are accessible to a given point, P, (ac-
cessible along curves which are solutions of the Pfaffian equation),
and which are in its immediate neighborhood, must form, together
with P,, a continuous domain of points; hence we have three possi-
bilities: all the accessible points in the immediate neighborhood of
P, either fill a certain volume element containing P,, or a surface
element containing P,, or a line element passing through P,. The
first possibility is excluded because all points in a sufficiently close
neighborhood of P, would then be accessible to P,; this contradicts
our hypothesis that in the neighborhood of a point, however near,
there are always points inaccessible to it. Again, the last possibility
is also excluded because dQ = o = Xdx + Ydy + Zdz already de-
fines an infinitesimal surface element containing only points ac-
cessible to P,. Hence, the points which are accessible to P, and
which are in its neighborhood must form a surface element, dF,.
If we now consider the boundary points P’ of dF,, we can again
define surface elements dF’ containing all the points accessible to
the points P’ on the boundary of dF,. These surface elements dF’
must overlap dF,; at the same time the elements dF’ cannot form
surface elements lying above or below dF,, for then along paths
going from P, to a point P’ on the boundary of dF,, and thence
from P’ along a curve lying in an appropriate element dF’, we should
be able to reach all the points in an immediate spatial neighborhood
of P,; this would again contradict our hypothesis. Thus, the ele-
ment dF,, together with the elements dF’, must form a continuous
set of surface elements. By this process of continuation, only points
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lying on a definite surface passing through P, are obtained, and
hence all the points accessible to P, must lie on a definite surface F,.
If we now start at a point P; not on F,, we must obtain in the same
way another surface F, which cannot either intersect or touch the
surface F,. In this way we can construct a whole family of noninter-
secting surfaces Fo, F;, F,, . ..., continuously filling the whole
(x, y, %) space, such that only points on any given surface are ac-
cessible to points on the surface itself. These surfaces then form a
one-parametric family of surfaces, o(x, ¥, 5) = constant, such that
do = o implies dQ = o. Hence, we must have

dQ = T(xy b2) z)da(x, Y Z) ’ (44)
where
X Yy Z
T = 59_‘1 = 533 = ‘_9_% (45)
dx dy 9z

We have thus proved Carathéodory’s theorem:
If a Pfaffian expression

dQ = Xdx + Ydy + Zdz

has the property that in every arbitrarily close neighborhood of a point P
there are imaccessible points, i.e., poinis which cannot be conmected
to P along curves which satisfy the equation dQ = o, then the Pfaffian
expression must admit of an integrating denominalor.

Tt is easily seen that the foregoing theorem must also be true for
Pfaffian expressions in more than three variables. Further, it is clear
that, if a Pfaffian expression admits of one integrating denominator,
it must admit of infinitely many integrating denominators.

For the family of surfaces, o(x, y, 5) = constant can also be writ-
ten as S[o(x, y, z) =] constant, where S(¢) is an arbitrary func-
tion in ¢. Then we have

_4dS  _dSdQ
dS = - do = - =5, (46)

or
dQ = T(x, y, 2)dS, (47)



24 STUDY OF STELLAR STRUCTURE

where
do X 14 zZ
ox dy 0z

Carathéodory’s theorem, which expresses the mathematical equiv-
alence of the inaccessibility along curves dQ = o with the existence
of an integrating denominator 7(x, v, z) to Q, contains, as we shall
see, the essence of the Second Law of Thermodynamics.

9. The Second Law of Thermodynamics.—The physical basis for
the second law is the realization that certain processes are not physi-
cally realizable. The most sweeping statement of this character is
that without “compensation” it is not possible to transfer heat from
a colder to a hotter body; more precisely, the law is included in
Kelvin’s principle, which states: Iz a cycle of processes it is impos-
sible to transfer heat from a heat reservoir and convert it all into work,
without at the same time transferring a certain amount of heat from a
hotter to a colder body. The second law is sometimes also stated in
the form: It is impossible that, at the end of a cycle of changes, heat
has been transferred from a colder to a hotter body without at the same
time converting a certain amount of work into heat. This latter state-
ment of the second law is due to Clausius. However, the essential
point of Carathéodory’s theory is that it formulates the facts of ex-
perience in a very much more general way, enabling us at the same
time to obtain all the mathematical consequences of the second law
without any further physical discussion. In fact, in order to obtain
the full mathematical content of the second law, it is sufficient that
there exist certain processes that are not physically realizable. Cara-
théodory states his principle in the following form: Arbitrarily near
lo amy given state there exist states which cannot be reached from an ini-
tial state by means of adiabatic processes.

From Carathéodory’s principle it follows in particular that there
exist states neighboring a given one which cannot be reached by
means of quasi-static adiabatic processes.

In the first instance we shall only apply Carathéodory’s principle
to quasi-static adiabatic processes. Later (§ 10), we shall have oc-
casion to use the principle in its wider form, namely, that there exist
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states neighboring a given one which are inaccessible to it along
nongtatic adiabatic processes.

From the restricted form of Carathéodory’s principle, it follows
that there are states neighboring a given one which cannot be
reached along adiabatics (Egs. [14] and [16]); hence, by Carathéo-
dory’s theorem the Pfaffian differential expression for dQ must ad-
mit of an integrating denominator:

dQ = rdo . (49)

For one single substance whose state is characterized by the two
parameters V' and ¢, Carathéodory’s principle does not lead to any-
thing new, because a Pfaffian expression in two variables always
admits of an integrating denominator.

When, however, we consider a system composed of two bodies
adiabatically inclosed and in thermal contact, Carathéodory’s prin-
ciple asserts something new in so far as we can now assert that
dQ = dQ, + dQ, can always be written in the form

dQ = dQ, + dQ, = 7(Vs, Vo, da(Vy, V5, 1) . (50)

On the other hand, we have for each of the two bodies

dQ[ = T;(Vx, t;)dO'x(Vx, tl) 3 (SI)
dQ, = 1.(Vay t2)dos(Va, 1)« (52)
If the two bodies are in thermal contact, we have
L=t =t. (53)
Hence,
rdo = 71:do: + Tdos ., (54)

If we now choose a;, o, and ¢ as the independent variables, instead
of V., V., and ¢, we can regard 7 and o as functions of ¢, ¢, and ¢;
from (54) we then have

do _ 7oy, 1) 9o 7u(oy e do _
0o, - T(a’l’ o2 t) ) 96, = T(O’;, o t) ) at = 0. (ss)
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From the last equation it follows that ¢ is independent of ¢; hence,
o depends only on ¢; and o, or

¢ = o(oy, 0,) . (56)

From the first two equations in ( 55) it follows that 7,/7 and 7./r
are also functions independent of ¢. Hence,

_Q(Ti =o0: é(fﬁ =0 (57)
a\7) =% a\r)= 57

1dr _ 197, _ 107
Ot o rot’ (s8)

or

Now 7, is a function only of ¢, and ¢, and 7, is a function only of
o, and ¢. Hence, the first equality in (58) can be valid only if the
two quantities are functions of £ only. We can therefore write (58) as

dlogr, _dlogr, dlogr _

where g(¢) must be a universal function, because it has the same
value for two arbitrary systems and also for the “‘combined” sys-
tem. We are thus led to a universal function of the empirical tem-
perature, £.

From (59) we have, on integration,

log 7 = [g(t)dt + log Z(os, 02) , (60)
log Ti = fg(t)dt + IOg Ei(o'i) ’ (Z =1 2) ’ (61)

where the constants of integration Z and Z, are independent of  and
are functions only of the other physical variables characterizing the
system. Equations (60) and (61) can also be written as

7= 2(oy, 02) - efg('){”; i = Zi(o) - Jvdr, (62)

Thus, for any thermodynamical system the integrating denominator
consists of two factors, one factor which depends on the tempera-
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ture (and which is the same for all substances) and another factor
which depends on the remaining variables characterizing the system.
We therefore introduce the absolute temperature, T, defined by

T = ceJ® o, (63)

where C is an arbitrary constant (instead of which we can also in-
troduce an arbitrary lower limit to the integral in the exponent in
[63)), and which is determined in such a way that two fixed points
(e.g., the freezing- and the boiling-point of water) differ by 100 on
the absolute scale. It should be noticed that T does not contain any
additive constant—in other words, the zero of the absolute scale of
temperature is physically determined. From (49), (62), and (63) we
have

p>

C gl dou; . (64)

dQ = 7de =T C

do' 5 dQ, = T.'do',' = T
If we are dealing with a single homogeneous body the state of which
is defined by the independent variables ¢ and o, then Z, depends
only on o, so that we can introduce the function S,, which is de-
fined as

I

S: = sz,(a,)do'; -+ constant . (65)
The function S, depends only on o, and is determined apart from
an arbitrary additive constant. Furthermore, S is constant along
an adiabatic. The function S,, so defined, is called the “entropy.”
One can now write

dQ. = TdS. . (66)

If we now consider a system composed of two bodies in thermal
contact, we have for the two bodies separately

Z

de = rdo, =T ~(Co.—1)-d0'1 = TdS, 5 (67)
dQ2 = 1 do, =T ’2'2”(172)‘ do, = TdS, ’ (68)

C
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and for the combined system

40 = rds = T2 450, 0, (69)
= dQ. + dQ. _Tz("‘)d +TE("’) s . (69")
Hence,
(o1, 62)do = Z(01)do; + Z.(0,)do, . (70)
From (70) it follows that
i) a
2(01, 02) £ =Z2(0);  Z(ow 02) 561 = Z.(0s) . (71)
Hence,
9%, _ 9% 8¢ 0 _
ds, 9o, do, +2 96,80, ° (72)
9z, - 3z do dc (73)
30 8oy 00, © < 80700, O 73

From (72) and (73) it follows that the functional determinant

dZ d¢  9Z 3o _ (2, o)

da; 30, 00, dox (o, 02)

(74)

is zero, and consequently =(g,, 7,) contains the variables ¢, and ¢,
only in the combination ¢(c,, ¢,). We can therefore write

Z(01, 02) = 2(0) . (75)
Equation (69) can be written as

dQ = vde = TdS, (76)
where

as = 29 4q, (77)

or

S = éfz(a)da + constant , (78)
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where S is now the “total’”’ entropy of the system. From (67), (68),
and (76) we further have that

dS = dS, + dS, = d(S: + SJ), (79)

or, in words: the change of entropy of a system composed of two
bodies in thermal contact, during a quasi-statical process, is the
sum of the entropy changes in the two bodies separately.

By a suitable choice of the additive constant entering into our
definition of entropy we can arrange so that

S=S5+S., (80)

or: the entropy of a system is the sum of the entropies of its differ-
ent parts.

Equation (76) contains the mathematical statement of the Sec-
ond Law of Thermodynamics, which follows as a purely mathemati-
cal consequence of the Carathéodory principle: Tke differential of
the heat, dQ, for an infinitesimal quasi-statical change, when divided
by the absolute temperature T, is a perfect differential, dS, of the en-
tropy function.

The essential differences between (47) and (76) should be noted.
In (47) T and S (and r and o) are functions of @l the physical vari-
ables; while in (76), 7 and T depend only on the empirical tempera-
ture, ¢, which is the same for the different parts of the system; fur-
thermore, o and S depend only on the variables (¢, and o,) which do
not alter their values for adiabatic changes; finally, T is a universal
function of ¢, and S is a function only of o(o, 7).

We shall now show that the gas-thermometer scale, pV = ¢, de-
fines a temperature scale proportional to the absolute temperature.
It should be emphasized that the usual assumption that pV = ¢
defines, apart from a constant factor, the absolute temperature scale
is logically unsound. To assume beforehand that the absolute tem-
perature scale should be precisely pV = ¢ and not any other mono-
tonic function, ¢ = f(pV), is to beg the question. We shall see that
we cannot identify pV « T without an appeal to the Second Law
of Thermodynamics. To do this logically, we need to know the in-
ternal energy, U, as a function of the state of the gas. The experi-
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mental basis is the idealized Joule-Kelvin experiment, which shows
that, when a gas expands adiabatically without doing any external
work, the product pV (i.e., the gas temperature, ¢ = f[pV]) does not
change. (It should be noticed that an appeal is made here to an ir-
reversible process. As Carathéodory has pointed out, it is necessary
at some stage to appeal to an irreversible process to fix the zero-
point of the absolute temperature scale.) It follows, then, from the
Joule-Kelvin experiment that U is independent of }. Hence, we can
write

U=U@®; pV=FQ@, (81)

where ¢ is the empirical temperature. For the differential of the heat
for a quasi-statical change, we have

4Q = aU + pav = &) dt—i—F(t)d—V
- F() [th) Wit + a10g V] (82)
Define a quantity, x, by the equation
log x = f LY dt + constant . (83)
FO) &t
Equation (82) can be re-written as
dQ = F()d log xV . (84)

Hence, we can choose F(#) as the integrating denominator
r=F@); ¢ = log xV. (85)
Equation (84) now takes the standard form
dQ = rdo . (86)

We can, of course, choose the integrating factor in many other
ways. If

ot =oo); = F() o, (85)
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equation (86) can be written as
dQ = r*do* . (86)

Hence, there is no a priori reason to choose 7 = F(f) = pV as the
integrating denominator. But we have shown that

gl = 2187 (87)

is a universal function which is the same in whatever way we may
choose to define the integrating denominator. g(f), defined by (87),
is invariant to the transformations (85'). From our definition of the
absolute temperature (Eq. [63]) we have

T = CeJ*™ = CF(5) = CpV . (88)

Thus the absolute temperature scale agrees with the temperature
on the gas-thermometer scale.
From dQ = TdS, we find that

s = é dlog xV, (89)
or
S = é log xV + constant . (90)

If we write U = ¢yT and consider ¢y as a constant, and further de-
fine R = 1/C, we have

log x = fCV dT = —CV log T + constant . (o1)
Hence, finally,

S=S+cylogT +RlogV, (92)

where S, is a constant.
10. The principle of the increase of entropy.—So far we have con-
sidered only quasi-statical changes of state, though at one point
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(§ 9) we had to consider a nonstatical process when we appealed to
an idealized Joule-Kelvin experiment. We shall now discuss non-
statical processes more generally.

We shall consider, as we have done so far, an adiabatically in-
closed system composed of two bodies in thermal contact. The equi-
librium state of such a system can be characterized by three inde-
pendent variables, such as V,, V,, ¢ (the variables we have used so
far). We shall now choose V,, V,, and S as the independent vari-
ables. Let V3, V3, and S° be the values of the physical variables in
an initial state and V,, V,, and S in a final state. We now assert
that S is either always greater than S° or always less than S°.

To show this, we consider the final state as being reached in two
steps: )

a) We alter the volumes ¥ and V¢ by means of a quasi-statical
and adiabatical process such that the volumes at the end are V,
and V,. In this way we keep the entropy constant and equal to S°.

b) We then alter the state of the system, keeping the volumes
fixed, but change the entropy by means of adiabatical but nonstati-
cal processes (such as stirring, rubbing, etc., in which dQ = o but
dQ # TdS) such that the entropy changes from S° to .S.

Ii, now, S were greater than S° in some processes and less than
5° in others, then it should be possible to reach every close neigh-
boring state, (V,, V., S), of the initial state, (V9, V2, S°), by means
of adiabatic processes. (After reaching the state (V,, V,, S), we can
reach all the states, (V], V;, S), by means of processes [a]). This
contradicts Carathéodory’s principle in its more general form, which
postulates that in any arbitrarily near neighborhood of a state,
(V3, V3, S), there exist adiabatically inaccessible states even when
we allow nonstatical processes. Consequently, by means of the proc-
esses (b), and therefore also by means of the processes (a) and (b),
the entropy S° of the system can either only increase or only de-
crease. Since this is true for every initial state, we see that, because
of the continuity of the impossibility of “increase” or “decrease,”
the entropy of the system we have considered must either never in-
crease or never decrease. The same must also be true for two inde-
pendent systems because of the additive nature of entropy. We have
thus proved: For all the possible changes (quasi-statical or otherwise)
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that an adiabatically inclosed system can undergo, the entropy, S, must
either never increase or never decrease.

Whether the entropy decreases or increases depends in the first
instance on the sign of C introduced in our definition of entropy (78).
This is naturally chosen in such a way that the absolute temperature
is positive. Then one single experiment is sufficient to determine
the sign of the entropy change. By the expansion of an ideal gas, G,
into a vacuum, the entropy S¢ of the gas increases, as can be seen
from equation (92) (V increases and T remains the same). We now
consider a system composed of the gas, G, and of another body, K.
If we consider such changes of state in which the entropy Sk of the
body remains constant and S¢ changes, then S = S¢ + Sk must
increase (since, as we have just seen, S; always increases); conse-
quently, S can never decrease. Hence, if we consider processes in
which the entropy of the gas remains constant, it is clear that, as §
can only increase, Sk can only increase; this is true also when K
and G are adiabatically separated. Hence, in general we have proved
the following important result:

For an adiabatically inclosed system the entropy can never decrease:
S > S°, (nonstatical process) ,

S = S° (statical process) . } (93)

It follows that if in any change of state of an adiabatically in-
closed system the entropy becomes different, then no adiabatic
change can be realized which will change the system from the final
to the initial state. In this sense, therefore, every change of state
in which the entropy changes must be irreversible. This can also
be stated as follows: For an adiabatically inclosed system the en-
tropy must tend to a maximum.

Still another formulation of the foregoing is

% <o, (04)

where the integral is taken over a closed cycle of changes, it being
assumed that during the cycle the system can be characterized at
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each instant by a unique value for 7. To prove this let us consider
a cycle of changes in which the working substance is carried through
states 4 and B, and in which, further, the part of the cycle from
A to B is carried out adiabatically (but not necessarily statically)
while the part of the cycle from B to 4 is carried out reversibly. For
this cycle of changes

Fo- L

Since the part of the cycle from 4 to B has been carried out adiabati-

cally, we have
d 44 ,
}[TQ=£ T =5a=5s, (94

which, according to (93), must be zero or negative. We have thus
proved (94) for the special cycle of changes considered. The argu-
ments can be extended to prove (94) quite generally.

We thus see that the full mathematical content of the second law
can be deduced from Carathéodory’s principle. But the question
still remains whether Carathéodory’s principle can lead us to Kel-
vin’s formulation of the second law. To answer this, we must supple-
ment Carathéodory’s principle with some additional axioms before
we can derive Kelvin’s or Clausius’ formulation of the second law.
The arguments necessary to establish this involve some rather deli-
cate considerations, and these go beyond the scope of our present
chapter. The interested reader may refer to an illuminating discus-
sion by T. Ehrenfest Afanassjewa quoted in the bibliographical note
at the end of the chapter.

11. The free energy and the thermodynamical potential—We have

shown in § 10 that
d
f —TQ <o, (95)

where the integral is taken over a closed cycle of changes. Let us
suppose that the closed cycle of changes carries the working sub-
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stance through states 4 and B, and that, further, the part of the
cycle for B to 4 is along a reversible path. Then

fdQ f B dQ A dQ (06)

or, since the path from B to 4 is reversible, we have, according to

(95) and (96),
B
[( R <so=sa (o7)

Equation (97) is, of course, equivalent to (95).
Let us now consider an isothermal change. Then (97) can be writ-
ten as

LZQ<N&—SU, (8)

where T denotes the constant temperature. By the First Law of
Thermodynamics we now have.

Up—U4s + WAB T(Sp — S4), (99)

where W45 is the work done by the system. Equation (99) can be
written alternatively in the form

Fp— Fs+ Wap <o, (100)
where
F=U-TS. (101)

The function F, thus introduced, is called the “free energy” of the
system. From (100) it follows that for an isothermal change in which
no work is done the free energy cannot increase.

Another function of importance is the thermodynamical potential,
defined by

G=F+pV=U+pV —TS. (102)

Tt is clear that if the temperature and the external forces are kept
constant G cannot increase.
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12. Some thermodynamical formulae.—So far we have concerned
ourselves only with general principles. We shall conclude this chap-
ter with the derivation of some thermodynamical formulae which
are of considerable practical importance.

Let us consider a homogeneous isotropic medium. Then for a
quasi-statical change (in Eq. [14] we shall now use the absolute
temperature, 7, instead of the empirical temperature, f)

U oU
Since dQ/T is a perfect differential, we should have
9 (19U
6T[ ( + P)] = W(T ﬁ) ) (104)

or, carrying out the differentiations,

1 au 1f o°U ap _I a2U
B _TZ[(W>T + "] + T[aTaV + (aT) ] =7 aver (1°9)

(g_g)r = T(:;) —?- (106)

Let us next consider the free energy. By definition (Eq. [101])

or

dF = dU — TdS — SdT, (107)

or, since
dQ = TdS = dU + pdV , (108)

we have
dF = — SdT — pdV . (109)

dF is, however, a perfect differential. Hence, we should have

(g;)v = =5 (%)T =—?. (110)
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Finally, let us consider the thermodynamical potential, G. We
have

dG = dF + pdV + Vdp, (111)
or, using (109),
dG = —SdT + Vdp. (112)
Hence, we should have
3G (3G _
(@),=-s: &)-7 29

We shall have occasion later to use (106), (110), and (113).
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CHAPTER II
PHYSICAL PRINCIPLES

In this chapter we shall be concerned with some miscellaneous
problems which form the background to the study of stellar struc-
ture. The main topics for consideration are: the thermodynamics
of a perfect gas, uniform expansion (or contraction) of gaseous con-
figurations, the virial theorem, and the thermodynamics of black-
body radiation.

1. The specific heals of a perfect gas—We shall consider a perfect
gas for which, according to the results of the last chapter,

pV = RT ; U=U0, (1)

where T is the absolute temperature and where the constant of pro-
portionality, R, so introduced, is called the ‘“gas constant.”
For an infinitesimal quasi-statical change of state we have

dQ = dU + pdV, (2)
or, according to (1),
aU
dQ = ar dT + pdV . (3)

Let a be a function of the physical variables. Then the specific heat,
Cq, at constant a is defined by

= (). ®

The right-hand side of (4) is to be determined from (3) in such a
way that « remains constant. Thus, the specific heat, cy, at con-

stant volume is given by

au
vy = aT (5)

To determine the specific heat, ¢,, at constant pressure, we pro-
ceed as follows: From the equation of state we have
pdV + Vdp = RdT . (6)

38
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From (3) and (6) we have

au

dQ = (ﬁ + R)dT — vap, ()
from which it follows that
aU

Cp = "z‘f + R. (8)
Combining (5) and (8), we have the important result

cp—cv =R. (9)

The ratio of the specific heats, denoted by 1, is defined as ¢,/cy.

In further work, we shall assume that ¢y is independent of T.
This is a consequence of the kinetic theory of gases, to which we
shall return in chapter x. From (5) we have, then, for the internal

energy U:
U=uoT. (10)

2. Adiabatic changes.—Using (5), we can write for the differen-
tial dQ for a quasi-statical change

dQ = cydT + pdvV, (11)

or, using the equation of the state,
dQ = cvdT+1—;z‘dV. (12)
For a quasi-statical adiabatic change, therefore,

chT+ng=o, (13)

or, using (9),

ar av
6V7+(6p—cv)7=°, (14)

from which we obtain

cylog T + (¢cp — cv) log V = constant . (15)
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In terms of the ratio of the specific heats we can re-write (15) as

TV = constant . (16)
Using pV = RT, we can eliminate 7 in (16) and obtain

pV?¥ = constant . (17)

Similarly, by eliminating V between (16) and (17), we have

v T7 = constant . (18)
Hence, along an adiabatic we have
pVY = constant ;  p*7T7 = constant ; TV = constant. (19)

The foregoing equations (19) are due to Poisson. The derivation in
the form given above is due to Lord Kelvin.

3. Polytropic changes.—A polytropic change is a quasi-statical
change of state carried out in such a way that the specific heat re-
mains constant (at some prescribed value) during the entire process.
Thus,

% (20)

aT = ¢ = constant .

An adiabatic, then, is a polytropic of zero specific heat, and an iso-
thermal a polytropic of infinite heat capacity. It is also clear that
quasi-statical changes in which the pressure and the volume are kept
constant are polytropics of specific heats ¢, and cy, respectively.
Polytropic changes were first introduced in thermodynamics by
G. Zeuner and have been used extensively by Helmholtz and es-
pecially by Emden.

From (11) and (20) we have, for an infinitesimal polytropic

change,
(cv — ¢)dT + pdV =o. (21)

Equation (21) is the equation of a polytropic. From (21) we have

=G+ G-m =, (22)
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or, integrating, we have

TCv= 7~V = constant . (23)
We shall define the polytropic exponent, v', by

r _6p—C

V= (24)
We have
r_ =T
V—r=o (25)
Equation (23) can then be written as
TVr~* = constant , (26)

which is of the same form as (16) except that the polytropic expo-
nent, v/, replaces the ratio of the specific heats, y. Hence, quite
similarly, as in the last section, we have that along a polytropic

pV™ = constant ; p~¥' T = constant ; TVY™* = constant . (27)

4. A theorem due to Emden.
—Let AB and CD be two
polytropics of heat capacity
¢: and exponent v,; further,
let AD and BC be two other 1 8
polytropics of heat capacity P
¢, and exponent v,. Let these
four polytropics intersect at
the points 4, B, C, and D.
Let p4, V4, and T, be the
values of the physical vari-
ables at A; pp, Vs, and
T3, the values at B; and

S0 on.
Consider the case in which the gas goes through the cycle ABCD

quasi-statically. Since dQ/T is a perfect differential,

f a0 (28)

Vo

FiG. 3
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over a closed cycle must be zero. We shall evaluate the foregoing
integral for the cycle under consideration. Since dQ = ¢,dT along
AB and CD, and dQ = ¢,dT along AD and BC,

dQ _  (Bdr ©dT Pdr 4dT _
fT'—ClL 'T'+62£'T+Cxc T"+62D7-°) (29)

or
Ts Tc Tp Ty _
 log T, + c. log s + ¢ log Te + ¢. log T, = O (30)
or, again,
TsTp

(¢: — ¢;) log TaTo = °" (31)

Since ¢, # c,, we have
TeTp = TuTc, (32)

or
& = Tl_’ . Ty = Tg (33)
Ts ~ Tc' Tp  Te 33
Since along the polytropics AB and CD we have the relations
(27) with 4" = v,, we have

T, _ Vi o
N 34
Similarly,
Tp V&
TC - V'ly)‘—l : (35)
Combining (33), (34), and (35), we have
Va_Vp. Va_Vs
Ve V¢’ Vo V¢ (36)
Similarly, we can show that
a_to, ha_p (37)

P pc’ tp  pc’

Thus we have proved: If a pair of polytropics belonging to a given
class (i.e., a given exponent) is intersected by another polytropic belong-
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ing to a different class, then the ratio of the physical variables (p, V,
or T) at the points of intersection are the same whatever polytropic be-
longing to the second class we may choose.

We can state the foregoing theorem, due to Emden, in the fol-
lowing somewhat different way: A polytropic 4B of exponent v; is
cut at the point 4 by another polytropic 4D belonging to another
class, of exponent v, (7. arbitrary but different from v;). Along
AD we consider the point D such that p,/pp (or T4/Tpor V,4/Vp)
is some fixed constant. We now allow AD to be any polytropic be-
longing to class v,. The locus of D is then another polytropic, be-
longing to class .. We shall see that, stated in the foregoing form,
Emden’s theorem has an important application to the theory of
gaseous configurations.

5. Polytropic temperature and the Emden variables—As we saw
in § 3, along polytropics belonging to the class v" we have

pV™' = constant ; TV7~* = constant ; p**' T* = constant . (38)

In the (p, V) plane, the polytropics belonging to a given exponent v’
form a one-parametric family of curves, the parameter being the
“constant” occurring in the first of the foregoing formulae. This
family of curves can be classified by labeling each curve by what
Emden calls the appropriate “polytropic temperature”; the latter
is defined as the temperature along the given polytropic where the
specific volume, ¥ (and therefore also the density), has the value
unity. We shall use 8, to denote the polytropic temperature. Then,

TVt = 97; .1 = 97' . (39)

Since the isothermal is a polytropic of infinite heat capacity, v’ = 1,

and we have
T=6,, (40)

i.e., the polytropic temperatures for the isothermals agree with ac-
tual temperatures labeling the isothermals.
In terms of the polytropic temperature we can represent the
physical variables very conveniently. Let us write
I

p=NS m= (41)
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where \ is some constant factor to allow for a change in the scale on
which density is measured; # introduced as above is called the “poly-
tropic index.” Since the density, p, is the reciprocal of the specific
volume, V, we have, from (39), that

T = 0yp"™" = Oyp"/* = N/"0,4 . (42)

If we choose X to be unity, we see from (42) that 8 is the temperature
in a scale in which the polytropic temperature is unity. We further
have

p = RpT = RN®0/ng gnts | (43)

If we consider polytropics with zero specific heat, then we have
adiabatics as a special case. Then 4’ = ¥, and we have definitions
for the adiabatic temperature and adiabatic index.

6. Entropy changes.—We have

d dT
dS=7Q=6v—T—+§dV, (44)

or, using the equation of state,

aT d
dS =y 7~ =) ;)p . (45)
Now
T = O6ypr . (46)
By differentiating (46),
aT_doy s
T =o, +¢0' -1 > (47)
Inserting (47) in (45), we have
o[ de
s = CV[ o, T O p] , (48)
or
S =S, + cvflog €, + (v — ) log p] . (49)

For an adiabatic ¥’ = v, and

S =S.+crlogo,. (50)
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Again, for (48) we have

dQ = TdS = cvr[%i’,' +G&' -7 @] , (s1)
y 4
from which we obtain
0w = T 2. (52)
Y

Hence, the withdrawal of heat lowers the adiabatic temperature,
while the supply of heat increases the adiabatic temperature.

If we consider changes along a given polytropic, then 6, does
not change; and hence, by (47) and (48), along a polytropic,

e AT s

dS = cv(y v)p, T——('vvl)p, (53)
or

_ (¥ =mdr

dS—CV ‘Y’_I T . (54)
Equation (54) could have been derived directly from the definition
dQ = cdT. Along an adiabatic dS is, of course, zero.

7. Uniform expansion and coniraction of gaseous configurations;

cosmogenetic changes.—Consider a perfect gas configuration in gravi-
tational equilibrium. Then

d GM
Ef = —-r,(—r)p, (s5)

where r denotes the radius vector with the center of the configuration
as origin. Furthermore, M (r) is the mass inclosed inside a spherical
surface of radius 7, and p = RpT. The foregoing equation is an ele-
mentary consequence of hydrostatic equilibrium. (The meaning of
[55] is further commented upon in chap. iii.) We shall refer to a
perfect gas configuration satisfying (55) as a “gas sphere.”

An expansion or coniraction of a spherical distribution of matter is
said to be uniform if the distance between any two points is altered in
the same way as the radius of configuration.

1 In writing this equation we have neglected radiation pressure (see chaps. iii and vi).
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Let the radii* of the initial and the final configuration be R, and
R., and, further, let
R = ¥R, . (56)

Then, if 7, and 7, are the distances of any specified element of mat-
ter from the center before and after the expansion,3

o=y (s7)

if the expansion has been carried out uniformly. More generally, if
an element has an extension ds, in the initial configuration, thén it
will bave an extension yds, after the uniform expansion:

ds, = yds, . (58)
In particular,
dr, = ydr, . (58")

Let po, po, T, and py, ps, T: be the density, pressure and tempera-
ture at “corresponding points” (i.e., at a distance 7, in the initial

configuration and at a distance r, = yr, in configuration after ex-
pansion). It is clear that

P = y_3P0 ) (59)

since the corresponding volume elements in the two configurations
are in the ratio 33, while the mass inclosed in either is the same.

We shall now consider a uniform expansion of a gas sphere. Then,
we should have

dpo __ _GM_(r.,)
dro i P (60)
dp __ GM(r)
n = T P (61)

Since, however, M(r,) = M(r;), we have, according to equations
, ) q
(58", (59), and (61),
GM (ro)
yrs
? At the boundary of the configuration, g, p, and T are all zero. The vanishing of
2, p, and T defines the radius of a gas sphere.

3 For brevity we shall explicitly refer only to “expansion” and not repeat each time
“‘expansion or contraction.”

Y3 ¢ ydr, = —y4 GM@ podr, . (62)

dp, = —
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By (60), then,
dp. = y dp,, (63)

from which it readily follows that

P = y_4po . (64)
Since p = RpT, we have, from (59) and (64),

p: = Rp.T: = Ry=3p Ty = y~*po = ¥y *RpoTo , (65)
or
T, = yT,. (66)

Equations (56), (59), (64), and (66), can be written as

pe_Vo_ Es)s. po_ (R}, T _ R
Po N Vy B (RI ’ Do - (Rx ’ T, - R,’ (67)

We have thus proved the following theorem: By a uniform ex-
pansion (or contraction) of a gas sphere, the density, pressure, and tem-
perature at every point alter according to the inverse third, fourth, and
unit power, respectively, of the ratio of the initial to the final radius.
The theorem in this general form is due to P. Rudzki (1902), though
in a less general form it was known to Homer Lane (1869) and also
to A. Ritter (1878). We shall refer to the foregoing theorem as
“Lane’s theorem.”

Since the heat energy is proportional to ¢y T, a further consequence
of Lane’s theorem is that the total heat energy in a gas sphere varies
inversely as the radius during the process of uniform expansion.

For an infinitesimal uniform expansion we clearly have

dp _ _dR,

(68)

From (67) it follows that
. L \4/3 Vo\4/3 T:\*
h= (B =)= (7)- (69)

PV = pVES; TV = TVYS; T4 = Tofe¥* . (70)

Alternatively,
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Thus, if a gas sphere expands (or contracts) uniformly through a se-
quence of equilibrium configurations, then the maiter at every point un-
dergoes a polytropic change belonging to the exponent v' = 4/3, or
n = 3. This result is due to Ritter, who was thus the first to rec-
ognize the special ““cosmological”” importance of polytropic changes
of exponent 4/3. For this reason, he called polytropic changes of
index 3 “cosmogenetic changes.”

Since, according to Ritter’s theorem, the physical variables change
along a cosmogenetic during a uniform expansion, we can apply the
results of § 6 to calculate the corresponding change in entropy. The
appropriate formula to use is (54) with ¥’ = 4/3. Hence, for an in-
finitesimal expansion, the change in entropy, dS, is given by

aT
dS = cv(4 — 37) T (71)
or, by (68),
dR,
S = — o4 =37 % - (72)
Further, we have
dR,
dQ = TdS = — &vT(a — 3v) 3. (73)

8. Uniform expansion (or coniraction) of polytropic gas spheres.—
If, in a gas sphere, the pressure and density are related according to
equations (41) and (43) with some definite value for ., then the
gas sphere is said to be a “polytropic gas sphere of index #,” or
more simply as a ‘“polytrope of index #.” This means that, if we
plot the pressures at the different points in the gas sphere against
the specific volumes at the respective points, then the points must
all lie along a definite polytropic of index # and exponent v’. Let
us fix our attention on one definite point, 4,, on this polytropic.
Through this point 4, draw a polytropic of index 3. By Ritter’s
theorem, the effect of a uniform expansion (or contraction) is to
displace the point 4, along the polytropic of index 3 to another
point, 4;, such that the temperature at 4, bears a constant ratio
(Ro/R.) to the temperature at A,. Now this happens to all the
points, 4,, on the original polytropic as a result of the uniform ex-
pansion. By Emden’s theorem (§ 4), we obtain in this way another
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polytropic of index # with a polytropic temperature different from
the polytropic temperature of the original gas sphere. We thus see
that the values of p and V at the points in the new configuration
again lie on a polytropic of index #. Thus, the configuration resulting
from the uniform expansion of a polytropic gas sphere is again another
polytropic gas sphere belonging to the same index.

As we have just seen, the polytropic temperature of a polytrope
is altered as a result of a uniform expansion. Let 6, (o) and 0,/ (1)
be the polytropic temperature before and after the expansion. Then
by (42) and (67),

6,(1) _ TIVZ'—I = (B_" s = (437"
6,(0) T TV \Re A (z4)
or
0, (0)R4™" = O, (1)RE . (75)
Hence, for an infinitesimal expansion,
do,’ dR,
Rt (76)

From (48) we can now calculate the change in entropy for an infini-
tesimal expansion of a polytrope. Since

de, d
i5=a| B+ -n2], ()
Y 4
we have, according to (76) and (68),
dR,

as = —arl(a — 37) + 307 = M g

dR,
> (78)

= —als -3 %
thus recovering our earlier result (72).

9. The virial theorem.—We shall now consider the general motion
of a cloud of particles. The “particles” may be gaseous molecules,
dust particles, or even stars.

Let m denote the mass of a particle; x, ¥, and z its co-ordinates;
and X, ¥, and Z the components of the force acting on it. Then,
by Newton’s laws of motion,

d*x dzy d’z _

mW=X; m—=- =Y, mF—Z‘ (79)
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We have

RSV S P
Ed?("‘x)"”dt(xdt) mxdt’+m(dt)’ (80)

or, using the first of the equations (79),

1d s
7 (ma?) = m( ) + 2X . (81)
Similarly,
d: dy\?
L) = m(2) 4o, (82)
d 2
L) = m (%) + ez, (&)

Adding the foregoing equations, (81), (82), and (83), we obtain

14 dx\? dy\? dz\?
== (mr?) = m[(gi) + (a%) + (:lf) ] + X +yY +32) . (84)
The first term on the right-hand side is simply twice the kinetic
energy of the particle. Hence, summing the foregoing equation over
all the particles, we have

1d]

sdr = 2T+ 2(xX + yY + 22), (835)

where I is the moment of inertia about the origin defined by
I =Z(mr), (86)

and T is the kinetic energy of motion of the particles forming the
cloud. The second term occurring on the right-hand side of (8s) is
called the ‘‘virial of Clausius.”

To evaluate the virial, we fix our attention on two specific par-
ticles of masses m, and m, at the points (x;, y;, 2:) and (x,, ., 2.).
Let the force exerted by the second on the first have components
A, B, and C, so that the force exerted by the first on the second will
have the components —A4, —B, and —C. The contribution of this
pair of forces to the virial is given by

A(@: — 22) + By — ) + C(a: — 22) 87
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and hence
Virial = 2[4 (% — %) + B(y: — y;) + Cz— 2)],  (88)

where the summation is extended over all the pairs of particles. For
a cloud of density so low that the ideal gas laws may be assumed to
hold, all forces except the gravitational forces may be neglected.
Thus we may take for 4, B, and C the components of the force
Gm.m./r, (where G is the constant of gravitation) directed from
2 to 1. Hence, the components are

X — X2
rlz

—G M Y= % along the Y-axis (89)
Y12 712

21— 22
(£

Virial = — > > 9’:’—‘1”3 . (90)

Now each term inside the summation sign is simply the work done
in separating the pair of particles to infinity against the gravitational
attraction. Thus the virial is seen to be the potential energy, ©, of
the cloud of particles under consideration. Hence, we have

, along the X-axis

, along the Z-axis

and

’:E é'g = 2T + Q 3 (91)
2 dt
an equation derived by Poincaré and Eddington. If the system is
in a steady state, I is constant, and consequently we have

2T+ Q=o0. , (92)

Equation (92) expresses what is generally called the “virial theo-
rem.”

10. An application of the virial theorem.—Let us apply the virial
theorem to a perfect gas configuration in gravitational equilibrium.
Consider an element of mass dm at temperature 7. From the kinetic

theory of gases (see chap. x) the mean kinetic energy of a single
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molecule in this element is $47', where % is the Boltzmann constant.
Let there be dNV molecules in the element of mass under considera-
tion. The contribution to the kinetic energy (of molecular motion)
due to this element of mass is given by

4T = $kTdN = §RTdm = §(cp, — cv)Tdm . (93)

But the internal energy, dU, of the element of mass is given by
(Eq. [10])

aU = cyTdm . (04)
Hence,
al = §(y — 1dU, (95)
or, for the whole configuration,
T=4(y-nU. (96)
By the virial theorem, then,
dy—nU+e=o. (97)
Let E be the total energy. Then
U+Q=E. (98)

From (97) and (98) we easily obtain

3r— 4

E=—(3‘Y—'4)U=m9- (99)

The foregoing equation has the following consequences:
a) For a mass of gas for which ¥ = 4/3, we see that E = o in
a steady state (independent of the radius of the configuration). A
small radial expansion of the mass is, accordingly, possible, the mass
changing from one equilibrium configuration to an adjacent con-
figuration of equilibrium without change of energy. It follows that,
if we consider a sequence of equilibrium configurations in which v
varies continuously, then at ¥ = 4/3 a change from stability to in-
stability (for radial oscillations) must set in.# On the other hand, we

4 This is intuitively obvious, but for a general discussion see J. H. Jeans, Problems
of Cosmogony and Stellar Dynamics, pp. 20-23, Cambridge, 1919.
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see that for ¥ = 1, @ = o for any prescribed E; i.e., for ¥ = 1 no
stable configuration is possible. Hence, it follows that we have
“stable” gas spheres only for v > 4/3.

This result is originally due to Ritter and Emden; our proof,
however, is due to Poincaré.

b) For v > 4/3, equation (99) shows that E must be negative;
or, in other words, in a steady state the energy is less than in a state
of diffusion at infinity. Suppose, now, that the configuration con-
tracts so that the potential energy changes by an amount AQ. If
AE and AU are corresponding changes in the total energy, E, and
the internal energy, U, then by (g99)

AE = —(3y — 4)AU = -—(;—;4) AQ . (100)

Hence, the amount of energy lost by radiation is —AE:

3y — 4
—AE = ————< AQ, 101
30— D (rer)
which is positive for a contraction of the configuration. At the same
time, the internal energy increases by an amount

AU = _X‘Y—I———T) AQ, (102)
which is again positive for a contraction. The reason for the increase
in the internal energy consequent to a contraction of the configura-
tion is that of the work | AQ| done by contraction, only the fraction
[(3¥ — 4)/3(y — 1)] is lost in radiation to space outside, and the
remaining fraction [1 — (3v — 4)/3(y — 1)] = [1/(3y — 1)]is used
in raising the temperature of the mass.

11. The Stefan-Boltamann law.—We shall now consider the appli-
cation of thermodynamics to inclosures containing radiation. Con-
sider a perfectly black body, M, contained in an inclosure with per-
fectly reflecting walls. The inclosure will be traversed in all direc-
tions by radiation. Let the temperature of the black body contained
in the inclosure be T. In a steady state, the inclosure is traversed by
“black-body radiation” at temperature 7. We shall assume that
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quasistatical processes can be carried out with the radiation. We shall
suppose, further, that the radiation is the same throughout the in-
closure. Let the energy of radiation per unit volume be %, so that
the internal energy U will be »V:

U=uV. (103)

There is a certain analogy between radiation and a perfect gas.
The energy of both depends on temperature, and both exert pressure.
According to the electromagnetic theory of light, radiation exerts
the pressure

p=ju. (104)5

Let us allow the inclosure to expand quasi-statically while the
temperature is maintained constant. Let the volume, V, increase
by an amount dV while » and p remain unaltered. Consequently,
the internal energy, U, increases by an amount #dV, so that

<g—g>r =u. (105)

We shall now use the thermodynamical formula established in the
last chapter (Eq. [106], i):

(gi;:)T - T(?%)V — 7 (106)

In our present case p depends only on 7' and hence, according to
(104) and (105), we can write (106) as

u = %T%—%u, I (107)
or
%‘ = 4u, (108)
or again,
u = aT*; p = taTs. (109)

s This is proved in chapter v, which deals with radiation problems in greater detail.
Here vre are only concerned with one straightforward application of thermodynamics
to inclosures containing radiation.
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Thus, the energy of black-body radiation per unit volume is pro-
portional to the fourth power of the temperature. This is the state-
ment of Stefan’s law. The constant @ introduced in (109) is called
the “Stefan-Boltzmann constant.” (Stefan empirically diseovered
the law in 1879 and Boltzmann gave the proof [essentially the one
given here] in 1884.)

12. Adiabatic changes in an inclosure containing matter and radia-
tion.—(a) We shall first consider the case of an inclosure containing
radiation only. For a quasi-statical change,

dQ = dU + pdV , (110)
or, by (103) and (104),
dQ = d(uV) + udV = Vdu + judV . (110)

For a quasi-statical adiabatic change, then,

Vdu + $udV = o, (111)
or

uV4/3 = constant , (112)
or, since u = aT*,

TV'/s = constant . (113)

From (109) and (112) we have

pV43 = constant . (114)

Thus radiation, in this respect, behaves like a perfect gas with a
ratio of the specific heats v = 4/3.

b) Let us now consider an inclosure containing both matter and
radiation. We shall only consider the case where the matter is a
perfect gas. The internal energy of such a system is, according to
(103), (109), and (10),

U=aVT*+ ovT . (115)

Let p, denote the radiation pressure and p, the gas pressure. Then
the total pressure, P, is, accordingly,

P=p,+P,=§-aT4+'§—,T. (116)
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For a quasi-statical change
U 14
dQ = <8T>VdT + (‘aV)TdV + Pav .
By (115) and (116)
aU _ _ ,V 5:11'
<5T)T = 4aVT3 + ¢y = T(IZP, + R Pﬂ) ,
1
(57), = or = 3t
Inserting (118) and (119) in (117), we have
d0 = Y 12p +——CV——1>>dT+(4p + p,)dVv
T T —cyt? 7 ’ )
Let v be the ratio of the specific heats (v = ¢,/cy). Then
d —Y( F L 0y )T + (ape + po)dV
Q= T 12p; vy — 1 2 4pr + pg .

For an adiabatic change,

I aT av
<12Pr + Po— Pu) T + (apr + o) v =

(x17)

(118)

(119)

(120)

(121)

(122)

We define the adiabatic exponents T',, T',, and I'; by the relations

dP av

Py =0,
dP I, dT _
PHicEnT =%

dT av
T+(P3_I)7=O'

Now

aT d
dP = dp.+ 1) = Gpe + 1) 5 — 2% .

(123)

(124)

(125)

(126)
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Hence, (123) is the same as
daT av
(apr + po) T + [Tu(pr + p0) — bl v = 0. (z27)

From (122) and (127) we find that

I
12+ y—1? = aprtpe (128)
apr + Py Ti(pr + po) — o
Let us now define the quantity 8 as follows:
BP =1p,; (1 —B)P=pr. (129)

Equation (128) can now be written as

t2(y = 1)(1—B) +B_4— 3B
h—0D@—=38 -8 (130)

Solving for T';, we find that

(4 — 38ty — 1)

L=t g -G-8 (x31)

From (131) we see that I'; = v when 8 = 1, and T, = 4/3 when
B =o.
Again, from (124) and (126) we have

2 aTr av
[4Pr+Pa+I—£i(1’r+Pv)]*T’ - Pa’ﬁ = 0. (132)

From (122), (132), and (129) we now have

I

I2(I—B)+’Y—IB=_2|.—3ﬁ (133)
T, B
(4—38) +; 1
Solving for T',, we find that
(4 =38 — 1)

L=t e G — G- PG+ A (x34)



58 STUDY OF STELLAR STRUCTURE
From (127) and (132) we have

1 ,,F’ _ __B
4—381— 1, r,—~ g’

1+ (135)

or

T, T,
T, —1_ (4 —38) T, — 8" (136)

Finally, we obtain the following equation, expressing I', in terms
of I';:
(4 — 38T\
I', = ———F2—
3G — AL + B (x37)

We see that when 8 =1, I, =T, = v; and when 8 =0, T', =
I, =4/3.

To determine T'; we proceed as follows: Eliminating dP/P be-
tween (123) and (124), we have

T
T

L. = O d—VI,/ =o. (138)

Comparing this with (125), we have

r.—1)I.

r, - = Lo (139)
By (136) and (139) we find
= -8

I‘3—-1+4_3ﬁ- (140)

From (131) and (140) we finally have that

_ (a4 —38)(y—1)

L=t LG - 0GB (ra1)

T'; has the same limiting values for 3 = 1 and 8 = o as I'; and T,.
Table 1 gives the values of the exponents I';, T',, and T for different
values of 8 for a monatomic gas (y = 5/3).
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TABLE 1
11— I T2 T; 1—8 T, T T;

[ TUP 1.667 1.667 1.667 || 0.6........ 1.405 1.343 1.359
O.L........ 1.563 1.484 1.510 ||o.7........ 1.386 1.338 1.350
0.2........ 1.511 1.417 1.444 || 0.8........ 1.368 1.335 1.344
0.3........ 1.476 1.383 1.408 || 0.9........ 1.350 1.333 1.338
(<20 PR, 1.449 1.363 1.386 || 1.0........ 1.333 1.333 1.333
0.5 cnn. 1.426 1.351 1.370

Equations (121) and (126) enable us to determine the specific
heats at constant volume and pressure for an inclosure containing
matter and radiation. Thus from (121) we have

d
Cv = (EYQ‘)JV=0 = %(IZ?’ + ! Pa) , (142)

Y — I

or, in terms of B,

Cv =518+ 12y = D(x — A (143)
Using equation (130), we have alternatively
= _ YT
Cv = cv(4 — 3B) BT, =6 (144)

Similarly, eliminating dV between (121) and (126) and putting
dP = o, we find that

Cr =%+ (r = D = 367 + 1200 = DG = B, (149)
or, using (131),

Cr = DB+ 12y — DG - A (146)

Equations (130) and (136) enable us to express Cp in the following
alternative forms:

_ (y=1 =38 _ (v — 14— 38,
Cr=opm—p - BmL-n 4
From (143) and (146) we find that
Cr _ E (148)

Cvr B
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note for chapter iv.

The virial theorem proved in § ¢ is due to H. POINCARE (Legons sur les hy-
pothéses cosmogoniques, § 74, Paris, 1911) and A. S. EppINGTON (M.N., 76, 528,
1916). The applications in the form given in § 10 are due to Poincaré.

The expression T'; (Eq. [131]), for the adiabatic exponent for inclosures con-
taining matter and radiation, is due to Eddington (M.N., 79, 2, 1918); it has,
however, been generally overlooked that there are two other equally possible
definitions for the adiabatic exponent, namely, T, and I';. The expressions for
Cp and Cy (Egs. [143] and [146]) are given here for the first time.



CHAPTER III

INTEGRAL THEOREMS ON THE
EQUILIBRIUM OF A STAR

As was emphasized in the Introduction, the structure of a star
depends on a multitude of variables, and an approach toward a
detailed theory is made only by introducing assumptions and ap-
proximations of various kinds with a view toward discriminating
between the relevant and the less relevant aspects of the physical
situation. It is therefore necessary to introduce one assumption at
a time and investigate how far we can proceed with one assumption
before we feel the need to make another. In this chapter we shall
be mainly concerned with an attempt to discover how far we can
proceed with the assumption that a star is in a steady state in gravi-
tational equilibrium. We shall supplement this further by the as-
sumption that the density distribution is such that the mean den-
sity p(r), interior to given point 7 inside the star, does not increase
outward from the center. We shall see that these two assumptions
already enable us to determine the order of magnitude of some of
the more important physical variables describing a star. The meth-
od consists in finding inequalities for quantities like the central pres-
sure, mean pressure, the potential energy, the mean value of gravity,
etc. Before proceeding to establish the inequalities, however, we
shall obtain the equations of equilibrium and some general formulae.

1. Equations of gravitational equilibrium.—We shall be concerned
. only with spherically symmetrical distributions of matter. Let r de-
note the radius vector, measured from the center of the configuration.
Since we have a spherically symmetrical distribution of matter, the
total pressure P, the density p, and the other physical variables will
all be functions of 7 only. Let M (r) be the mass inclosed inside .
Then

M(r) = f 4mripdr dM(r) = awripdr. (1)

61
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We shall denote by 5(r) the mean density inside 7, and by p the mean
density for the whole configuration:

M(r) - _ M
W: p_§1rR3’ (2)

p(r) =

where M is the mass of the configuration and R defines the radius of
the configuration at which p and P vanish.
Consider an infinitesimal cylinder at distance r from the center
of height dr, and of unit cross-section at right angles to » (see Fig. 4).
Let P be the pressure at 7 and let the in-
R crement in P as we go from r to r + dr
o be dP. The difference in pressure dP
4\ represents a force, —dP, acting on the
element of mass considered, in the di-
rection of increasing r. This must be
counteracted by the gravitational attrac-
tion to which the element of mass is
subjected. The mass of the infinitesimal
cylinder considered is pdr. The force of
attraction between M(r) and pdr is, ac-
cording to elementary potential theory, the same as between a mass
M(r) at the center and pdr at r. By Newton’s law this attractive
force is given by GM (r)pdr/r*, where G is the constant of gravita-
tion. Further, the attraction due to the material outside 7 is zero.
Hence, for equilibrium we should have

_ GM(r)pdr
r? ’

Fi1G. 4

—dpP (3)

or
aP _ _GM()

dr r?

(4)

It should be noticed that we have used P to denote the total pres-
sure; thus, if we are considering a gaseous star, P is the sum of the
gas kinetic pressure and the radiation pressure (according to the
Stefan-Boltzmann law). We shall then write

k

P=“_HPT+%aT4> (5)
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where % is the Boltzmann constant, u the mean molecular weight,
H the mass of the proton, and ¢ the Stefan-Boltzmann constant
(chap. ii, § 11). In (5) we have used (k/uH) in place of the gas
constant “R,” as hitherto. This is more convenient, and in the fu-
ture we shall adopt this definition consistently.

Finally from (4) and (1) we have our fundamental equation of
equilibrium:
;I; dir(% %I;) = —47Gp . (6)

2. The potential and the potential energy.—The gravitational po-
tential Vis defined as the function the derivative of which in a given
direction represents the gravitational attractive force in that di-
rection acting on unit mass. For a spherically symmetrical distribu-
tion of matter, V must be clearly such that

vV _ GM(r)

7 ()
Equation (4) can now be written as

1dP _ _dV

sdr = @ 8)

If > R, M(r) = M = constant; we can therefore integrate (7)
and obtain

=—— (r2R. (9

(Equation [9] is so normalized that V=o0asr— .) In particu-
lar, the potential V; at the boundary is given by

V= =75 (10)
The potential energy of a given distribution of matter is defined
as the work done (on the system) to bring the matter “‘diffused”
to infinity into the given distribution. We shall denote the poten-
tial energy by Q. For a spherically symmetrical distribution of mat-
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ter, @ can be calculated as follows: Suppose that we have already
“brought” from infinity an amount of material M(r). The work
done to bring an additional amount of matter dM(r) (as a spherical
shell of thickness dr) is

_ GM(rdM(r)

—GM ()M (r) f - ) (11)
Hence, the potential energy Q of the configuration is given by
R
oo MO, 2

Equation (12) is perfectly general, and is independent of the equa-
tion of hydrostatic equilibrium. For the case of hydrostatic equilib-
rium, equation (12) can be further transformed as follows:

'R d X 1
—a =16 ks url L o) (1)
M2 RMz
=30 +i6) "7;(—'2 dr, (14)
or by (7)
_1GM: 1 Rav
—Q = SR + R e M(r)dr. (15)

Again integrating by parts and using (10) for the value of V at
r = R, we find that

Q= ; fR VAM(r) ; (16)

the important point to notice is the appearance of the factor 1/2
in (16).

We shall now proceed to establish a number of integral theorems
for configurations in gravitational equilibrium. The first three theo-
rems (due to Milne) are true for any equilibrium configuration;
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even the assumption “5(r) does not increase outward” is not intro-
duced (the assumption is first made in Theorem 6).
" 3. THEOREM 1.—In any equilibrium configuration the function

GM*(r)

P+ = (7)
decreases outward.
Proof: Equations (1) and (4) can be combined into
dP _ _GM(r) aM(r)
dr 4mrs dr (18)
Now,
@4 JQ _dP | GM(r) dM(r) _ GM=(r)
[P + ] T dr g dr 2wrs (x9)
By (18), then,
GM*(r) _GM(r)
[P + 8wr ] 277’ <o, (20)

from which the theorem follows.
Corollary: If P, denotes the central pressure, then we should have

GM(r) _ GM>

Pe> P g™ > gaRe (21)

The outer members of the foregoing inequality give

GM*

P, > §R4 ’ (22)
or, inserting numerical values,
M\? (Rp\*
P.> 4.44 X 10‘4(—(5) (76)) dynes cm™2, (23)
or
2
P.> 4.50 X IOB<%) (%)4 atmospheres , (24)

where © and Rg refer to the mass and the radius of the sun.
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4. THEOREM 2.—For any equilibrium configuration

L= ng_tm= (s — ) f “Prdr (a5)

r’
if
v < 4. (26)"
From (18) and the definition of 7, we have

'R

dP
I, =— 4r T v dr (27)

or, integrating by parts and remembering that » < 4, we have

R
I, = 4n(4 — v)f Pri—vdr, (28)

which proves the theorem.
We notice that when » = 4, (27) can be integrated, and we have

I, = 4xP.. (29)
Again, by (12)
R
1o [T _ . o
and hence, by the theorem
R
—Q = Izwf Pridr, (31)?
or
R
—Q = 3_{ Pav, (32)

where dV stands for the volume element.

* Actually, we shall see (§ 11) that under ‘“normal” circumstances the integral I,
converges for » < 6.

2 Equation (31) was known to A. Ritter (Wiedemann Annalen, 8, 160, 1879).
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Now the value of the gravity g at # is clearly GM(r)/7*>. Hence,

if we denote by g the mean value of gravity defined by

Mg = j‘Rng(r) _ fRGM(r)dM(r) _ I

’2

R
Mg = 81rf Prdr .

5. THEOREM 3.—For any equilibrium configuration

then

., — v GM? G.M2
PR A T 2R
if
r< 4.

Proof: By Theorem 2

R
I, = 47(4 — v) f Pridr .

GM:  GM*(r) _ GM*(r)
8TR4 8mrrt <P<P. 8xrs

But by Theorem 1

By (37) and (38) we have

4m(q4 — v)f P - QM—(Q}rS‘”dr >

'R 2 2
> am(q4 — v)f [861?1124_ GM (7)]r3’”dr ,

8xrt
or

R
- 4—v GM:(r)dr _ GM?
4TPCR4 > 1, + 2 —£ prE > —27 .

i L f GM(r) dr( )dr,

Now,

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)
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or, after an integration by parts,

fR GM) 4 _ _GM* 2 f RGM(n)aM(r) (42)

,I+v yRy Ped

GM*
=—r T, °I. (43)

Inserting (43) in (40), we have

4P R > L+ 42, — 42 GM , GME )
or, simplifying, we have
vePRe + 42 Q}g{j >I> Gj{— , (45)
which proves the theorem.
Corollary 1: If v = 1, I, = —Q, we have
3 GM? GM:

=P R 4+ 8 R > —Q > R " (46)
That GM?/2R sets the absolute minimum to —Q was first proved
by Ritter (Wiedemann Annalen, 16, 183, 1882).

Corollary 2: If v = 2, I, = Mg, and we have

1 GM GM2

2wP R? > Mg > - (47)

The following theorem is due to Ritter.
6. THEOREM 4.—In a gaseous configuration in equilibrium in which
the radiation pressure is negligible,

>£ﬁI£G_1‘£
T 5 R (48)

where the mean temperature T is defined by

MT=fRTdM(r); (49)

v is further assumed to be constant in the configuration.
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Proof: If the radiation pressure can be neglected,

-k _rwaP
P_prT’ or T =77 (50)
Hence,
= R uH (P
MT = f TaM(r) = 5 ;dM(r) (s1)
R
- i‘f; Pav . (52)
By (32), then,
7 _ _1uH
MT = 3 E Q. (53)

T> 5% g (54)

thus proving the theorem.
Inserting numerical values in (54), we find that

_ R
T>3.82 X Ioﬁp‘%TRQ; (54")

in other words, we may expect the temperature to be of the order
of a few million degrees in stellar interiors.

Equation (53), derived above, has an important physical mean-
ing. If we are considering a gaseous configuration (and if we neglect
radiation pressure), then the internal energy is given by

U= CvadM(f) = CvMT

—1 ‘ﬂg:._l v g
chk 36p— v ’

Il

or, finally,

I

= —5(7—_—;)9, (55)
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a formula which was derived independently by A. Ritter and J.
Perry.> (We shall refer to [55] as “Ritter’s relation.”) We have al-
ready derived (55) from the virial theorem (chap. ii, § 10).

7. THEOREM 5.—If P(r) is the mean pressure interior to r, defined by

)P = f Py (), (56)

then in any equilibrium configuration

P(r) — P(r) > 1 GM*(r) (r>o0). (s57)

12m ré

Proof: Integrating by parts the integral defining P(r), we have

OB — 200 = - [ uear, (58)
or, using (18),
MNP - Pl = 5 (LA, (59)
or, again integrating by parts,
MOPG) — P} = S M0 L & (TME) (g

12w 74 3m J, 7

Since the second term on the right-hand side of (60) is positive, we
have the inequality stated.

Corollary: 1f we put » = R in (57), we have for the mean pres-
sure P defined for the whole configuration the inequality

1 GM?
P> 5. (61)

3 A. Ritter, o0p. cit., pp. 160-162; J. Perry, Nature, 60, 247, 1899. Lord Kelvin, in
his work (referred to in greater detail in chap. iv), refers to (55) as the “Ritter-Perry
theorem.”
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8. THEOREM 6.—In any equilibrium configuration in which the
mean density p(r) interior to t does not increase outward, we have

1G(Em) () M/3(r) < Po — P < 3G(Em 3ot SM*3(r) ;. (62)

where p. is the ceniral density.
Proof: From (18) we have

po—p = O [ UOMO. 63

4T r4

From the definition of the mean density p(r) (Eq. [2]), we have

[

Inserting (64) in (63), we have
Po=P = LnoG [ OM OO . 69

Since by hypothesis p(r) does not increase outward, we have from
(65) that

P~ Py L GmNGH () f Mo (YaMG) . (66)

The integral on the right-hand side of (66) can be evaluated, and
we have

P, — P 2 3(4m)3Gp/3(r)M*/3(r) . (67)

Again, from (65), according to our hypothesis,

P~ P <L mvGors [ Mm@y, (68)

or
P, — P < §(47)3GpSM*3(r) (69)

Combining (67) and (69), we have the required inequality.
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Corollary: If we put r = R in the inequality of Theorem 6, we
obtain

FGAm) P Ms < Pe < 3G(3m)3pY/ > M (70)

In the left-hand side of the inequality we can substitute for p its
expression M/4nR3. We then find
GM?
o e S P S HGEm oM (71)
We see that the additional restriction imposed on the density
distribution, namely, that p(r) does not increase outward, enables
us to improve the inequality obtained for P, in Theorem 1. Nu-
merically we now have that

P, 2 1.35 X 109 (zg)z <£§QQ>4 atmospheres . (72)

Equation (71) was first given by Eddington,? but the complete theo-
rem and the proof given are due to Chandrasekhar. Milne has given
the following instructive alternative proof for the inequality

GM-
Pr-a (73)
Consider the expression
GM*(r)
Pta—g— ', (74)

where a is, for the present, an arbitrary number. Now,

d

GM*()] _dP | GM(r) dM(r) GM*(r)
Zr[P e 8mrs ] T dr ta 4wrs  dr & om0 (75)
or by (18)
d GMn)] _ P GM:(r)
a;[P+ “ By ] =D T s (9

4 Eddington stated the result only for p (not 5(r)) decreasing outward.
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or, again, by (4)

Upte a0 MOl =15 - a ¥ol, an
or by (2)
2p 4 o GO MO — 0y - 250)] . o9

If the mean density decreases outward, it is clear that p(r) > p
Hence, if we choose a = 3, we have

5;[19 +3 GMz(r)] _ G]lrlz(r) 50)

St N —p<o. (79)

Hence, the expression (74) considered with a = 3 is a decreasing
function of r:

GM*(r) o 3 GM*

3
P+ 74 z 81r "R+’ (80)

thus establishing the inequality. Milne’s proof cannot, however, be
extended to give the complete Theorem 6.

9. THEOREM 7.—The ratio (1 — Bc) of the radiation pressure to
the total pressure at the center of a wholly gaseous configuration in
equilibrium in which p(r) does not increase outward, satisfies the in-
equality

I_ﬁcgl_ﬁ*) (81)

where B* satisfies the quartic equation

6\1/2 3 31— g*1v/z
M= (7_') [(ﬂcH) a : TR* } G§/=; (82)

e 15 the mean molecular weight at the center.
Proof: Now, according to (5), the total pressure P is given by

k
ul pT + FaT*. (83)
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Define the quantity (1 — 8) by

(1= B)P = 3al¥; P = - pT.
uH
By (84)
1 @ 1k
T4 = = 7. T’
1—f3 B ul ®
or
— is,r,_,ﬁ, s 1/
T‘[#Ha 8 J o
Again,

_1 k _ kE\t31— B/
P =i Ga) 3]

Hence, at the center of the configuration

k 431 — B 1/3
Pe= [(EI) a B ] P

By Theorem 6, on the other hand,

P, S %G(gw)x/aMz/sp;gM .

Comparing (88) and (89), we have

k31— B r\1/3
() 2 5] < (6) "o,

6 1/2 k 4:3”{::776” 1/2 1
wz () [G) 2 5 e

Defining (1 — 8*) as in equation (82), we have

1—B* 1—§
T 7 A

or

(84)
(85)

(86)

(87

(88)

(89)

(90) »

(91)

(92)

But (1 — B8)/B* is a monotonic increasing function of (1 — B).

Hence, we should have
I—= B* ? -8,

which proves the theorem.

(93)
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ro. Theorem 7 (which is due to Chandrasekhar) shows that for
a gaseous star the value of (1 — B) at the center cannot exceed an
amount depending on the mass of the star only. Table 2 gives the
value of (1 — B*) for different values of the mass M.

TABLE 2
VALUES OF (1—8%)
M M
e | @ || e | (B
0.025..cunnn.. 0.908 0.5 v eiiiiunns 15.432
05 1.352 0.6........... 26.41
[ T 2.130 [T 50.72
2 3.812 0.8 ... 122.0
B 6.099 0.9 ...t 517.6
(=207 PN 9.585 - A @

As an example of the application of Table 2, we see that for the sun
(1 — B.) < 0.03 while for Capella (M = 4.1830), (1 - B.) < 0.22,
assuming in both the cases that . = 1.

11. THEOREM 8.—For 1,, defined as in Theorem 2, and under the
conditions of Theorem 6, we have

3 GM"< <_3 GM?
6—»v R Shsgs™%

(» < 6), (94)

where 1. is defined by
gmrrip. = M. (95)

=N

Substituting the foregoing in the integral defining I,, we have

Proof: Now,

R
I = Gl f 55(r) MG/5(r) M (r) . (o7)

Since p(r) does not increase outward, the minimum value for the
integral on the right-hand side is obtained by replacing p(r) by p,
and taking it outside the integral sign. Similarly, the maximum value



76 STUDY OF STELLAR STRUCTURE

is obtained by replacing p(r) by p., and taking it outside the integral
sign. In this way we find that

% Glmp s M1 3 I, > '(i_T, G(4mp)sM©s . (g8)

But by definition,
4mrip. = M = $7R5p . (99)
Using (99), (98) is found to reduce to

3 GM: 3 GM:
6—v R sk s

, (100)

which proves the theorem.

Incidentally, we have also proved that the integral defining I,
converges for v < 6 if the mean density decreases outward and if fur-
ther p, is finile.

Corollary 1: If v = 1, I, = —Q, and we have
3GMr o 36N
s R £ s (101)
Corollary 2: If v = 2, I, = Mg, and we have
3GM Lg¥ 3GM . (101")

Corollary 3: 1f we put» = 6 on the right hand side of (97) and
extend the range of integration from 7 = 7 to r = R, we find

GM:, M GM(M() _ M
Rﬂ logM(f) Sf ———ro—\ e lgﬁ(f—). (102)

7

12. THEOREM 9.—In a gaseous configuration in equilibrium in
which the radiation pressure is negligible and in which, further, p(r)
does not increase outward,

IuHGM

5 E 7e / T;skR7 ’ (103)
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where p (the > molecular weight) is assumed to be constant in the configu-
ration, and T is the mean temperature defined as in Theorem 4.
Proof: By (53) we have for the case considered

7o lul
MT = 3k Q. (104)
By Corollary 1 of the last theorem we have
GM* GM:
% R $-9$%,—0- (105)

Combining (104) and (105), we have the required inequality.

We are thus able to replace the ““1/6’” that occurred in Theorem 4
by “1/5” because of our additional hypothesis concerning p(r). Nu-
merically (103) reduces to

T > 4.61X Ioéygl%. (106)

13. THEOREM 10.—If I,,, is the integral defined by

R o
., = OO 5o+ 0>, Gon

v

then under the conditions of Theorem 6

3 GMem . 3 GMH

7= r S SaEs=y w0 09
where 1. is defined as in Theorem 8.
Proof: Since
N
r =[] (xe9)
we have from (107) that
R
I,,, = G(%,.—)u/sf B”/3(Y)M(37_")/3(y)dM(y) . (110)

Arguing as in Theorem 8, we easily obtain the inequality (108).
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14. THEOREM 11.—If P is the mean pressure defined by
_ 'R
MP=deM(r), (111)

then, under the conditions of Theorem 6,

3 GM 5. 3 GM?
201 7% /P/201r R+ -

(112)

Proof: By definition

up = [ pauer), (113)
or, integrating by parts,
MP = — fRM(r)dP. (x14)
Since (Eq. [18])
ap = -S4 4y, (115)

we can re-write (114) as

uP = QIRM@’ (116)
47 ), 74

or, in terms of the integral 7, ,, introduced in Theorem 10, we have

MP = ;‘;f L,. (117)

By Theorem 10 we then have
3 GM? SP>S .3 GM:?

z Z Jom Ri° (118)

».U

20 i

which proves the theorem.
Numerically we have

P>5.4X Ios(g>2 (%Q>4atmospheres . (119)
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15. The physical content of Theorems 6, 8, 9, 10, and 11 is the
following: We are given a certain equilibrium configuration of mass
M and radius R with some arbitrary density distribution, arbitrary
except for the condition that the density p(r) does not increase out-
ward. From the given configuration we can construct two other
configurations of uniform density—one with a constant density
equal to p, and the other with a constant density equal to p, (see
Fig. 5). The radii of these two configurations are clearly R and 7.,

£

—_—

? P

R R

o

FiG. 5

respectively. Theorems 6, 8, 9, 10, and 11 simply state that the
physical variables characterizing the given equilibrium configura-
tion, namely, P., —, g, T (for the case of negligible radiation pres-
sure), and P, have values respectively less than those for the con-
figuration of uniform density with p = p,, and respectively greater
than those for the configuration of uniform density with p = p.
Thus, the given configuration is, in this sense, intermediate between
the two configurations of uniform density with p = p. and p = p,
respectively.
16. THEOREM 12.—Under the conditions of Theorem 6 we have

5 /”3 < 6__._ 4a) 6 BGRAM 63 (120)

provided
6>v 24, (121)

where (120) is a strict inequality for v > 4.
Proof: Consider the integral I,:

I,=fk§_1‘_4_<i__tm('), (122)

r
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By (18) we can transform this into

R dp
Iy = "'41!'£ ;1;;2 . (123)

Since we have assumed that » > 4, we clearly have

R
™
py-gmler-dmn. G

In (124) we have the equality sign for the case » = 4. For » > 4
we have a strict inequality. On the other hand, by Theorem 8 (Eq.
[98]) we have

L < 3 (o GME 5 (1< 6). (129)

Combining (124) and (125), we have

Rj‘:’:‘; Pc S Iv < *67** — (qﬂ-p )V/SGM(ﬁ v)/3 (126)
or
P )03 3GR—a M (6—0)/3 | )
pr/3 X 6 ( ) R™M (127)

Again, (127) is a strict inequality for » > 4. This proves the theo-
rem.

If we write
v=3(1+1{>, (128)
equation (127) reduces to
2, G—n)/njf(n—1)/n
p(n+t)/n < SaGR M (z 29)
if
1<n<3. (130)

Further, .S, introduced in (122) stands for the numerical coefficient

= (s (131)
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Finally, (129) is a strict inequality for n < 3. Equations (129) and
(131) bring out clearly the critical nature of » = 1 and #n = 3, a
circumstance we shall again encounter in the future. Table 3 gives
the numerical values of S, for different values of #.

TABLE 3
VALUES OF S,
n Sn n Sn
3.0 i 0.806 2.0 0 1.364
2.8 e 0.985 I.§5.cieninnnnn 2.599

17. Homologous transformations.—A general homologous transfor-
mation is one in which the density and the linear dimensions at each
point are multiplied by constant factors to obtain another equilibrium
configuration.

The general homologous transformation is best considered as
being “built” up of two elementary homologous transformations:
(a) the transformation in which the radial dimensions are kept un-
altered while the density at each point is multiplied by a constant
factor «x; (b) the transformation in which the configuration is sub-
mitted to a uniform expansion or contraction (in the sense already
defined in chap. ii, § 7) when the radial dimensions are altered in
the ratio 1:y.

We shall prove the following theorem:

THEOREM 13.—If the radiation pressure is a fraction (1 — Bo) of
the total pressure at a given point in an equilibrium configuration, and
if it is a fraction (1 — B.) at the corresponding point in a homologously
transformed configuration, then

wiBt  piBl

I— 81— B M\
(e, -
where M, and M, refer to the mass of the configuration before and after
the homologous transformation.

Proof: We shall consider the homologous transformation as built
up of two elementary homologous transformations, as already ex-

plained.
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First let us consider the homologous transformation in which the
radial dimensions are unaltered. Then the density, p, and the mass
interior to 7, M(r), are each multiplied by . From the equation

P GM(r)
ar = P (133)

we see that P gets multiplied by #*. But according to equation (87),

— 1/
A

Hence, the left-hand side of the foregoing equation gets multiplied
by 2* while p* on the right-hand side gets multiplied by x+3. Hence,
the term involving 8 must get multiplied by 4*3. In other words,

I— B I—‘ﬁoz 1 — B (M:\?
WBE T Bt T T s (117) : (x35)

Now, consider a uniform expansion, in which the linear dimensions
are increased in the ratio 1:y. As shown in chapter ii, § 7, the effect
of this transformation is to multiply P and p by y™ and y73, re-
spectively. From (134) we now see that for this transformation the
left-hand side gets multiplied by y™, while p** on the right-hand
side also gets multiplied by y™4. Hence, (1 — 8)/B4u* is invariant
to this transformation. Hence, (135) is true for a general homologous
transformation.

The foregoing theorem is of importance in the theory of gaseous
stars in so far as it shows that, if we consider a sequence of homolo-
gous gaseous configurations in equilibrium, then the relative impor-
tance of the radiation pressure—as measured by 1 —pB—increases in
the direction of increasing mass along the sequence.
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CHAPTER 1V
POLYTROPIC AND ISOTHERMAL GAS SPHERES

In the last chapter we considered the most general properties of
equilibrium configurations. In this chapter we shall be concerned
with the detailed study of a class of equilibrium configurations re-
sulting from a special kind of relation between P and p. Formally,
the fundamental problem is the study of equilibrium configurations
in which P and p are connected by a relation of the kind

P = Kot ®

where K and 7 are constants. This problem, toward the solution of
which fundamental contributions have been made by Lane, Ritter,
Kelvin, Emden, and Fowler, is also of considerable physical interest.
We shall, therefore, first consider the physical circumstances which
led initially to the study of the equilibrium configurations with an
underlying “equation of state” of the kind (1).

1. Convective and polytropic equilibrium.—The physical notion of
convective equilibrium was first introduced by Lord Kelvin in 1862
in connection with some of his considerations relating to the tem-
perature of the earth’s atmosphere.” Kelvin defined convective equi-
librium in the following terms:

Any fluid under the influence of gravity is said to be in convective equilibrium
if the density and the temperature are so distributed throughout the whole
fluid mass that the surfaces of equal density and of equal temperature remain

unchanged when currents are produced in it by any disturbing influence so
gentle that changes of pressure due to inertia of motions are negligible.z

Kelvin further comments that

the essence of convective equilibrium is that if a small spherical or cubic portion
of the fluid in any position, P, is ideally enclosed in a sheath impermeable to

*Sir W. Thomson (Lord Kelvin), Mathematical and Physical Papers, 3, 2 55—260,
Cambridge, 1911.

2 Ibid., 5, 254-283. The quotation is from p. 256.
84
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heat and expanded or contracted to the density of the fluid at any other place
P’, its temperature will be altered, by the expansion or contraction, from the
temperature which it had at P to the actual temperature of the fluid at P’.

It is clear that the process considered is a quasi-statical adiabatic
change, and consequently the equations to be used are (Eq. [19], i1)

p = constant - p¥;  p'YIY = constant ; Tp'~ = constant , (2)

where v is the ratio of the specific heats. It is seen that the relation
connecting p and p is of the form (1).

The gravitational equilibrium of a gaseous configuration in which
p and p are related as in (2) was first considered by Lane® (1870),
but the same problem was independently considered by Ritter
(1878) and also by Kelvins (1887).

In applying the equations (2) of adiabatic expansion or contrac-
tion to a spherical mass of gas in convective equilibrium, Kelvin®
makes the following interesting remarks:

If a gas is enclosed in a rigid spherical shell impermeable to heat and left
to itself for a sufficiently long time, it settles into the condition of gross-thermal
equilibrium by “conduction of heat” till the temperature becomes uniform
throughout. But if it were stirred artificially all through its volume, currents
not considerably disturbing the static distribution of pressure and density will
bring it approximately to what I have called convective equilibrium of tempera-
ture. The natural stirring produced in a great free fluid mass like the Sun’s by
the cooling at the surface, must, I believe, maintain a somewhat close approxi-
mation to convective equilibrium throughout the whole mass.

It follows from Kelvin’s remarks that we are entitled to use the equa-
tions (2) for an adiabatic expansion or contraction provided that
during the process of “stirring” the appropriate dQ = o. But this
need not in general be the case. Indeed, in his very first application
of the idea of convective equilibrium (to the earth’s atmosphere,
with a view to calculate the fall of temperature with height), Kelvin
had to consider the case where the “stirring” led to a physical proc-
ess in which dQ = o. The difficulty arises from the circumstance

3 J. Homer Lane, Amer. J. Sci., 2d ser., 50, 57, 1870.

4 A. Ritter, Wicdemann Annalen, 6, 135, 1878.

s W. Thomson, Phil. Mag., 22, 287, 1887.

6 Ibid. Also Thomson’s Collected Papers, 5, 184-1g0. The quotation appears on
p. 186.
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that if we consider the “natural stirring” of a moist atmosphere the
condensation of vapor in the upward currents of air is of considerable
importance. This latter problem was also considered by Kelvin
(at Joule’s suggestion) and is, of course, of fundamental impor-
tance in meteorology. In modern versions’ of Kelvin’s work such
changes are generally considered to be represented by the equation
dQ =.cdT, where ¢ is taken to be approximately constant. More
generally, if, during the process of stirring, the quantity of heat,
dQ, supplied is proportional to the instantaneous change of tempera-
ture, dT, then dQ = cdT; this is the definition of a polytropic
change. We then have

. Cp— ¢
p = constant - p¥'; 4/ = i_—c— (3)

Hence, the consideration of polytropic changes is more general
than the consideration of adiabatic changes; the latter is obtained
as a special case when we put ¢ = o. For this reason Emden con-
sidered polytropic-convective equilibrium.?

If we use the variables introduced in chapter ii, § 5, we can
write

I

k
p = AO" ; P = m 61,)\("+I)/n0n+x ; n = 7’ — (4)

where O,/ is the polytropic temperature, which is, of course, the
same for all parts of the gaseous sphere. For the adiabatic-convec-
tive case ¥’ = v and O, is the adiabatic temperature. Since in all
these considerations radiation pressure has been neglected, we can

write
k

= 1+(x/n) . = — 0.
P Kp ) #H 97 . (5)
We are thus led to consider the mathematical problem of deter-
mining the structure of an equilibrium configuration in which P
and p are related according to equation (1); when we wish to con-

7See L. Weickmann, “Mechanik und Thermodynamik der Atmosphire,” in Lehr-
buch der Geophysik herausgegeben von B. Guttenberg, pp. 797-965 (Berlin, 1929).

8 K. Schwarzschild, Vierteljahrsschrift der astronomischen Gesellschaft, 43, 26, 1908.
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sider convective (either an adiabatic or a polytropic) equilibrium,
the appropriate value of K is defined by (5). In treating the prob-
lem in this manner, i.e., in regarding (1) as an a priori relation, we
gain the further advantage of being able to apply the analysis to
cases where we have a relation of the type, (1), without any appeal
to considerations of the kind which lead us to (4) and (5). It is nec-
essary to keep in mind this possibility, and, indeed, when we come
to consider radiative equilibrium in chapter vi we are led to equa-
tions of the type (1) from quite a different viewpoint. Further, in a
given region inside a star we can often approximate the relation be-
tween P and p by a mononomial relation and the study of the equi-
librium of such spherical shells will again lead us to essentially the
same mathematical problems. In the first instance, however, we
shall only be concerned with those equilibrium configurations in
which a relation of the kind (1) is valid throughout the entire mass
with a given constant value for K.

2. The equations of equilibrium.—The equations governing the
equilibrium are (Eqs. [1}, (4], [6], iii)

dP _  GM(r) | aM(r)

dr r 0 ar _ATe ©
1 d [rdP
5 5(; 5) = —4nGp, (7

where, according to our assumptions, we can write

p= AQ™ ; P = pr+(x/n) = Kx:+(l/n)0n+l R (8)

where \ is, for the present, an arbitrary constant. Substituting 3
in (7), we find

(”+I)K (x/n)—1 li(zég)—— n
[ 4rG A ra\ @) o ©)

We now introduce the dimensionless variable £, which is defined by

r = af; e = [____(n ;:_(I;)K )\“/“"“]m . (10)
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Equation (g) becomes

We shall refer to (11) as the “Lane-Emden equation of index ».”

Equation (11) must govern the density distribution in any region
where the relation (8) is valid;® the region of validity of (8) need not,
of course, extend throughout the entire mass. We shall consider first,
however, only complete polytropes, i.e., equilibrium configurations in
which a relation of the kind (8) is valid for the entire mass. In that
case we can choose A to be equal to the central density p.; we must
then seek a solution of (11) which takes the value unity at the
origin. Further, it is clear that df/d¢ must vanish at the origin;
this easily follows from the first of the equations (6) and (8). T hus,
with the “normalization” X\ = p. we must seek a solution of (11)
which satisfies the boundary conditions

6=1; E=° at t=o. (12)
We shall refer to the solution of (11) which satisfies the boundary
conditions (12) as the “Lane-Emden function of index #,” and de-
note it by 6,. It is interesting to recall that Lord Kelvin referred
to the function 6, as “Homer Lane’s function,” “because he [Lane]
first used it and expressed in terms of it all the features of a wholly
gaseous spherical nebula in convective equilibrium and calculated
it for the cases” # = 1.5 and # = 2.5.%

The problem, then, is to solve the Lane-Emden equation, and in
particular to find the Lane-Emden functions (for different values of
the index, #) which satisfy the boundary conditions (12). We shall
first consider the various transformations of the Lane-Emden equa-
tion which are useful in the discussion of the general solution.

? Eq. (8) may be written in a somewhat more general form:
p = N"; P = Kx\(nt1)/ngnts + D, (8')
where D is a constant. With (8") we still have (), (10), and (z 1).

1 See W. Thomson, Collected Papers, 5, 254~283. The quotation is taken from p.
266. Kelvin used « instead of # to denote the index.
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3. Transformations of the Lane-Emden equation.—

a) Put
0= )—E( (13)
The equation (11) easily reduces to
ex _ _x
& i (14)

b) Kelvin's transformation.—Instead of £, introduce the new vari-
able x defined by

r =L a_ _.9 (15)
B @ Ve '5
The Lane-Emden equation now transforms into
&6 i
B o= —om. (16)

¢) The singular solution for n > 3.—We first ascertain whether
(16) has a solution of the form

6 = ax® (17)
for a suitably chosen @ and &. Substituting (17) in (16), we have
ao(p — 1)adtr = —anx"s (18)

an equation which must be valid for all values of x. Hence, we
should have

ot+2=nd; @ T=0o(1—a)), (19)
or
.2 _ [2(n = 3)]e
b= = “"[(n—xr] ' (20)

For n > 3,and @ < 1 we therefore have the singular solution

— 1/(n—1)
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or, in’ terms of £,

— 1/(n—1)
6, = [2(” 3)] E’/(fl_l) . (22)

(n — 1)

For n < 3 we have no proper singular solution of the type (17).
d) Emden’s transformations.—Since (17) defines a solution of (16)
(for » > 3), we make the substitution
2

0 = Ax®z ; &’=n-—1’ (23)

where A is, for the present, an arbitrary constant, which we shall,
specify later. From (23) we obtain

20 _ s | oods | o
i = A [x e + 2ax Tx + o(e — 1)x zA . (24)

Substituting (24) in (16) and using the relation @ 4 2 = nad, we
have

x’g;—zz-{- 2éxj—z+&(&— )z 4+ A" " = o, (25)
We can eliminate x from the foregoing equation by making the fur-

ther substitution

= ¢t; t=1logx = —logt. (26)

From (26) we easily find that

dZ = p—t d_z . dﬁ = p—2¢ d;z — d_z (2 )
"% @’ ar ¢ @ T al 7
Substituting (27) in (25), we obtain

%z+ (26 — 1) §§+c‘o(«b— 1)z + A"z =o. (28)

We shall consider two forms of (28):
Case i: n > 3.—For n > 3 the singular solution (21) is proper,
and we shall therefore choose 4 = a. By (19),

At = gt = o(1 — @) (n>3,0<1). (29)



POLYTROPIC AND ISOTHERMAL GAS SPHERES o1

Equation (28) now takes the form
g;—f + (20 — 1) g—:— — o(1 — @)z(r — z"7) = o, (30)

or, since @ = 2/(n — 1), we have

@z s—nds_2(n—3) 0 .
& " m—1dt (n— 1) o —a) =o. (1)

The singular solution (21) is defined by z = 1.
Case ii.—We choose A = 1. Our equation then is

s —ndz | 2(3 —n) n
+n—-1dt+(n-—1)zz+z—°' (32)

dt2

4. The Lane-Emden functions for n = o, 1, and 5.—We shall con-
sider these three cases separately.
Case i: n = o.—The Lane-Emden equation is

L d (00 _
¥ <E dE) = —1, (33)

which, after a first integration, yields
ao
Pgp= W (34)

where —C is an integration constant. A second integration now
yields
C ..
=D+ ¢ i, (35)
where D is a second integration constant.
We see that the general solution of (33) has a singularity at the

origin, and that

o~§ E—0). (36)

If, however, we restrict ourselves to solutions which are finite at the
origin, then C = o and

6 =D — . 37
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The Lane-Emden function is characterized by 6 = 1 at the origin,
and hence the Lane-Emden function 6, is given by

6o =1 — 3. (38)
The function 8, has its first zero at ¢ = §,, where

E=V6; 0E)=o. (39)

Caseii: n = 1.—Consider the Lane-Emden equation in the form
(14). Then, forn = 1
dx _
E = —X. (40)

The general solution of (40) is
x = Csin (§ —3), (41)
where Cand § are constants of integration. By (13),

0 = Cﬁ‘_‘_(s_z:i) (42)

If 6 # o, the general solution has a singularity at the origin:

constant
~

i~

(E—o0). (43)
Again, if we restrict ourselves to solutions which are finite at the

origin, 8 = o and

¢ S;n £, (44)

0 =

The solutions in the foregoing forms were first given by Ritter. The
Lane-Emden function 6, is given by

0, =

P (45)

The foregoing function has its first zero at £ = 7 and is mono-
tonically decreasing in the interval (o, ).
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Case iii: n = 5.—We shall consider the equation in the form
(31) with » = 5. We have

22— daa — 09, 49)

where our variables z and ¢ are, according to equations (22), (23),
and (26),
X

mt=ers 0= () = ey, (47)

I
X

Multiplying both sides of (46) by dz/dt, we have

%%[(z_:)’] = 1s(i — 2 2, 48)

which can be integrated as it stands:

d 2
% (gf) =37 — 2+ D, (49)
where D is a constant of integration. If z— + », then according
to (49), (dz/dt)* > — =, and this is impossible since dz/d! is real.
We can therefore write

dz
TEDF i — &rth (5°)

and 2 csn at most oscillate to and fro between the greatest and the
least rcots of

2D+ 15 — b =o0. (51)

The integration of (50) for nonzero D is complicated and involves
elliptic integrals. The case of interest is, however, when D = o.

Then,

dz
= g o A (s2)

where the ambiguous sign has been so chosen that { — ». Make
the substitution

324 = sin* {, (53)
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from which we have

dz cos ¢

4?=2§in—{d§, (54)

and (52) becomes
cosec {df = — dt, (55)

which can be integrated. We obtain
tan 3¢ = Ce™*, (56)

where C is a constant of integration. From (53) we now have

1, _ _ 4tan?3f
32! (I + tan? %g—)z ’ (57)
or from (56)
12(% 2t |14
f- s o] (59
By (47), then,
_ 3C2 ]1/4
Bl el (59)
The Lane-Emden function 6 is therefore given by
05 : (60)

which was independently discovered by Schuster and Emden. We
sce that 6; is a decreasing function and tends to zero only as § — «,
which means that the corresponding equilibrium configuration cx-
tends to infinity.

5. The Lane-Emden functions for general n.—We have scen that
the Lane-Emden function can be explicitly given forn = o, 1, and 3.
Such explicit expressions for other values of # do not seem to exist,
and recourse must be had to numerical methods. A method of
constructing the Lane-Emden function would be to start with a
series expansion near the origin. We assume a series of the form

0=14c84dse4 ... .. (61)
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The series is thus chosen in order that the boundary conditions (12)
be satisfied; there can clearly be no term in £, since d6/d¢ has to
vanish at the origin and consequently the series can contain only
terms of even powers in £. By substituting the foregoing series in
the Lane-Emden equation and equating the coefficients of like pow-
ers in £, we can successively determine the coefficients ¢, d, . . . . .
Thus, the series including the first three terms is found to be

n

0=1—%£’+-I—;5£4—..... (62)
By taking a sufficient number of terms in such a series we can cal-
culate the values of 8 for £ < 1 to any required degree of accuracy.
For £ > 1 the solution can then be continued by means of standard
numerical methods.

The solution so constructed monotonically decreases from the
center, and for # < 5 has a zero for some finite £ = £ (say). At
¢ = £,, 0 has its first zero, and thus the configuration has a definite
boundary. As we have already seen for n = 5, the configuration
extends to infinity; the same is true for #» > 5, as we shall see in
§ 20.

Tables of the Lanc-Emden functions, ., are given in Emden’s
book (19o7) for the values of # = 0.5, 1, 1.5, 2, 2.5, 3, 4, 4-5, 49,
and 6. Tables of these functions werc also computed by G. Green
(1908) for n = 1.5, 2.5, 3, and 4; these tables formed an appendix to
a paper by Lord Kelvin. Recently these functions have been com-
puted very accurately for n = 1.5, 2, 2.5, 3, 3.5, 4, and 4.5 by D. H.
Sadler and J. C. P. Miller.

Table 4 gives the values of £ and of certain other functions (in-
volving d/d¢ and £) at £, which are of interest.

6. Physical characteristics.—We thus see that if the Lane-Emden
function is known, then we can construct for a fixed value of K (i.e.,
for a given polytropic temperature if we are considering convective-
polytropic equilibrium) a one-parametric family of configurations
by allowing X to vary continuously. Before we proceed to show how
the Lane-Emden functions are to be used in practice, we shall first
derive some necessary formulae.
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a) Radius—The radius R of the star is given by (cf. Eq[10]):

1/2
R = G-Ex = [%GI)_K] 7\(’-")/’”& ’ (63)

where £, defines the first zero of 6.
The value # = 1 is a critical case, for if # = 1, & = 7, and we
have

R= [z—fr%]"’« n=1), (64)

which is independent of N. Hence, the radius of a polytrope of in-
dex 1 depends only on K, and is independent of the central density \.
If we are considering a configuration in convective-polytropic equi-
librium, the result shows that the radius of a polytrope of index 1
depends only on its polytropic temperature.
Further, it is clear that forn = 5, R = o for all finite values of \.
b) The mass relation.—The mass M (£) interior to £ is given by

o t
M@ = f 4wpridr = 41ra3)\f £07dt (65)
or, using (11),
M(§) = —4mad\ K (s= ‘iq) dg (66)
ame® ), @ \> @)™
or
de
M) = —awa\E i (67)
substituting for a (Eq. [10]), we have
—_ (n + I)K —n, zn( 2 d__a
u@ = —ar[ DK e (0 ) (@)
The total mass, M, of the configuration is given by
= (ﬂ + I)K]sl (3—n)/an ( 2 da")
o = — | CEDE P (0 ) 69

The value # = 3 is also a critical case, for, when # = 3,

ol ), e
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We thus see that the mass of the configuration depends only on K
and is independent of \. For the convective-polytropic case this
shows that the mass of a polytrope of index 3 depends only on its
polytropic temperature.

We notice, further, that when # = 5 the mass is finite, though
the configuration extends to infinity, for, according to the Schuster-
Emden expression for 6, we find that

. dé,
The values of [—£4d0,/d], for different values of # are given in
Table 4.

¢) The mass-radius relation.—Eliminating \ between (63) and

(69), we have

. K de, | —0/n
GMw—)/nRG=n)/n — (”;I)[_ (nh1)/(n—1) _2] .
Gamyn | ¢ “dE Je=e (72)

We shall denote by ,w. the quantity

dé.
= — gt/ (n—r) [@On
oWn & (d{: )é% . (73)

We can re-write (72) as
K = N,GM"/2RG=n)/n (74)

where N, stands for the numerical coefficient

1/n
The coefficients N, are tabulated in Table 4. For the convective
polytropic case, equation (74) is used to evaluate the polytropic
temperature for a configuration known to be a polytrope of a speci-
fied index # of given mass, M, and radius, R.

d) The ratio of the mean to the central density.—Let p(£) denote
the mean density of matter interior to r = af. Then,

S5y = ME)
p(f) - §1ra}£3 ’ (76)
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or, by (67),

) = =3 «i‘?)
[163) E(ds A, (17)
or, since \ is the central density, we have
a8 115
pe= A= l3 492] p. (78)
3 PR

Relation (78) shows that for a polytrope of a given index, n, the
central density is a definite multiple of the mean density. The fac-
tor by which we have to multiply the mean density to obtain the
central density for different values of » are given in Table 4, col-
umn 4. This column, incidentally, brings out a very important fea-
ture of the polytropes as a class. The comparatively small range of
n (where o < 7 < 5) includes a variety of density-distributions, in-
cluding the two limiting cases of the uniform distribution of density
and the infinite concentration of the mass toward the center.
¢) The central pressure.—Since 6, = 1 at £ = o, we have

P, = K\vH0/n | (79)

Substituting (74) and (78) for K and A, respectively, we obtain,
after some minor transformations,

GM*
Pc = W"TT’ (80)

where W, stands for the quantity

) 41(” + I) f(%)E;in]z |

The values of W, are given in Table 4.

We are now in a position to see how a knowledge of the Lane-
Emden functions enables us to determine the complete march of
P, p, etc., in an equilibrium configuration of a given mass, M, and
radius, R, and known to be a polytrope of a specified index, n. From

W.

(81)
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our definitions it is clear that §” and #*** give the density and the
pressure in the scales in which p. and P, are regarded as units. For
a given M and R we can calculate the mean density, p, and (78)
enables us to calculate p.. In the same way, equation (80) enables
us to calculate P.. Finally, equation (74) determines K. Equations
(68) and (77) then describe further features of the configuration.

7. The potential energy.—Let V be the potential. Then, according
to equation (8), chapter iii,

=< - (82)

From P = Kp™+)/* we easily find that

1 dP d (P

cr=o+ng(5). (83)
By (82) and (83), we have

(n+1)§= V4V, (84)

where V. is the potential at the boundary. By equation (10), chap-
ter ii, equation (84) can also be written as
P GM
—V—(n+1)';+—R—. (8s)
Again, by equation (16), chapter ii, the potential energy, Q, is
given by

1 R
2=2 f ViM(r) (86)
or, substituting for V its value (85), we have
'R 'R
~a =i+ [ Lo+ 1% (M), @

or, if 4V is the volume element,

'R 2
—ﬂ=%(n+1)deV+§gR£. (38)
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Again, by equation (32), chapter iii, we have

GM*
~0= -+ e+ 5, (89)
or, finally,
_g=_3 &M
Q= 5—n R (90)

a formula due to Betti and Ritter. We see that —Q is “infinite”
for # = g5; the reason for this is that the polytrope of index #n = 5
of finite radius is infinitely “concentrated” toward the center.

If we consider a gaseous equilibrium configuration (in which the
radiation pressure is negligible), then according to Ritter’s relation,
equation (55), chapter iii, the internal energy U is given by

I

U=--%

(1)
If the configuration is, further, a polytrope of index #, according
(90) and (91), we have

I GM?

U=G=wa -1 R " (92)

Finally, if we consider the case of convective-adiabatic equilibrium,
then

n = =1 (03)
and we have
o3y —1)GM?
1 GM?
U= -(ST_—E)- R - (95)

The relations (94) and (95) are due to Betti and Ritter.

8. The homology theorem and homology invariant functions.—We
shall first prove the following theorem: If 6(£) is a solution of the
Lane-Emden equation of index n, then A*/®~V0(A%) is also a solution
of the equation, where A is an arbilrary real number.
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Let 6 = f(£) be a solution of the Lane-Emden equation. We have
to show that A%®=f(4¢) is also a solution. To prove this, write

n=Af; 0= AY0g (96)
in the Lane-Emden equation. We then find

xd ,d_¢> — _gn
which is identical in form with the original equation in the 6, £ vari-
ables. We can therefore choose for ¢ the solution f(»). According

to (96), this solution in 8, £ variables is
0*(&) = A*00f(n) = A/0f(A¢) (98)

which proves the theorem.

Whenever a differential equation has the property that from one
given solution a whole class of solutions can be derived by a simple
change of the “scale,” as above, then the differential equation is said
to “admit of a homology transformation,” and the constant (such
as A, above) used in such a transformation is called a “homology
constant.”

Suppose we choose for f(£) the Lane-Emden function 6,(£). Then
from this one function we can construct a whole class of solutions
which we shall denote by 0:(£); these are obtained from the Lane-
Emden function by means of the transformation

0(8) = 4%6,(4¢) (w -), 69

I
or

0e((/A) = A%.(8) , (100)

where 4 is an arbitrary constant. In words, the value of 0s(£) at
£1is A° times the value which 6,(£) takes at the point A£. In particu-
lar, if £, defines the zero of ,, then £,/A4 defines the zero of 65 de-
fined according to (g9).

We thus see that from one solution of the Lane-Emden equation
a whole continuous family of solutions can be derived. We shall de-
note by {6(£)} all solutions which can be transformed, one into the
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other, by means of the homologous transformation 6(¢) — A®0(AE).
{8(£)} is then said to define a “homologous family” of solutions.
Thus, {0.(£)} defines a homologous family of solutions which are all
finite at the origin and which further have df/d¢ = o at the origin.
We may say that the one boundary condition dijdt =ocatf=o
defines the family of solutions {8.(£)}. We shall see presently (§ 9)
that the condition that 6 shall be finite at £ = o already defines the
family {6.(£)}. We shall refer to solutions belonging to the family
{6.(£)} as “E-solutions.”

Now, the Lane-Emden equation is a differential equation of the
second order, and consequently the general solution must be charac-
terized by two integration constants. But, as we have seen above,
one of the constants must be “trivial” in the sense that it merely
defines the scale-factor 4. It is clear, then, that we should be able
to reduce the equation to one of the first order.

Thus the variables used in § 3(d) already enable us to reduce the
Lane-Emden equation to one of the first order.

The variables chosen are (Eq. [23] with 4 = 1, and Eq. [26]):

2
n—1

(101)

E=et; z=89; o=

2 then satisfies the differential equation (Eq. [28] with 4 = 1)

d*z

W+(2&—1)%§+ay(&—1)z+#’=°- (102)

We now introduce the new variable, y, defined by

y = 'dif-- (103)

Then,
d*z
ar

_dyds _
“dzar °

sig
SIS

(104)

Equation (102) then becomes

y 24 oy + G-t =o, (09
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which is an equation of the first order. The reason for this reduc-
tion of the order of the equation is that the functions y and z, de-
fined by

z = £99 , (106)
and by
d
y=G=—tg=-e(@+ed), (r07)
or
- —s«':ﬂZ—g — oz, (108)

are both invariant to homologous transformations. To show this, let
8(£) be a solution of the Lane-Emden equation and let z(£) be the
corresponding function defined as in (106). Let further, 6*(£) be
obtained by applying a homologous transformation to 6(£), so that

0*(§) = A%0(4¢) . (109)

Let z*(£) be the corresponding function defined as in (106). Consider
the corresponding points £ and £/4 on the solution-curves § and 9%,
respectively. Then

z*(E/A) = (§/4)%6*(¢/4) , (110)
or by (109)
2*(E/A4) = (£/4)°450(F) = £30(8) = 2(¢) . (111)

In words, there is a one-to-one correspondence and an equality be-
tween the set of values which z takes along a given solution and the
set of values which it takes along a solution homologous to the origi-
nal one. This proves that z is a homology-invariant function. To
show that y is also homology invariant, it is sufficient to show that
£+1d8/d¢ is homology invariant. As before, if we consider the cor-
responding points £ and £/4 along 0 and 0¥, respectively, we have

Hence,

(E/A)‘H‘! <%%T>S=E/A - (E/A)‘}H S <g§>g=g’ (113)
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or
wo+1 d_ﬂ_* = gatr d_@
&/ (dE >e=s/A = <d5>e=e ’ (x14)

which proves that £7+:d§/d¢ is homology invariant. Hence, as y and
2 are both homology-invariant functions, we have a first-order dif-
ferential equation between them.

It is possible, of course, to construct other homology-invariant
functions, and we can therefore derive an arbitrarily large number
of first-order differential equations all equivalent to the Lane-Emden
equation. As another example of sucha first-order equation, we shall
consider the following two functions, » and v, defined as

n /
u=—%; v=—£—g;, (115)
where we have used 8’ to denote df/d§.

We can show that % and v are homology invariant by the same
kind of reasoning that we adopted to prove the homology invariance
of y and z. The first-order equation between and v can be ob-
tained as follows:

We have

0”
-{-gﬂ' -7 (116)

&g

1
3

Rim

Since, according to the Lane-Emden equation,

0 = —0"——2—0', (117)
we can re-write (116) as
1du _ 1 LA
; E—E[3+"’0 ofJ’ (118)
or,
E(Zz—‘=£(3—-nw—u). (119)
wdt &
Now we have
tdv 1 0,0
;Zé—g—'o—'l'o—,', (120)
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or, again by (117), we find

= (=14 u+1). (121)

wdv __wto—1 (122)
vdu  wu+tnv— 3’

which is the required first-order differential equation. We shall re-
turn to the foregoing equation in § 21.

We pass on now to a general discussion of the Lane-Emden equa-
tion. The fundamental problem is the following: If we prescribe the
value 6, and its derivative 6; at a given point £,, then the Lane-Em-
den equation specifies uniquely a solution-curve passing through the
point (£, 6,) and in the given direction prescribed by 6;. The prob-
lem is: What is the nature of such a solution for all the points (£,, 6,)
in the (£, 8) plane and for all possible starting-slopes? In other words,
what is the arrangement of the solutions of the Lane-Emden equa-
tion? We shall only be concerned with values of # > 1. For # = 1
the solution can be given explicitly, while for # < 1 there seem to
be formal difficulties of a far deeper character than those encoun-
tered for # > 1. The solution for #n = o, however, is explicitly
known.

9. The E-solutions.—We shall prove that solutions of the Lane-Em-
den equation which are finite at the origin necessarily have d0/d¢ = o
at £ = o, and that, consequently, the homologous family {6,(£)} in-
cludes all the solutions which are finite at the origin.

Consider the Lane-Emden equation in the form (Egs. [13]
and [14])

xo X (x = 0)) . (123)

Solutions which are finite at the origin in the (£, 6) plane correspond
to solutions passing through the origin in the (x, £) plane. We have

E-in 5 (x24)
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Hence,

[sgl - x-
do . d
(&)... = lm —_s—} : (129)

Since we are considering solutions passing through x = o, £ = o,
we can write

-y gldx
x(&) *E(d£)5=°+ 2<d52>$=°+...., (126)
HOREE
d§  \df Je=o T8 )i +. (127)
By (125), (126), and (127) we have
de _1 éz_x
<3§>s=o T2 (dgz >e=o’ (128)

or, according to (123),

(%sm - [@_"] - (129)

since x/& = 6 is finite at the origin, and, further, x = o at tE=o0
for the solutions considered. This proves the theorem.

10. The (y, z) plane—We shall discuss the solution-curves in the
(y, z) plane. The functions y and z, as we have shown, are homology-
invariant functions, and consequently each solution-curve in the
(y, z) plane corresponds to a complete homologous family of solu-
tions in the (£, 6) plane. In particular, there is just one curve in the
(v, 3) plane which corresponds to the E-solutions which are included
in the homologous family {6.(£)}. We shall call the curve which cor-
responds to the family {6.(£)} the “Emden-curve,” or the “E-
curve,” and denote it by y&(z).

To repeat, our equations are

0=

d - .
yd_i’ + (o—ny+oe@—nst+ =0, (130)

where
e =89, (131)
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and
y = — (@0 + £0) = — £ — oz (132)
Further,
d
y=d—f; E=e". (133)

We notice that, according to these transformations, different direc-
tions through a fixed point in the (£, 8) plane correspond to different
points on a definite line parallel to the y-axis.

From the foregoing equations we can derive the following formu-
lae, which we shall need.

From (132) we have

0 = -y + az) . - (134)
If we denote dy/dz by y', we have, according to (130),

y= (B0t 6;(‘:’ mILE (135)

or, substituting for z and y according to (131) and (132), we have

(28— 1) + 0 — o
y == £0!+‘:,0 . (136)

From (136), solving for ¢, we have

, B0 — %0 — apy’
= Fwmon (x37)

We see that the origin, y = z = o (which we shall call 0,), is
a singular point of the equation (130), since, when y = o and
2 = o, dy/dz is indeterminate. In the same way,if n > 3,0 <1,
the solution has another singular point:

y=o, z=z=[a— o (138)

We shall call this singular point O,. The existence of this second
singular point O, corresponds to the existence of the proper singular
solutions that exist for & < 1; for if @ < 1, then, as we have al-
ready seen (Eq. [22]),

0. = [&(1 — @)]3/¢a (z39)
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satisfies the Lane-Emden equation. Equation (139) is equivalent to
2. = [o(x — @)/ (140)

in the (y, 2) plane, which is identical with (138).

Finally, we have the following correspondence between the (y, 2)
and the (£, 6) planes. From (135) we see that along the y-axis
(z=o0)

y =—(20—1). (141)
But from (136), ¥ takes the value —(2& — 1) for 8 = o. Hence,
the, y-axis corresponds to the £-axis.

11. Behavior near the singular poiniy = o,z = o.—It s clear that
the E-curve which is characterized by 8’ = o at §¢ = o in the (§, 6)
plane must pass through the origin (see Eqgs. [131] and [132]); and
we have, according to (136),

2
n—1

(B, = —@ = (142)
Hence, the E-curve touches the line y 4+ @z = o at the origin. On
the other hand, we can show that there cannot be two solution-
curves which are both tangential to y + @z = o at the origin. To
prove this, suppose ¥ and y* are two different solutions such that

y~—az; y*~ —az (z—o0). (143)

We may, without loss of generality, assume that y < 9* near the
origin. Then we should have

. A
A=9y*—y>o0; I’m:—=0- (144)
A=o0

From the differential equation (130) we have

dA . A
T = [o(@ — 1)z + 27 7 (145)
Since yy* ~ @, we have from the foregoing that
. (dlog A\ _ .. Ja(@—1)z* 4 2™
fim (d log Z) = lim [ y* ] ’ (146)

A=o0
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or
. (dlog A\ @@ — 1)
im (G106 5) = 5 (247)
A=o
But
. dlogA .. logA
Iz‘f}, dlogz  slogsz (148)
A=o0 A=o0
Combining (147) and (148), we have
. log A I
lim gz ~ 15 (149)
A=o
or
A
]Og 'Z— I
lim gz = 5 (150)
A=o0

which leads to a contradiction since, according to (144), we should
have a non-negative limit for the left-hand side of (150). This proves
that the E-curve is the only solution-curve which is tangential to
y -+ wz = o at the origin.

The line y + &z = o has further significance. By (134), along
this line 6 = o and 6’ < o only above the line y + @z = 0. We
shall refer to the direction y + @z = o as the “¥-direction.”

Now the origin O,, as we have already seen, is a singular point of
the differential equation; we shall now investigate whether the dif-
ferential equation characterizes directions other than the V-direc-
tion along which solutions can start at the origin.

From (135)

o= —lim [3— 1) +3G = 0 2+Z], asn
9, y v

which (since # > 1) is easily seen to be equivalent to

@@ — 1)

(y,)y' 7m0 ’ (152)

)y, 2= = — (20 — 1) —
or (y')y, .=, satisfies the equation

Y4+ (20— 1)y +e@—1) =o0. (153)
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Hence,

y=—=& o y=-(@—1). (x54)

Thus there is a second direction defined by y = — (& — 1)z to
which solutions can be tangential at the origin. We shall refer to
this second direction, y + (@ — 1)z = o, as the “X-direction.”

If we substitute ¥ = —(@ — 1) in (137), we have, correspond-

ingly,
, zan —_— '0
0x = (E———&S—w—>z=o . (155)

Since z = £, = o implies £%0 = o or since @ = 2/(n — 1),z =0
implies £6"~* = o. Hence, according to (155),

(156)

If z = o corresponds to £ = o, then, from (156) it follows that if 6
remains positive, 8/ - —» as £ —o. On the other hand, from
(124) it follows that ' » — @, £ — o, implies that x(= %) is fi-
nite at the origin or # — « as § — o. But thisis true only if 2 = o
when approached along the X-direction corresponds to { — + or
£ 0. We shall see, however (§§ 19, 20), that under certain cir-
cumstances (# > 5) the origin O, approached along the X-direction
corresponds to ¢ — — @ or £ — .

12. The case @ # 1.—We shall now consider in greater detail the
behavior of the solutions in the immediate neighborhood of the
origin.

If we are in a sufficiently close neighborhood to the origin and if,
further, @ 1 (i.e., » % 3 but #» > 1), we can write equation
(130) as

y%+(2é—1)y+&(&—l)z=°’ ) (x57)

or, since y = dz/dt, we can re-write the foregoing as

d*z

. dz | ..
S+ (- I)d—f+w(w- 1)z =o0. (158)
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The general solution of (158) is seen to be
z = Ae % 4 Be -0t (159)

where A and B are two integration constants. Since y = dz/d¢, we
have
y = —ade® — (& — 1)Be~ @1t (160)

From (159) and (160), we obtain
y + &z = Be ot (161)
y+ (o — 1)z = —Adet, (162)
From the foregoing, it follows that
y + (@ — Dzl = Cly + azf°, (163)

where C is a constant.

We shall choose the X and the ¥ directions as defined, respective-
ly, by y 4+ (0 — 1)2 = o and ¥ + &2 = o, as defining a new frame
of oblique system of axes. Let #x and ¢y be the angles which the
X and the ¥V directions make with the z-axis. Then

tandy = —(@ — 1) ; tandy = —& . (164)

Let X and Y be the co-ordinates of a point with respect to the new
system of axes. Then we have

z2=Xcosdx + ¥V cos dy, (165)
y = Xsindx + ¥V sin dy. (166)
From the foregoing, we find

_ycosdy — gsindy _ cos dy

Sn Ox — 0y)  _ sin (0x — o) 0 T 2tandv), (167)

or by (164)

_ cos Iy -
X = Sin (9x — 97) (v + @32) . (168)
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Similarly,

YV = cos 0X'(’y) ly+ @— 1. (169)

" sin (Fx —
Hence, the solution (163) can be written as
Yot = CX%, (170)

or
YV = CX&/@0 (z71)

Since ® = 2/(n — 1), equation (171) can also be written as
V = CX¥/m, (172)

From (172) it follows that we have to distinguish again between the
cases @ > 1 and @ < 1, i.e., #» < 3 and » > 3; the case n = 3 re-
quires special treatment.

13. The case & > 1, n < 3.—The first part of the discussion for
@ > 1 is valid also for the case w = 1.

The differential equation can be written as

dy _

j== = —(20— 1)y —a6—Dz— 7, (173)
. _d
;= E? =y, (174)
& _ (e _ee—nite
= (= 1) 5 , (175)
with
g = £o0 = ¢ 949 ; y = — ot ‘E — &2 (176)
) dE :

Since we need to consider only 6 > o, z > o, we shall therefore
restrict ourselves to a discussion of the solution-curves in the half-
plane in which z is positive. Further, if & > 1, then, in the half-
plane considered there is only one singular point, namely, O..
It is this last circumstance which makes the discussion relatively
simple, for the solution-curves of (175) must form a one-parametric
family of curves at all points in the half-plane considered, except
at the singular point O,.
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From (173) and (174) it follows that along the z-axis, z = o (or
that the solution-curves, if they intersect the z-axis, must do so ver-
tically) and that the locus of points at which ¥ vanishes is given by

(26 — 1)y = —6(@ — 1)z — 27, (x77)

a curve which (since @ > 1) lies entirely in the lower quadrant.
In the three regions marked I, IT, and I1I we have the signs of
¥ and £ as shown in Figure 6.

}

Y

y.<o I
Z>0

«
L)
o
Yiy=—wz_
F1c. 6

Finally, the locus of the inflex is obtained by differentiating the
differential equation (130) and setting d*y/dz* = o. We obtain in
this way,

(Z_Z) +eo - DD baG - farmo.  (118)
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Eliminating dy/dz between (175) and (178), we obtain, after some
elementary transformations, for the locus of the inflex
1 ol —1)z+ 2"

YE e -+ 2o — 1) £ Vi = gnz] . (179)

As 7 — o, we obtain from the foregoing for w = 1

y = —%s(20 — 1) £ 1] (@#1). (180)
Hence,
y = —az or y=—@-—1)3 (@#1). (181)

or, at the origin the locus of the inflex (for @ = 1) touches the X
and the ¥ directions as defined in § 11.

We shall now prove the following lemmas, due to E. Hopf.

LemMMA 1.—Any solution-curve y(¢), z(t) starting at a point on
the positive y-axis falls monotonically with y decreasing and z in-
creasing and intersects the z-axis vertically at a finite point, after
which the solution continues to fall monotonically with both y and 2z
decreasing until it intersects horizontally, at a finite point, the curve
4 = o; after this the solution rises monotonically with y increasing
and z decreasing and either reaches a point on the negative y-axis
for a finite value of ¢ or tends toward the origin as { — «.

This is intuitively obvious from Figure 6. To proveit, let z(t,) = o
and y(t,) = y, > o. As long as y > o, 3(¢) increases, while y(1) de-
creases. )

Now, since @ > 1, we have, according to (173),

y < — z". (182)
y

Let ¢, > f, be sufficiently near f,. Then y(t;) < ¥, and 3z(t:) =
2; > o. By (182),¥ < — 2%, fort > t,, as z must increase in the posi-
tive quadrant. Hence,

y < () — 220 — 8) < yo— #HE —4) . (183)

Therefore, the curve must cross the z-axis for ¢ < i+ yoz;™
After crossing the z-axis vertically it is clear from Figure 6 that,
so long as we are in region I7, y decreases and z also decreases. Clear-
ly the solution-curve cannot avoid the curve ¥ = o. After crossing
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this curve horizontally, it is clear that y has to increase while z con-
tinues to decrease. There are two possibilities: either the curve re-
mains in the 717-region for all large values of £ or it remains there for
only a finite interval in ¢. In either case the curve must tend to a
limit point, z* > o, ¥* < o. In the first case the curve must nec-
essarily approach the singular point, O,. In the second case z* = o
and y* < o.

LeEmmA 2.—Every solution-curve must be of the form described
in Lemma 1.

We have to show that any solution-curve must for ¢ decreasing
reach a point on the positive y-axis.

We shall consider the most unfavorable case, namely, a solution
starting in the I7/-region. In this region y > o, and hence, by equa-

tion (177), G ot
wlw — I)3 2"

y < (2‘;, —_ I) (184)
On the other hand, if y is negative, we have from (173) that
d -
> (=), (185)
or
y23—(20—-1)(z—2), (186)

where y; and 2, define the initial point. For large 3, (184) and (186)
are contradictory, and consequently z cannot tend to infinity for
the solution-curve in region I77. Hence, the solution-curve must en-
ter the I7-region for some finite z. In this region, z continues to
increase (as ¢ decreases), while y begins to increase. If y, < y, then
so long as y is negative, |y.| > |y|. By (175),

ol@ — 1)z 4+ 27

i}-,>-—(26:—1)+ BN

e , (187)

where we can choose for y, the value of y at the intersection of the
solution-curve and the curve y = o. From (187) we derive

I

n+1

j0(@ — 1)2* + gt

[ 2]

y> ~—(20 — 1)z + +C, (188)
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where C is a constant. From (188) it follows that y must become
zero for some finite s and hence must intersect the z-axis (vertically).
After crossing the z-axis, y increases and z decreases (for £ continuing
to decrease); since dy/dz is bounded, it is clear that the solution
can be continued to a point on the positive y-axis. This proves our
second lemma.

Consider now the solution y(z; ¥,), which intersects the negative
y-axis at y, < o. Lemma 2 has described the character of such a
solution. Then, since the y(z) curves form a one-parametric family
(except at the singular point), it is clear that for sufficiently small z
(in the lower quadrant) we should have

y(2; o) < ¥(3; 30) (189)
if
Yo < Yo (190)

Let us now consider the limit function
lim y(z; ¥,) . (191)
Yo—> —0O

We shall show that this is the E-curve, yz(3).
To show this we compare y with another function w which satis-
fies the differential equation

:‘iiz".—__(za,—l)—[a(a,—r)+e]£, (192)

where e(<}) is a constant. Equation (192) can also be written as

3_1: + (26 — 1wt e@—1)+dz=0. (93)

w
The foregoing equation is of exactly the same form as equation
(157), which we have already considered. Analogous to the solu-
tion (163) of (157), we now have

(w + q=2)“’ - (‘“’ + W)"' , (194)

Wo Wo
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where w = w, for z = o and —g¢; and —g¢, are the roots of the equa-
tion

¢+ (26 —1)g+[ee—1)+d=o0. (195)

We write
¢ ==} +3V1— 4, (196)
=6 —%—3V1— ge. (197)

The quantities ¢, and ¢, are real if ¢ < 3. We have, accordingly, as-
sumed e < ;. We shall consider the special solution of (193) which
is obtained from (194) by making w, —» —o. We have

w = —q: Z. (I98)
Since
d - .
A R R R R EF (x99)
we have
% < —(20 — 1) — [0@— 1) + 5]5 (200)
if
< e and y<o. (201)

Subtracting (200) from (192), we have

=Y =< (/" ; y < 0]. (202)

d—‘i(w—y)>[&:(1—¢3)+e]z

We write the foregoing in the form

dA

EoBa-d i <@y <ol, (0)

where
A=w—y=—qz~3373) (B<o), (204)

according to our choice of (198) as the appropriate solution of (192).
From (204) it follows that

Ao = —90 > 0. (205)



POLYTROPIC AND ISOTHERMAL GAS SPHERES 119

From (203) and (205) we conclude that, under the circumstances
specified, A is positive and increases. Hence,

—qz— ¥(z %) >0 [y < o0;2< (/" ]. (206)

Now, as € < &, we have
’ 4

VI — 46 > 1 — ge. (207)
By (196), therefore,
G >@— 2>0 [0 >1;e<1]. (208)

Hence, by (206) and (208),
¥(z; 30) < —quz < — (& — 2€)z. (209)

Equation (209) is valid so long as y < o, z < (®™, € < {, and
hence so long as z < ()™, ¢ < } without the restriction y < o.
The inequality y, < o is, of course, essential.

For a given positive value of z < (1)*™* we can choose € to be
(2)~*. Hence, by (209) we have

¥z 30) < —(@— 222Nz [o<z< (™, (210)
or
y(3; ) < —@z + 22", (211)

which is an inequality due to E. Hopf. Consider the limit function
y&(z) as ¥, — —o (we anticipate by our notation that the limit func-
tion is, in fact, the E-curve).

From (211) it now follows that

ye(2) £ —az + 22", (212)
We will now show that
ye(2) > —az (z>0). (213)

To prove (213) we proceed as follows: From (199) we have in par-
ticular

%>—(2&:—1)—&(&—1)}TZE (ye < o). (214)
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In equation (192) choose ¢ = o (we are now considering the equa-
tion [157]). We now have

d wl@ — 1)z
7z (yg — w) > ~ ymw

(ye — w) . (215)
Choose for w a solution such that, for 2 = o, w = w, < o. Since
ye=oatz=o0, (yg — w) = —w, > o at z = o. Equation (215)
now shows that, so long as yzr < 0 and w < o, (yg — w) is posi-
tive and increasing. Now let w, — —o, in which case we obtain
the solution (198) with € = o, i.e., the solution w = —&z. Hence,
we obtain

yE(2) 2 —&z (ye < 0). (216)

From our lemma it now follows that the inequality (216) is always
true.

From (212) and (213) it now follows that, as z — o, yz must be-
come tangential to the line ¥ + @z = o. We have already seen in
§ 11 that the E-curve is tangential to the line y + @z = o at the
origin and that there can only be one solution with this property.
Hence, the function defined as the limit y(z; ¥,), ¥o— —o is, in
fact, the E-curve.

We have now shown that the E-curve passes through the origin
and is tangential to the direction y 4+ @z = o at the origin. Draw
the complete E-curve. Let this curve cut the y-axis at y,(E). It is
clear that a solution starting at a point y, of the positive y-axis
with a value for y, < y,(E) must necessarily remain entirely in the
region bounded by the E-curve and the part of the y-axiso < y <
¥o(E), and, according to our Lemma 1, must tend to the origin
as I — o (or £ — o). We shall refer to such solutions as “M-solu-
tions.”” (As we shall see, along an M-solution, § — « as £ —o,
monotonically.) On the other hand, a solution-curve starting at a
point y, > ¥,(E) must remain outside the region bounded by the
E-curve and the part of the y-axis o < ¥ < ¥,(E), and hence must
reach a point z = o, y: < o of the negative y-axis for a finite value
of ¢, according to the definition of E-curve and to Lemma 1. We
shall refer to the solutions outside the E-curve as the “F-solutions.”
Hence, the whole family of the solution-curves is divided into two
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regions by the E-curve, the region of the M-solutions, and the re-
gion of the F-solutions [cf. Figs. 7 and 8].

14. The case & > 1.—So far our discussion is valid for @ = 1 as
well. We shall now exclude the case @ = 1, # = 3 and consider the
case @ > 1, n < 3. According to our analysis of § 12, the asymp-
totic form of the solutions near the origin is given by

[y + (@ — nz* = Cly + @3]°; (217)

or, in the oblique system of co-ordinates defined by the directions
X and ¥, we have (cf. Eq. [172])

V = CXY6™ | (218)
or

ay .
(ﬁ)o =o0, C finite . (219)

From (219) it follows that (if # < 3) all the solutions must touch
the X-axis, or, in other words, the solutions must all be tangential to
the line y + (@ — 1)z = o at the origin except the one y + @z = o,
obtained from (217) when C = «; this last case corresponds to the
E-curve. Hence, all solutions other than the E-solution passing
through the origin must touch the X-direction at the origin.

From (159) we have for the corresponding behavior of § near the
origin:

0= 2609 =263 =4+ Bet (t— +=), (220)

or

0=A+1—g (> 0). (221)
If B = o, we get the solution finite at the origin, and hence a solution
belonging to the homologous family {0.(£)}. For B # o and posi-
tive we have the behavior near the origin of the M-solutions which
are seen to tend to « monotonically as £ — o.
15. The case @ = 1.—The analysis of § 12 does not apply to the
case @ = 1, # = 3, and hence the arguments of the last section can-
not be used for this case. The differential equation for n = 3 is

d
yd_z_l_y_‘_zs:o, (222)
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F16. 7.—The system of isoclinical curves in the (y, z) plane for # = 2.5. (The dia-
gram is reproduced from Emden’s Gaskugeln.)
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and equation (157) no longer gives the behavior of the solutions at
the origin. However, the discussion of the E-curve (with regard to
its existence and uniqueness as developed in § 13) is unaltered. In
particular, we have the result that the E-curve is tangential to
y + 2z = o at the origin.

Now, according to a theorem™ due to Hardy, any rational function,
H(x, y, y'), is ultimately monotonic along a solution y(x) of an alge-
braic differential equation of the form i(x,y, y') = ZAxmy»y’® = o.
If we apply Hardy’s theorem to the ratio X:/X; of any two terms
of the differential equation itself, it follows that, since X:/X; has
to be ultimately monotonic, we should have one of the relations

X . X 1 . )_(.‘_) © (223)12

X X; X '
Equation (222) is an algebraic differential equation, and Hardy’s
theorem is applicable. We should ultimately have one of the rela-
tions

i1—Z—>—1; %—-)—00; Z—g—*o- (224)

The first of the possibilities leads clearly to the E-curve; the second is
impossible since the M-solutions are all above the curve y + 2z = o.
Hence, the only remaining possibility is that, as t —» =, dy/dz — o,
Hence, according to (222),

dz
y=g~ %, (225)
or
1 1/2
M EEI (220
where ¢ is a constant of integration. Remembering that £ = ¢,
we have
_ I 1 1/2
0 =sto~3 [————] ) (227)
£ C
2 log £

1 For a proof of Hardy’s theorem see G. H. Hardy, Orders of Infinity (“Cambridge
Tracts in Mathematics and Mathematical Physics,” No. 12), pp. 57-60, 1924.

= In exceptional cases, more than two terms being of equal highest order, we may
have X;~ constant X; instead of X o —X.
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where C = ¢ is a constant. Equation (227) then gives the behavior
of the M-solutions. It should be noticed that these solutions in the
(y, 2) plane touch the z-axis, which is for this case the X-direction
as well. Hence, the behavior of the solutions near the origin isstill
qualitatively the same as for the case @ > 1; the proof given in
§ 14 is not, however, valid in the present case. The results proved
in this section are due to Fowler.

16. Fowler’s theorem.—We can now proceed to derive the funda-
mental theorem (due to Fowler) concerning the arrangement of the
solutions of the Lane-Emden equation in the (£, 6) plane:

To a given set of initial values

do
e=p; o=030; (9) -a,  @®

there corresponds a definite point 2, 2 o, ¥, in the (y, z) plane:
20 = £30, ; Yo + @2 = — £, . (229)

Let us specify a certain point (&, 8,) in the (£, 6)-plane and let 6;
correspond to all possible starting-slopes at (£, 6,). Then the cor-
responding point in the (y, z) plane describes a vertical line through
(20, 0). Let z = z,(E) be the point where the E-curve intersects the
Z-axis.

From the arrangement of the different types of solutions in the
(3, 2) plane already described at the end of § 13 we can easily derive
the following (see Fig. 8):

If 2, > 2,(E), then the solution passing through (z,, ¥,), where y,
is arbitrary, is necessarily an F-solution.

If 3, = 2,(E), then the solution passing through [2,(E), y, = o] is
an E-solution, while the solution passing through [2,(E), y, > o] is
an F-solution.

If 2, < 2,(E), then for a given z, < z(E) there are two points
[20, ¥V(E)] and [z,, ¥ (E)] which lie on the E-curve. Of these two
points one must be in the positive quadrant and the other must be
in the lower quadrant. Let y°(E) > o. Then a solution passing
through the point [z,, y{"(E) > 3, > y{?(E)] is clearly an M-solu-
tion, while solutions passing through [z, ¥, > y{"*(E)] and [z,
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yo < y(E)] are F-solutions. Finally, the solution passing through
(20, YP(E)) or [20, ¥(E)] is an E-solution.

Now a characteristic of an F-solution is that z = o for two finite
values of ¢, or the corresponding solution™ 8(£) is such that it has at
least two zeros and that, further, it must be characterized by having

Yo€)

Fi1c. 8

a maximum in the interval in which it is positive. The characteristic
of an M-solution is that the corresponding 6(£) solutions tend mono-
tonically to infinity as £ — o. Near the origin it has definite asymp-
totic forms, according as @ > 1 or @ = 1 (see Egs. [221] and [227]).

12 g(£) is only one of a homologous family which can be derived from a given solu-
tion-curve in the (y, z) plane.
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We can translate the foregoing results in the (£, 6) plane as
follows:

a) Starting-points (£, 8,) are divided into two classes by a criti-
cal curve § = z,(E)£® (z,(E) being determined by &). This curve
is the envelope of all the solutions belonging to the family {6,.()}.

b) Any solution 6(£) starting at a point (£,, 6,) above the criti-
cal curve is an F-solution with two zeros £, and £, such that & <
& < &

¢) If the starting-point lies on the critical curve, all solutions are
again F-solutions except the one which is tangential to the critical
curve at the starting point; the latter is an E-solution belonging to
the family {0.(£)}.

d) If the point (&, 6,) lies below the critical curve, there exist two
starting-slopes 6; = 6;”(E) and 6; = 6;?(E), and 0;,(E) < 6,(E)
< o. All solutions corresponding to 6; > 6;%(E) or 6 < 0,(E) are
F-solutions. Slopes between §;”(E) and 8;”(E), i.e., 65@(E) < 6, <
8:(E), correspond to M-solutions which become infinite as £ — o.
For 6, = 6,'"(E) or 6; = 6,?(E) we have E-solutions.

e) The asymptotic forms of the M-solutions are

0~A+§ @>1);
1/2 (230)
0~5[ ! ]/ (@ =1).
¢ C
2]ogE

Fowler refers to the circumstance summarized in (a)-(d) above
by the very convenient statement that “the E-solutions form a grid
for use in analysing the other solutions.”

If we apply the theorem to the special case where the starting-
point (£, 8,) is on the £-axis, we have

%0 =0; v = —Etg] . (231)

As a special case of Fowler’s theorem, or directly from Figure 7 or 8,
it is now clear that if y = y,(E), or

o) = 22, (232)
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then we have an E-solution. If y, < y.(E), or

—o <28 _ @, (233)

w1
0
we have an M-solution; finally, if

—g > 2B _ _gE) (234)

o+
0

we have an F-solution. We have an F-solution also when y, is nega-
tive.

17. The case & > 4, 1 < n < 5.—The general discussion of this
case presents somewhat greater difficulties, since in the positive
half-plane we are considering there can be two singular points,
depending upon whether & > 1 or § < & < 1. We therefore do
not expect the discussion of § 13 to be valid in the present, more
general case. In particular, Lemma 1 is not true for l<a<r,
but we can prove the following:

LeMMA.—Any solution-curve [y(#), z(¢)] starting at a point y, < o
on the negative y-axis falls monotonically, y decreasing and z in-
creasing as ¢ decreases, until it cuts horizontally, for a finite z, the
curve ¥ = o; after this the curve monotonically rises, both y and z
increasing (for ¢ continuing to decrease) until it cuts the z-axis at
a regular point (i.e., for & < 1 the curve cuts the z-axis at a point
2> 2, = [@(1 — &)]*?). For further decrease of ¢, the curve con-
tinues to rise, with z now decreasing until the curve cuts the y-axis
again at a point on the positive y-axis.

We have already proved the lemma for @ > 1, and we shall
therefore restrict ourselves here to the case 1 > @ > 3. In this case
there is a singular point on the z-axis (denoted by 0,). The foregoing
lemma shows that solutions which cut the negative y-axis (y, < o)
do not approach any of the singular points in the half-plane con-
sidered, and in all cases for which @ > } these solutions avoid the
singular points.

It should be noticed that the locus of points at which dy/dt = o,
specified by (cf. Eq. [177])

(26 — 1)y = a(x — &)z — 2", (235)



128 STUDY OF STELLAR STRUCTURE

is, for @ < 1, no longer a monotonically decreasing curve lying en-
tirely in the lower negative quadrant. The locus (235) lies in the
positive upper quadrant for o < z £ 2, and crosses the z-axis at

the second singular point (see Fig. g9). We shall now prove the
lemma.

y=0

Fi16. 9

Let (y,, o) be the starting-point, y, < o. It is clear that in region
II1, as t decreases, y decreases while z increases. From the equation

%=—(2&:—1)+

ot — @)z 20

" 5 (236)

it follows that, so long as v < o,

dy

o>~ -+ 20 (237)

)
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which we can also write as (for y < o)

iy

o(t — @)z
dz '

AR

(238)

Further, in region III, |y| increases and hence |y,| is the mini-
mum value of |y| in this region. Hence,

By ey @ = @)z
dz > —(20 1) Iyll ’ (239)
or
y>yx—(2é—1)z—‘i(l;i)z’. (240)

2| y:|

On the other hand, since we are in region ITI, y > o, and we
should have
ot — @)z — 2*

y< (20 — 1)

(241)
Equations (240) and (241) are obviously contradictory for large
values of z. Hence, the solution-curve must leave the region con-
sidered for a finite z, and it is clear that it intersects the y = o
curve (horizontally) at a point where z > 2. For further decrease
in ¢, z continues to increase, while y now begins to increase, |y| de-
creasing. If y, < v, then so long as we are in region II, |y.| > |y|;
and by (236) we have (for sufficiently large 2)

Z—Z> — (20 — 1)+J&—I;Z)|z—+—z:>Cz" (242)

for some positive constant, C. Thus,

Czn+l
n+1

v > — D (D aconstant), (243)
and we conclude that the curve must cross the z-axis. Further, the
curve must intersect the z-axis at a point z > z,, since, as we have
already seen, the curve already intersects the curve y = o at a
point whose z-co-ordinate is greater than z, and in the region I7,
z increases with decreasing . After crossing the z-axis (vertically),
y increases, while z now begins to decrease; and, since |dy/dz| is
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bounded, the solution can be continued to a point on the positive
y-axis. :

Consider, now, the solution y(z; y;), which intersects the y-axis
at a point y; < o. The lemma has described the character of such
a solution. Then, since the (y, z) curves must form a one-paramet-
ric family (except at the singular points), it is clear that for suf-
ficiently small z we have

¥z 9) < ¥z y) (< 3 <o). (244)
We can therefore construct the limit function

ye(z) = lim y(z y). (245)

We have already shown that for @ > 1 we obtain in this way the
E-curve. We shall see presently that this is generally true. The E-
curve is, of course, tangential to the direction y + @z = o at the
origin.

Draw the complete E-curve. From the lemma it follows that the
E-curve must cut the y-axis at a point y,(E) > o. Further, it is
also clear from the lemma that the curve surrounds the singular
point (o, 2,). Again, it follows from the lemma that a solution start-
ing with a value y, > ¥,(E) remains outside the E-curve. This so-
lution intersects the y-axis for two values of ¢, and hence corre-
sponds to a solution in the (£, 6) plane which has at least two zeros.
We shall refer to these as “F-solutions.”

On the other hand, if we consider a solution starting at a point
0 < ¥o < ¥(E) on the y-axis, then the solution must be entirely
inside the region bounded by the E-curve and the part of the y-axis
o £ ¥ £ ¥.(E). Hence, as t - « the curve must tend to one or
other of the singular points inside the region described. If @ > 1,
there is only one singular point, namely, the origin; and, as we have
already seen, the solutions approach the origin. On the other hand,
there are two singular points in the region under consideration for
3 <& < 1. In this case, however, the solutions cannot approach
the origin. This follows from the analysis of § 12. We have shown
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that the behavior of the solutions in the immediate neighborhood
of the origin is specified by

Y = CX3/@ (246)

where X and ¥ are the co-ordinates in the oblique frame of refer-
ence defined by the lines y + (@ — 1)z =0 and y + wz = o. If
® < 1, we can write

Y X5/0—3) = constant , (247)

where the exponent of X is positive. It follows that, in general,
Y = o corresponds to X = «, and similarly X = o implies
Y = . Hence, the solutions approaching the origin must be such
that they approach it up to a certain minimum distance and then
recede from it. The exception is the E-curve which corresponds to
C = « in (246); this solution touches the Y-axis at the origin and
hence, being tangential to ¥ + @z = o at y, z = o must be the
E-curve (§ 11). Hence, the solutions in the region bounded by the
E-curve and o < y £ ¥.(E) must approach the second singular
point O, (o, 2,) on the z-axis for 1 > & > 3 as ¢ — . We shall re-
fer to these solutions as the “M-solutions.”

The behavior near the singular point O, for 1 > & > % will be
examined below, but it is clear that in the terminology of Fowler
the E-solutions form a grid for use in analyzing the nature of the
solutions passing through a given point in the (&, 6) plane, for
@ > %

18. The case 1 > & > %, 3 < n < 5.—The behavior of the so-
lutions as they approach the singular point O, will now be investi-
gated. Let us first examine the possible directions of y’ at O..

Near O, we can write

o - (1t — @)(z, + Az) — (2, + Az)"
y = lim [~(6 -0+ i |, e
Az—>o0
or, since 27 = &(1 — @), we have at (o, z)
y = = — )+ 2EZDEZD o) (a49)

y
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or we can re-write the foregoing as
y24+ (20 — 1)y 4+ 2(1 — @) = 0. (250)
Solving for 3, we have
Y =G — 1) £ Vair + 46 — 7). (251)
The values of ¥ at (o, ) given by (251) are real only if
4B~ 73 0. (252)
Let @ = @* be such that
40% 4 40* — 7 = 0. (253)

The positive root of the foregoing equation is given by

=~ =0.91421..... (254)

@* corresponds to a value of #* where

n* = II+8\/;

- =3.18767..... (255)

If & < @*, the directions specified by (251) are imaginary. It fol-
lows that the solutions approaching the singular point O, must spiral
around (o, %). On the other hand, if 1 > & > &*, the directions
specified by (251) are real. Let X, and ¥, denote these two direc-
tions. Then,

¥r, = —3(260 — 1) + V4ar + 40 — 1], (256)
Vi = —3(26 — 1) — Vaar + 40 — 1] (257)

We shall examine in greater detail the behavior of the solutions at
O,. First consider the case @ < @*:
Case I' § < @ < &@* < 1.—Write

2= 2+ 2; 2, = [o(1 — @)]#/2, (258)
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If 5, is sufficiently small, we can write the differential equation (130)
at 2 = 2, + 2, (where 2, — 0), as

y & 4 i — )y~ 6t — &)+ 5) + B+ =05 (250)
or, remembering that z, = [o(1 — )]/, we have
ygzl + (26 — Dy + 2(1 — Dz =0; (260)

or, since y = dz/dt = dz./dt, we can re-write the foregoing as

d*s,
dr

+ (2& — 1) ¢_idzT, + 2(1 — @)z = 0. (261)

The roots of the equation
¢+ (2o—1)g+201—&) =o0 (262)
are imaginary (cf. Eq. [250]) when @ < @*. The roots can be writ-
ten as
—1(20 — 1) £ 3V7 — 46 — 45" . (263)
The solution of (261) can therefore be written as
2 = Aed6a0t cos [V — 40 — 4@ £ + 9], (264)
where A and & are integration constants. Remembering that
& = 2/(n — 1), we verify that

yn: — 22m — 1

7_4“’—4&2:—7:—1)’—’ 2w — 1= (265)
We can now write (264) as
__5Tn 2 —
o= 4 o [YIR =t s] G
Since y = dz/dt = dz,/dt, we have
__5=", —-n Vian: — 220 — I
= —Ae 20—1) { 5 [ t 8
y ¢ 2(n — 1) cos 2(n — 1) + (267)

+V7n’— 22m — 1 o [Vm’— 22n — It+5]}

2(n — 1) 2(n — 1)
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We thus see that the singular point (o, 3,) is approached spirally
as t — =, and, since £ = ¢”¢, approaching the singular point cor-
responds to £ — o.

As ¢ increases by 4(n — 1)m/V'n* — 22n — 1, the representa-
tive point in the (y, z) plane makes a complete revolution, while
the “amplitude’” decreases in the ratio

___2(s—m=

1:e Vmoan— (268)

Again, if for a certain value of ¢, z, = o, then if ¢, increases by
2(n — 1)w/V P — 22m — 1, 2, will again be zero; this means that,
as t — o, z; = o for { asymptotically decreasing geometrically in

the ratio
2(n—1)w

I e_'\/7n=-zzn—: . (269)

As z; becomes successively zero, the y-co-ordinate asymptotically
decreases geometrically in the ratio

__(s—mr

Ite \/7n’-—2zn—x . (270)

Again, since
8 = (Za + z!)e«?l = (za + Z!)E—& 3 (271)

we have, according to (266),

o~ [l

g (272)
5—n \/ 2 __ —
+ C§2=9 cos [%*1 log £ — 8]},

where C is a constant.

From the foregoing it follows that, as £ — o, the solution crosses
the singular solution at points which asymptotically decrease geo-
metrically in the ratio (269), while (as £ — o) the solution becomes
asymptotic to the singular solution

— 1/(n—1)
0, = [%H] E—,/Tf._—,) , (273)

0~ 6, (E = 0) (274)
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Case 2: 1> @ > @*—In this case the roots of the quadratic
equation (262) are real, and we can write for the solution

2 = Aeut + Be~%t, (275)

where —g, and —g¢, are the roots of the equation (262):

g = 326 — 1) + Vi@ + 46 — 7], (276)
g = 326 — 1) — Vaa* + 40 — 1] (277)

From (275) we have
y = —qAde ™ — .Be7%!. (278)

From (275) and (278) we derive

(y + gz = C(y + q:2:)%, (279)

where C is a constant.

If we choose the directions yk,, ¥¥, (cf. Egs. [256] and [257]) at
(o, 2,) to define a new oblique frame of reference and denote by X,
and ¥, the co-ordinates of a point with respect to this new frame
of reference, we obtain, as in § 12,

Y& = CX%; (280)
or by (276) and (277) we have

(26—1)+V 4a*+49—7
Y, = cx(xza—:)—\/4a:+w—7 . (281)

<Z§i>o, =o0. (282)

Hence, all the solutions except one (which corresponds to C =
in [281]) touch the X, axis at (o, z,). A closer examination shows
that this happens as t » . From (275), (276), and (277) it fol-
lows that, since

Hence,

0 = ze® = (3, + 2:)€**, (283)
we have

0 ~ g6 + Aedli-Vatio—li 4 Belli+viati—1lt (1 — @) ; (284)
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or, remembering that £ = ¢7¢, we have

0~ [o(x — @)}er + A B

E foviota | gt 25

as £ — o. The “exceptional” case referred to above, which is tan-
gential to the ¥,-axis at O,, corresponds to B = o in (285). Equa-
tion (285) gives the behavior of the solutions which tend to infinity
as £ — o; these are the M-solutions.

It is now clear from the lemma of § 17 that the arrangement of
the solutions is the same as for the case & > 1, the difference aris-
ing only from the different asymptotic behavior of the M-solu-
tions as £ —o. Instead of (221) and (227) for @ > 1 and & = 1,
respectively, we now have (272) and (285) for 1 < & < @* and
1> @ > &% respectively. Fowler’s theorem, as stated in § 16,
holds good except for (¢), which describes the asymptotic behavior
of the solutions.

19. Case @ = 3, n = 5.—In this case the (y, z) differential equa-
tion
—y—-%z+z5=o (286)

¥y =122 — 34D, (287)

where D is an integration constant. As we have already seen in
§4, D = o leads to the Schuster-Emden integral, and hence in
the (y, z) plane the E-curve is given by

VE =12 — §2S. (288)

This represents a closed symmetrical curve tangential to the lines
y * 32 = o at the origin. The lines y F 1z = o for the case under
consideration (@ = %) define the X- and the Y-directions. The ori-
gin approached along the line y + 3z = o for increasing ¢ corre-
sponds to £ — o in the (£, 6) plane. At the same time, the origin
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approached along the line y = 3z for decreasing ¢ corresponds to
£ — o with 8 —o.
The E-curve intersects the z-axis at

z2(E) = (. (289)

If D in (287) is positive, we get curves (symmetrical about the
z-axis) which lie entirely outside the E-curve and which intersect the
y-axis at the points + V/D. These are the F-solutions. If D is nega-
tive, we obtain closed curves inside the E-curve; these are the M-
solutions. As in the previous cases, the region of the F- and of the
M-solutions are separated by the E-curve. Thus, the Schuster-Em-
den solutions in the (£, 8) plane also form a grid, and the arrange-
ment of the solutions is of the same nature as in the cases already
discussed. The critical curve in the (£, §) plane above which the
solutions are all of the F-character is defined by (cf. Eq. [280])

0= e, (290)

which is the envelope of all the Schuster-Emden integrals (Eq. [59])-
Again, for & = } the singular point is [o, ()4, and the corre-
sponding singular solution is

6, = ()7, (291)

which lies below the critical curve (290).

If we consider the M-solutions in somewhat greater detail, we
see that, as £ — o, the solutions lie below the curve (291), while
with increasing £ they cut the singular solution (291) and rise above
it, and when £ still further increases, they cut the singular solution
again and tend to zero as £ — . Since the value of z is the same
both when ¢ — » and when { —» — =, we have

im £/29 = lim /2. (202)
8 —> o0 8—>o0
tE->o0 £E—> o0

The general run of the curves in the (y, z) plane is illustrated in
Figure 11.
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F16. 10.—The system of isoclinical curves in F16. 11.—The system of isoclinical curves in the
the (y, z) plane for #n = 4. (The diagram is re- (, 2) plane for n = 5. (The diagram is reproduced
produced from Emden’s Gaskugeln.) from Emden’s Gaskugein.)
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20. The case @ < 2 —The lemma proved in § 17 is valid no
longer. This can be seen in the following way:
The equations are

=2 = (= 2@y + i - Dz -, (203)
z= Z—f =y, (294)
Do (- 2a) + oa = G — & ‘;’)z —= (295)
The curve y = o is now given by
(1 — 2@)y = —o(1 — @)z + 2", (295")

and this curve is initially in the lower negative quadrant; it inter-
sects the z-axis at (o, 2,) and tends to infinity in the upper quad-
rant. The signs of ¥ and £ are now as shown in Figure 12.

In contrast to the case @ < %, we can now prove the following
lemma:

LEmMa.—Any solution-curve [y(#), z(¢)] starting at a point y, > o
on the positive y-axis, with increasing ¢, monotonically rises (both
z and y increasing) until it intersects, for a finite ¢, the curve Yy = o.
After crossing this horizontally, the curve monotonically descends
with y decreasing but z still continuing to increase, until it inter-
sects the z-axis at a finite point z > z. After crossing the z-axis
(vertically), it continues to descend, with both y and s decreasing,
until it finally intersects the negative y-axis at a finite point.

Let the initial starting-point be (y, > 0, 0). In the region I both
y and z increase with increasing f, so that the minimum value of y
in this region is y, itself. Hence, from (295) we have

Z—%’ < (1 — 20) + oG — &)= ;D L ) (296)
or
y <30t (= as+ L (207)
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But so long as we are in region I,

— (1 — @)z + z* ) (208)

y >

(1 — 20)

F1c. 12

Equations (297) and (298) are contradictory for large values of z.
Hence, the solution must leave the region considered and for a finite
¢ must intersect the locus y = o. This point of intersection, (y,, 2,),
must have its z-co-ordinate z, greater than z,.
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In the region II, as ¢ continues to increase, y decreases while z
continues to increase. From (295) we have

3yt = (1 — 28) fydz + 3a(z — @)2* — ni -+ C, (299)

where C is a constant. Since y decreases in this region, the maxi-
mum value of y is ¥,, and hence

3y < (1 — 20)yz + Jalr — @)z — njr 2+ 4+ C, (300)

I
which shows that 32 must become negative for a sufficiently large
value of z, i.e., the solution curve cannot avoid the z-axis. Hence,
the solution curve must leave the region considered and cross over
into region ITI. In this region ¥ and z both decrease with increas-
ing ¢; since |y| and |z| are bounded and finite in the region con-
sidered (ITI), the solution can be continued to intersect the y-
axis at a finite nonzero point on the negative y-axis. This proves
the lemma.

The foregoing lemma is of importance because it shows that solu-
tions starting on the positive y-axis avoid both singular points, just
as the solutions starting on the negative y-axis for 1 > & > 3
avoid the two singular points.

Now since the (y, z) curves form a one-parametric family (ex-
cept at the singular points) for sufficiently small values of z, we
should have

¥(z; y0) < ¥z %) (0 <y < ). (301)

We now construct the limit function
yo(s) = lim (35 %) - (302)
Our discussion of § 12 has shown that for & # 1, W;’. have
YX&/t—=® = constant , (303)

where X and ¥ are the co-ordinates of the point with respect to
the frame of reference defined by y = (1 — @)z and y = —&z (the
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X and the Y directions, respectively). Equation (303) shows that
in our case (@ < 3), there can only be (exactly) two solution-
curves passing through the origin, one each in the directions X
and 7.

It is clear that the solution yp(2), as defined in (302), which passes
through the origin, must be tangential to the X-direction or

(D], smo = 1 — @. (304)

We shall call this the “D-solution,” and the corresponding curve
yp(z) the “D-curve.”

Draw the complete D-curve and let this cut the negative y-axis
at y,(D). An examination shows that the D-curve which passes
through the origin in the direction y = (1 — @)z must do this as
t— — o (this arises from the circumstance that, if we trace the
solution from y,(D) “backward” for decreasing ¢, it can tend
toward the singular point O, only as { > — o [or £ > + »]). In
other words, the origin approached along the D-curve in the y =
(1 — &)z direction as y, z— o corresponds to approaching the
“boundary” in the (£, 6) plane. From equation (159) we find that,
as £ —» «, we should have

z=Ber—o (t— — ). (305)

From this it follows that along the solutions in the (8, £) plane which
correspond to the D-curve in the (y, z) plane, we should have asymp-

totically,
B

9"”{ (E— ). (306)
Finally, any D-solution has a zero for a finite value of .

From the lemma it follows that the solutions starting on the nega-
tive y-axis at y, < y,(D) must lie entirely outside the D-curve;
since these solutions intersect the y-axis twice, they correspond in
the (8, £) plane to 6 having two zeros for finite values of £. In other
words, outside the D-curve we have F-solutions.

Now consider a solution which starts on the negative y-axis
for o> vy, > y,(D). Such a solution must remain entirely in
the region bounded by the D-curve and the part of the y-axis
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02 9 2 y.(D). We shall call this region the “O-region.” As we
continue the solutions in the O-region from the negative y-axis for
decreasing ¢, it is clear that, as { — — @, these solutions must ap-
proach one or the other of the two singular points in the O-region.
They cannot, however, approach the origin; the D-curve is the only
one which does this (this follows from Eq. [303]). Hence, the solu-
tions must approach the second singular point (0, 2) as t > — .
The discussion in § 18 of the possible directions at (o, %) NOW
applies; we conclude that, since & < § < @*, the solutions in the
O-region must spiral around the singular point (o, z,). The discus-
sion of the behavior of the spiraling at (o, z,) runs parallel to the dis-
cussion of the spiraling for the case ®* > @ > §; the important dif-
ference, however, is that in the previous case (@* > & > 1) the
singular point is approached as t — + «, while in our present case
(& < 1) the singular point is approached for > — «. In other
words, the solutions in the O-region approach the singular solution

0, = [a(x — &)]*%72, (307)

oscillating as £ — o.

More explicitly, the formulae (266) and (267) are now valid as
they stand, but the interpretation is different: while thent — + o,
now £ — — w. In particular, we have the solution (cf. Eq. [272])

o~ [l

’EZ' e (308)
m: — 221 — 1 _
= [ e -] |

where C and § are constants.

From the foregoing, it follows that, as £— o, the solution
crosses the singular solution 8, at points which asymptotically in-
crease in the ratio

2(n—1)w

11 eVmoan—t, (309)

As £ — o, the difference between 6 and 6, also tends to zero.
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Finally, if we make y,— —o, we obtain the solution passing
through the origin tangential to y + @z = o at O,. This is the E-
curve. This E-curve also spirals around the singular point O, as
§— . In the (£, §) plane this means that a solution belonging to
the family {8.(£)} asymptotically approaches the singular solution
0, oscillating as £ — «. Further, the points of intersection of any
E-solution and the singular solution asymptotically increase geo-
metrically in the ratio (309). The E-solution differs from the other
solutions in the O-region in that a solution belonging to the family
{6(£)} has no zero for any finite value of £, while in general (i.e.,
¥o(D) < ¥, < 0) the O-solution has a zero. We have, incidentally,
shown that configurations with # > 5 all extend to Anfinity. (For
n = 5 we found that the mass of the configuration was finite; but
for » > 5, one can easily show from [308] that —#¢’ — o as
§ — =, and that therefore the mass is also infinite.)

It is now clear that the D-solution separates the region of the
O-solutions and the region of the F-solutions, and hence the D-solu-
tions in the (£, 6) plane form a grid for use in analyzing the other
solutions, just as the E-solutions formed a grid with the necessary
properties for & > 3. The arrangement of the solutions can be
stated in the following way, which is very similar to Fowler’s theo-
rem:

a) Starting-points (£, 6,) are divided into two classes by a criti-
cal curve 6 = z,(D)£%, where z,(D) is the value of z for which the
D-curve in the (y, ) plane intersects the z-axis. The curve

0 = z(D)§® (310)

is the envelope of all the D-solutions. A D-solution has a zero for
a finite £ and, after attaining a maximum, tends to zero monotoni-
cally as £ —> «; and the asymptotic behavior at £ = « is given by

ON?. (311)

All the D-solutions form a homologous family.
b) Any solution f(£) starting at a point (£,, 6,) above the critical
curve (310) is an F-solution with two zeros at finite points.



Fic. 13.—The system of isoclinical curves in the (y, z) piane for # = 6. (The dia-

gram is reproduced from Emden’s Gaskugeln.)
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¢) If the starting-point lies on the critical curve, all the solutions
are F-solutions, except the one which is tangential at its starting-
point to the curve (310); in this case it is a D-solution.

d) If the point (£, 8,) lies below the critical curve (310), two
starting-slopes, 8; = 6;”(D) and 6; = 6;?(D), exist which lead to
D-solutions. Let 6;)(D) > 6;”(D). All solutions corresponding to
8: > 65”(D) and 6; < 6,(D) lead to F-solutions. Slopes between

20(D) and 6;,(D) lead to O-solutions, which are described below.

e) Any O-solution tends asymptotically to the singular solution

6, = [z(n — 3)]1/(n—:) T (312)

(” — I)z Ez/(n—x) ’

as £ — ». The singular solution is, however, approached in an os-
cillating manner, i.e., an O-solution intersects the singular solution
again and again, and, as £ — «, the points at which an O-solution
intersects the singular solution increase asymptotically in a definite
ratio.

f) There exists a special class of O-solutions—the E-solutions—
which form a homologous family, and which are finite at ¢ = o,
and which have, further, df/d¢ = o at £ = 0. Any O-solution
which is not an E-solution has a zero for some finite £.

21. Discussion in the (u, v) plane.—We shall now briefly discuss
the arrangement of the solutions in the (%, v) plane. As has been
already defined in § 8, we have

o 4
u = —Eo—,; = —%- (313)

Further, we saw that « and v satisfy the differential equation
(Eq. [122])

udv _ utv—1 (314)
vdu  u+nv—3° 314

As may be verified easily, the (u, v) variables are related to the
(9, 2) variables according to the relations

3 = £%9 = [uv]/? (6: = i ) , (315)

y = [wvr)e/s — afuvlerz , (316)

I
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The (u, v) variables, first introduced by Milne, have the great
advantage that the positive quadrant (# 2> o, » 2 o) contains only
such parts of the (£, 6) solution which are of astrophysical interest,
i.e., points in the positive (, v) quadrant correspond to 6 2 o,
0 <o.

We shall now consider some general properties of the (x, v) plane.

a) The locus of points at which the solution-curves have hori-
zontal tangents is given by

u+ov=r1. (317)

b) The locus of points at which the solution-curves have vertical
tangents is given by
u+nv=3. (318)

¢) Forn < 3 theloci (317) and (318) do not intersect in the posi-
tive (%, v) quadrant.
d) For n = 3 the loci are

ut+tov=1, u+30=3. (319)

Hence, they both pass through the point (v = 1, # = o) on the
v-axis.
¢) For n > 3 the two loci intersect at the point (u,, ,), which
is easily verified to be
n—3 2

Uy = M Vs =
T n—1’ fTn—1

=a. (320)

This intersection of the two loci, (317) and (318), in the positive
quadrant corresponds to the existence of the proper singular solu-
tion for » > 3:

_ [atn=a)]e0_x
o= =" e, (321)
- 2(n — 3) |V 1
0" - _2[(” —_ I)n-f-x] E(n-H)/(n“x) N (322)

If we form the variables % and v as defined in (313), we readily find

from the foregoing expressions that # and v reduce to %, and v, as
defined by (320).
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f) Let us consider the E-solutions at £ ~ o. It is sufficient to
consider 6,(£), since any other member of the family {6,.(&)} will
lead to the same (, v) curve. As £ — o, we have (Eq. [62])

O =1—+ - ... (E>o0). (323)
From the foregoing, we find
BO~T-FE; GO~ -EEIE ()
Hence, as £ — o,
or
us= S s(i-2e) o), G2
w= -~ (—0). (326)

g =3, WE=o0 (E=0), 327)

for all values of #. At this point the E-curve has a definite slope
determined by

dug , _2m,  due _,
dE 5 g b d£ 35 . (328)
Hence,
i) _ _s
(duE>E=O - 3"’ . (329)

g) Let us consider a solution for # < 5 which starts with a defi-
nite slope on the ¢-axis at £ = £,. According to Fowler’s theorem,
there is exactly one E-solution through the point. All solutions
with starting-slopes below the E-curve are M-solutions, and all
those with starting-slopes above the E-curve are F-solutions.

Given the slope at £;, we can easily form a Taylor series at this
point. From the Lane-Emden equation we have

0 = —6n — go’. (330)
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Since § = o at £ = &, we have

2
g 051 ‘ (331)

Differentiate (330) and set £ = £,. We find

o
0&_

2

&

2
o
0!

o LA (332)

or by (331)
8 = % o, - (333)

The Taylor series in the neighborhood of £, is given by

0w = ¢ — pyeg, + E- B gy EZER gy )

or, using (331) and (333), we obtain

@) = ¢ — 2y, — ETE g+ EE g —

6(¢) = —210,;,[& g E+ (EI; E>z + (E:g E)s +... ] . (336)

Let

-, (335)

or

st/ dg
Wy = _H_I(-d—f>5‘ . (337)

Now the function — £+’ is a homology-invariant function, and,
since the zeros of two members of a homologous family are “corre-
sponding points,” it follows that any homology-invariant function
(and therefore also —£17¢") will have the same value for all the
members of a homologous family at their respective zeros. Since
each homologous family yields only one curve in the (u, v) plane,
and since, further, every member of the homologous family will
have the same value for w,, it is clear that we can choose w, to label
the solution-curves in the (%, v) plane. In particular, the E-curve
will be labeled by the quantity .w, already introduced in §6 (cf.

Eq. [73D)-
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From (336) and (337) we can write

o) ~% (f‘ = 5) E—>6), (338
6'(8) ~ —5“’—+ E—>E). (339)
Hence, we have
u® ~ =57 ~ur (B ) (340)
10l I
v(§) ~ —57 ~ E_ £ (341)

as £ — £,. From (340) and (341) we finally have
U~ Wyt (342)
In other words, as # — 0, v — ®. In particular, along the E-curve
[urr]g ~ ol (u—o0). (343)

Now, from Fowler’s theorem we have (cf. Eq. [231], [232], [233],

and [234])
Uy < oWn < FOy (344)

The M-curves, therefore, lie inside the region bounded by the
E-curve, the v-axis, and the part of the #-axiso < u < 3.

The F-curves, on the other hand, lie entirely outside the E-curve.
Also, when an F-solution attains its maximum in the (6, £) plane
at, say, £, 0, (where &, > o), it is clear from the definitions of the
variables # and v that along the corresponding F-curve, u — «
and v — o. Further, since

uy = —ggnr, (345)

it follows that the F-curves tend to become like rectangular hyper-
bolas when they asymptotically approach the u-axis.

#) Finally, let us consider the behavior of the (u, v) curves near
the point (# = 3,7 = o). Write

=3+ u. (346)



POLYTROPIC AND ISOTHERMAL GAS SPHERES 151

The (%, v) differential equation (314) now takes the form

3+ u, dv 24+ u+v

IR TR e (347)
If %, and v — o, we can write, approximately,
3 _ 2 ‘
v du, nv 4+ u; (348)

A separation of the variables can be effected by the substitution

v=%w. (349)
Equation (348) reduces to
3 :—;‘: = - 1%(3';_3%) , (350)
or
[ﬁ%ﬁ+g]dw+s%=°; (351)
integrating, we find,
(5 + 3nw)*wPuj = constant , (352)
which we write as
(5%: + 3nwu,)*(wu,)’ = constant . (353)

Returning to our variables # and v, we have
v/7[5(u — 3) + 3mv] = constant . (354)

Hence, near # = 3, v = o, the (%, v) curves resemble portions of
generalized hyperbolas asymptotic to the #-axis and the line

s(u —3) +3nv=o0. (355)

We get the F-curves when the constant in (354) is positive, and
the M-curves when it is negative. When the constant is zero, we
get the E-curve represented near (u = 3, v = 0) by its tangent
(355); thus we arrive at our earlier result (cf. Eq. [329]).
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We will now consider a little more carefully the different cases:
1<n<3,n=33<n{n*, n*<n<s n=-s5,and n>s.
The principal question to be considered is the nature of the M-
curves.

Case i: 1 < n < 3.—We have already described the E- and the
F-curves (f, g, and % above). Now, along an M-solution as £ — o,
we have the asymptotic rela-
tion (Eq. [221])

af\l

, (356)

w
o)

and correspondingly, as may
v 2 be verified,

u=o0, v=1. (357)

Hence, the general nature of
the (%, v) curves are as shown

[ 2 3 in Figure 14.
u-> Case ii: n = 3.—According
F16. 14.—The (u, v) curves (n = 1.5) to (225), along an M-curve
we have

y~=2  (y—o, z—0). (358)

From (316) it follows that (as @ = 1 in our present case)

—(uu)¥* = (u?)* — (u2)"/*, (359)
or
ww+ov—1=o0. (360)

But we should also have (Eq. [315])

2= (uv)’* > o as tE—o. (361)

From (360) and (361) it follows that the M-curve tends to (x = o,
v =1)as £—o.
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Hence, the arrangement of the curves is qualitatively the
same as in case i above (cf. Fig. 15).

Case 4ii: 3 <n < n* =
3.18..... —The two loci
u+v=r1andu+n =3
intersect at the point (u,,

v,) (given by Eq. [320])

in the positive quadrant. ¢
As may be verified from
our asymptotic formulae
for the M-solutions for this
case (Eq. [285]), the M-
curves in the (, v) plane
tend to the point (%, ;) in L

[ 2 3
a definite direction. “w->

Case v: n* <n < §5.— Fi6. 15.—The (u, 9) curves (n = 3)
The M-curves now spiral
around the point (u, 2), but the nature of the E- and F-
curves are as before (cf.
Fig. 16).

Case v: n = 5.—As in
the (y, 2) plane, the equa-
tions of the (u, v) curves
can be explicitly given.
From (287) we have

%>
F16. 16.—The (1, v) curves (z = 4) y =145 — 354+ D. (362)

Further, for this case we have (Eqgs. [315] and [316])
z=(un)V+; 3= (w4 - 3. (363)
Substituting (363) in (362), we have

(uos)/ + 32 — s(uw)”/s = 12 — J(wo) + D, (364)
or
(o)’ — () = —}(uo)¥* + D (365)
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Dividing throughout by (#*)*/? and rearranging the terms, we find

that

D
u+3v=3+(—jm. (366)

The Schuster-Emden integrals correspond to D = o; hence for
n = 5 the E-curve is the straight line

u+3v=3. (367)

‘The arrangement of the (u, 2) curves is as shown in Figure 17.

u >

F16. 17.—The (u, 1) curves (n = 3)

Case vi: n > 5.—Now the general nature of the (%, ) curves is
completely different.

F16. 18.—(The (%, v) curves (z = 6)

The E-curve starts at the point # = 3,v = o with a slope —5/3n
and approaches the singular point (%, v,) by spiraling around it.
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The D-curve, as may be verified from. our relation of the be-
havior of these solutions as £ — =, comes from infinity (# = «,
v = o) and joins the point (v = 1, # = 0). The O-curves all lie in-
side the region bounded by the D-curve, the u-axis, and the part
of the v-axis o € v < 1. All these curves approach the point (u,, v,)
by spiraling around it. The F-curves, which lie outside the D-curve,
are of the same general nature as in the previous cases. The gen-
eral nature of the (#, ») curves are as shown in Figure 18. This
concludes our discussion of the Lane-Emden equation.

22. The isothermal gas sphere—We shall now consider an iso-
thermal gas sphere in gravitational equilibrium. We then have

k a
P—(m) T+:3'T“, (368)

where T is assumed to be constant. We can write the foregoing in
the standard form

where, for the case in hand,

k a
K=—7%T; D=-Ts. o
Wi 3 (379)
The equation of equilibrium,
1 d[rdP
et E(; 71—;> = —4rGp, (371)
can be written as
1 df dlogp\
K=o <f ar ) = —47Gp . (372)

Make the substitutions

1/2
p=AeV¥; r= [—K—-] £=af, (373)
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where \ is, for the present, an arbitrary constant. Equation (372)
now reduces to

5 d%(s* 5—?) =ev. (374)

Equation (374), which is our present analogue of the Lane-Emden
equation, must govern the density distribution in any region in
which a relation of the kind (369) is valid. If, however, we consider
a complete isothermal gas sphere (or a configuration in which the
central regions are isothermal), we can choose A to be the central
density, in which case ¢ = o at £ = o. Further, it is clear that
dy/dt must vanish at the origin. Thus, with the normalization
A = p. we must find a solution of (374) which satisfies the boundary
conditions

v=o0, E=o at E=o0. (375)

The structure of the complete isothermal gas sphere can be de-
termined when a solution of (374) satisfying the boundary condi-
tions (375) can be obtained. It does not appear that the equation
(374) can be explicitly integrated, and recourse must be made to
numerical methods. We start the integration by computing the
values of ¢ near £ = o by means of a power series.

Assuming an expansion of the form

V=abf +b 4+ .. .., (376)

we substitute it in the isothermal equation and determine the co-
efficients a, b, ¢, .. .., successively, by equating the coefficients
of the like powers of £. The first three terms of the series are found
to be

V=38 — piebt + adset + ... (377)

A few terms of the foregoing series will enable us to compute ¢ for
£ < 1. For £ > 1 the solution so obtained must be continued by
standard methods. We shall denote this function by ¥(£).

We shall show in § 26 that the complete isothermal gas sphere
extends to infinity. Here we may notice the following formulae for
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the mass, M (£), interior to £ and the mean density, p(£), of the mat-
ter interior to £, which are derived in the same way as the corre-
sponding formulae (Egs. [67], [77]) for the polytropes

ME) = gmarg %‘é—’ (378)

- 3 dy
=a3E,
PO =M% g (379)
Before we proceed to discuss the nature of the function ¥(£) as
£ — « and the general solution ¥(§), we shall consider some con-
venient transformations of the isothermal equation.
23. Transformations of the isothermal equation.—

a) Put
=% (380)
Equation (374) takes the form
- o
b) Put
‘ x = g— (382)

Equation (374) now takes the form

&y _
x4ﬁ =eVv. (383)

¢) We can verify that equation (383) is satisfied by the follow-
ing singular solution:
dys _ _z

e Vs = 227 T e (384)

d) Emden’s transformation.—Because of the existence of the sin-
gular solution (384) we introduce the new variable z defined by

—y=2logx+z. (385)
We find

—_ = ———— —_— = — . (386)
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Equation (383) now takes the form

d*z
dx?

¥—+e&—2=o0. (387)

We can eliminate « from the foregoing equation by the transfor-
mation

I
= - = et . 88
v= (388)
We have
di_ a5 s (#s ds
= ¢ @ dw ¢ <dt’ dt) ’ (389)
and (387) now reduces to
&?z  dz .
o Te2=o. (390)

24. The homology theorem for the isothermal equation.—The iso-
thermal equation admits of a constant of homology quite similar
to the homology properties of the Lane-Emden equation. In our
present case we have: If Y(£) is a solution of the isothermal equation,
then Y(AE) — 2 log A is also a solution of the equation, where A is
an arbitrary constant.

To show this, write

n=Af, Y=y*—2logd. (391)

These transformations lead to an equation in the (¢*, %) variables
which is identical in form with the equation in the (¢, £) variables.
Hence, if f(£) is a solution of the original equation, we can choose
as a solution for,* the function f(n). Returning to our original
variables, we now have

V(&) = ¢*(n) — 2log 4 = f(48) — 21log 4, (392)

while f(£) has already been assumed to be a solution. This proves
the theorem.

From (392) it follows that, if we choose for f(£) the function
¥ (£), then we can derive a whole continuous family of solutions
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which are finite at the origin and which have, further, dy/d¢ = o
at £ = o. We shall denote this family of solutions by {¥(£)} and
refer to them as the “E-solutions.”

As in the case of the Lane-Emden equation, we should be able to
reduce the isothermal equation to one of the first order. The vari-
ables introduced in § 23 (case d) enable us to effect this reduction.

Introduce the variable y defined by

Y=gz (393)

Then

&z _dy _dydz _ dy
ardt diat Vdz (394)

Equation (390) can now be written as

d
yZ—yte—z2=o, (395)

an equation analogous to the (y, z) differential equation we had be-
fore. This reduction to a first-order equation is due to the fact that
the functions y and z are homology invariant. According to equa-
tion (385),

= —y+z2logt. (396)
Hence,
d dzs _ d
y=2§=_5_§=ga‘_§—z. (397)

To show that y and z are homology invariant, we notice that, if
£and £/A are the corresponding points along two solutions ¥ and ¥*
(which can be transformed one into the other by means of a homolo-
gous transformation), then we have

VH(E/A) = Y(§) — 2log 4, (398)

(e = (@) 9
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Using (398) and (399), we can easily show that 5*(£/4) and y*(¢/4)
(defined with respect to the function ¥*) are identical with 2(£)
and y(£) (defined with respect to the function ).

As another example of the reduction of the isothermal equation
to an equation of the first order, let us consider the functions % and v
defined as follows:

u=§—;:; =8, (400)

where we have used ¥’ to denote dy/dt. These functions are easily

seen to be homology invariant, and the first-order equation between
% and v can be obtained as follows: We have

W& TET &V (o)

Since, according to the isothermal equation,

V'=e¥ — §¢' , (402)
we can re-write (401) as
rdu_1f ey &1)
W dETE (3 W= ) (403)
or
1du 1
;—5—2(3—“—‘”)- (404)
Similarly, we find that
Idy 1
;”E—g(“"l)- (405)

u dv % — 1
vau T utv—3° (406)

We shall return to this equation in § 27.
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25. The isothermal E-solutions.—We shall prove that the solutions
of the isothermal equation which are finite at the origin have necessarily
dy/dt =0 at £ =o, and that, consequently, the homologous
family {¥(£)} includes all solutions which are finite at the origin.

Consider the isothermal equation in the form (Eq. [381])

& = g (x = ¥b). (40)
Such solutions W(£) which are finite at £ = o correspond to solu-
tions passing through the origin in the (x, £) plane; as in §9, we
now have
(%), - plmEe=a =, (408)
dE =0 £=o

since x/£ = ¥ is finite at the origin, £ = o; this proves the theorem.

26. The discussion of the isothermal equation in the (y, z) plane.—
The functions y and z as we have defined them are homology-in-
variant functions, and consequently each solution curve in the (y, 2)
plane corresponds to a comiplete homologous family of solutions in
the (£, 6) plane. In particular, there is just one curve in the (v, 2)
plane which corresponds to the E-solutions which are included in
the homologous family {¥(£)}. We shall call the curve which corre-
sponds to the family {¥(£)} the “E-curve” and denote it by y&(2).

To repeat, our equations are

dy

y5;—yte—z2=0, (409)
z2=—y¢+2logk, (410)
y=8'—2. (411)
Further,
d

y=gf-; E=¢et. (412)

From (409) we have

’ 2 + y— €

, (413)
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where we have denoted dy/dz by y'. Substituting for z and y ac-
cording to (410) and (411) in (413), we have

! g2~y
y = E——ﬁ,,/ _S 62 . (414)

We see that the point (o, z,), where
e =2 ; 2, =log 2, (415)
is a singular point of the differential equation (409). There are no
other singular points in the finite part of the (y, z) plane. The exist-
ence of the singular point corresponds to the existence of the singular
solution (384), for by (410) and (415) we have
—¢, =2 — 2log £ = log 232 . (416)
Now the E-curve is characterized by
Yg finite ; Y =o as £—>o0. (417)
From (410), (411), and (417) we have

o> —o; 3> —2, ¥ >0, t> . (418)

Hence, the E-curve touches the line y = —2 asymptotically as
z— — o, On the other hand, we can show that there cannot be
two solution-curves which are both asymptotic to the line y = —2
as z— — «. For, if there were, let ¥ and y* be two different solu-
tions such that

y~=—2, y*~-2, 1o —o. (419)
We may suppose that y < y* as 3 — — o. Then we should have

A=y*—y>o0; lim A =o0. (420)

2> —00
From the differential equation (409) we derive

d__A__ _2—¢€
dz yy*

A (421)
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Hence,
. dlog A . 2 — ¢
z—lalrfoo dz - z»hrzloo [ yy* ’ (422)
or by (419) Jlog A
. 0g _ 1
lim === -1, (423)
or
A ~ constant e~ ¥ (2> —x), (424)

which contradicts our assumption that A—o as 53— —». We
have thus proved the uniqueness of the E-curve.

We shall next examine the behavior of the solution-curves near
the singular point (o, 2z.). Write

2=2+ 8 =32 +log2, (423)
where we now regard z, as small. Equation (409) now reduces to

d
ya—i’;—y-i-ze'r—zzo. {426)
The foregoing equation is exact. Since 3, is now considered small,
we can expand the exponential in a power series and retain only
the first two terms. We have, approximately,

dy - .
Y y+ 2z =o0; (427)

or, since y = dz/dt = dz./dt, we have, instead of (427),

&z dxn .
Ez———dt—+2z.——o. (428)

The general solution of (428) can be written as
2 = Aewt + Bewt, (429)

where A and B are integration constants and ¢, and ¢. are the roots
of the equation

¢—qg+z2=o0, (439)
or

e =% V7. (431)
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The roots are imaginary, and the solution (429) can therefore be
written in the form

Ve
% = Ae'’? cos [—2—7t + 6] s (432)

where d is a constant. We see that (432) is exactly the limiting form
of our earlier equation (264) as @ —o, #— . From (432) we
have

y = ‘fi_ztl = %At [cos (ij+a> — Vg sin (iz-;t+6>] - (433)

We see that the singular point (o, z,) is approached spirally as
t— — o, £— o, The general run of the solution-curves is illus-
trated in Figure 19.

From (410) we have

—y=z—2logt=24 2. (434)
From (425), (432), and (434), we have
—y = 2t 4+ log 2 + Ae"* cos [L:—;t + 5] ; (433)
or, since £ = ¢, we can also write
—y = log = + 21/2 cos [—2—- log & — 6] . (436)
Finally, since
p =NV,

we have for the Law of Density Distribution:
vy
p=)\? {Emcos[;logf—a]} ((— =). (437

Since the exponent tends to zero as £ — «, we can further expand
the exponential and retain only the first two terms. We find in this
way that

p=)\g’;{1+£mcos [\/T;logf—-a]} (- =). (438
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F16. 19.—The isoclinical curves for the isothermal equation in the (y, z) plane. The

diagram is reproduced from Emden’s Gaskugeln.
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From (438) it follows that as £ — « the density distribution ap-
proaches that corresponding to the singular solution, namely,

ps = A 5 (439)

asymptotically. The solution (438) intersects the singular solution
(439) at points which asymptotically increase geometrically in the
ratio

1:e™V7 =1 10.749 . ... . (440)

Equation (432) describes the general behavior of the solutions
near the singular point (o, 2,); hence the law of density distribution
(438) as £ — = is valid quite generally and for the E-solution in

particular.
We have already proved the uniqueness of the E-curve, which, as
we have seen, becomes asymptotic to theliney = —2asz — — o,

t— 4. As ¢ decreases from + o, the E-curve monotonically
rises, intersecting the y-axis at a definite point; at this point we
have, according to (410), ¥ = 2 log £ or p = A/, which is exactly
one-half of the value of p on the singular solution (439) (cf. Fig. 19).
For further decrease in ¢ the solution approaches the singular point
by spiraling around it; after each revolution z.( = z — 2,) and y both
decrease asymptotically in the ratio

1:e"V7 =0.09303 . ... . (441)

The density distribution as £ — «is given by a law of the kind (438).

All solutions other than the E-solution come from y = — «, and,
as ! — =, they again spiral round the singular point. The behavior
of these solutions as z— — @ can also be specified by an appeal
to Hardy’s theorem. For, by an application of Hardy’s theorem to
(409), it follows that we should ultimately have one of the following
three possibilities:

dy . gy dy

370 G gt Go—e). (42
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The first possibility yields the E-curve; the second is clearly im-
possible; hence the only remaining possibility is the third, which
gives

y~z+C (3 —, £—0), (443)
where C, is a constant.

From (412) and (442) we also have

1 dy

ya~r oo iote), (4
or, integrating,

y=—Ce¢ (t—>w,y—>—x), (445)

where C > o is a positive constant. Hence, since y = dz/dt, we
have

= = —Cet (t—> =), (446)

or
2= —Ce + Ci, (447)

where C, is a constant. Remembering that £ = ¢~*, we now have

3= —F+G o). (449)
From (410) and (448), we have, accordingly,
v=clgE+E—C -0 (49)

The corresponding law for the density distribution is given by
PNV =AR LR (E-0), (450)
which can also be written as

p = _g et (C>o0) (§—0), (451)

where A and C are constants. From (4351) it follows that along all
solutions of the isothermal equation except the E-solutions and the
singular solution, p — o as £ — o. However, all the solutions have
the same behavior at infinity; they asymptotically approach the
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singular solution, oscillating with respect to it and intersecting it
at points which asymptotically increase geometrically in the
ratio ¢#"/V7,

27. Discussion of the isothermal equation in the (u, v) plane—We
shall conclude our discussion of the isothermal equation by a brief
description of the solution-curves in the (%, v) plane.

Our variables are

—v
“=§ers v=4, (452)
where # and v satisfy the first-order equation
udv _ __u—1 (453)
vdu u+v—3° 453

a) The locus of points at which the curves have horizontal tan-

gents is given by
u=1, (454)

which is a line parallel to the v-axis.
b) The locus of points at which the curves have vertical tangents

is given by
ut+v=3. (455)

¢) The two loci (454) and (455) intersect at the point
Us = 1, U = 2. (456)

This point of intersection corresponds to the existence of the singu-
lar solution

2 d: s
w-togt; 2, (as7)
or
—¥y
ua=£e¢: =1; Vs = .’=2. (458)

d) Consider the E-solutions at § ~ o. It is sufficient to consider
¥ (%), since any other member of the family {¥(£)} will lead to the
same (u, v) curve. As £ — o, we have, according to equation (377),

V(E) = 38 — tdobt + 1dovts. ... (E—0). (459)
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From the foregoing, we find
YO~ — (Pt — ... (E—0), (460)
V'(§) ~ 3E(x — 148) (E—o0). (461)

Hence, as £ — o,

Ee—\lf 1 g2
UE = 7'\’3(1 — 1%8) (E—-0), (462)

g = £V ~ 3E (£—0). (463)

Therefore, as £ — o, » — 3 and v — o; in other words, the E-curve
passes through the point

ug =3, WwE=0 (£ =0). (464)
At this point the E-curve has a definite slope determined by

dug dve  ,

Tl_E_N—§5; 75—~§£ (—0), (465)
or

d

(3;_2)5_0 - . (466)

It is clear, therefore, that the E-curve starts at the point (u = 3,
» = o) with a negative slope of 5/3 and approaches the point
(u = 1, v = 2) by spiraling
around it (cf. Fig. 20).

¢) All the other solu-
tions also spiral around
this point, and it is clear 4
that along these curves ¢
v—o0 as # — o. This
arises because, as we have
already seen, these solu-
tions correspond to a p
which vanishes at £ =o
and at £ = «,and hence ¢y’
must vanish for some finite £; for this valueof £, v =oand 4 = «.

{) Finally, we may consider the behavior of the (x, ) curves

U >

F16. 20.—The (u, v) curves (n = ®)
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near the point (¥ = 3,2 = 0). Write # = 3 + u,. Equation (453)
can be written as
3tudy _ 24w

7 dux - Uy + 2 . (467)
If %, and v — o, we can write approximately

3dv _ __z

v du, u+ v’ (468)

which is of the same form as (348), an equation which arose in a
similar connection when discussing the Lane-Emden equation. We
therefore have (cf. Eq. [354] and replace # by unity)

v3/%[5(» — 3) + 37] = constant , (469)

Hence, near (# = 3, v = o) the (%, v) curves sesemble portions of
generalized hyperbolas asymptotic to the #-axis and the line

s(u—3)+3v=o0. (470)

When we put the constant in (469) equal to zero, we get the E-curve
represented near (u = 3, v = o) by its tangent (470), thus arriving
at the earlier result (466). This completes our discussion of the poly-
tropic and the isothermal distributions of matter.

28. Composite configurations.—So far we have considered only
complete polytropes. We shall now proceed to a consideration of
composite polytropes, i.e., configurations which consist of different
zones each characterized by a different value of the index #. Thus,
we can consider configurations consisting of a core of a given index
#, surrounded by an envelope of another index #,; in such cases it
is clear that the core will be described by the Lane-Emden function
of index #,, while the envelope will be described by a solution (in
general not an E-solution) of the Lane-Emden equation of index #,.
In this section we shall consider such configurations.

We suppose that we have the equations of state

P = K,plmt)/n: P = K,p(rtn)/n, s (471)

for the envelope and the core, respectively. Further, K, and K, are
assumed to be constants. It can happen that one or both of them
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are “universal” constants. We shall return to this question later,
but for the present we shall formulate the problem in the following
manner:

To construct an equilibrium configuration of a prescribed mass
M and radius R, such that it consists of a polytropic core of index
n, surrounded by a polytropic envelope of index #,, it being further
specified that the envelope is to extend inward to a fraction (1 — ¢)
of the radius, R.

Let us first consider the envelope of index #,. The reduction to
the Lane-Emden equation of index 7, is made by the substitutions
(Egs. [8] and [10])

p = MO P= Kx)‘:+;’ ortr (472)
(m: + DK, ] e .
- [EE PR (473)
Further, we have (Eq. [68])
[l DR )
M(@r) = 47r[ prre M EE) (474)

9 need no longer be the Lane-Emden function, since a solution
which does not extend to the center can have a singularity at the
origin. A, is, for the present, an arbitrary constant and can be ad-
justed to select any particular solution out of a homologous family
i.e., we can regard \, as the constant of homology. Let § have its
zero at £ = &;. Then

- — M] £ 2d_0>

M [ +C A (f E)ece,’ (475)
B (e + D5

R = [——476—"—] Ex . (476)

Eliminating A, between (475) and (476), we obtain (cf. Eq. [74])

_ 1 R
K= [ e TR (e77)
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where, as in equation (337),
__ "’—i:(@ (478)
Ons = ' dE = ’ 4

As we have already pointed out (§ 21, g), w,, can be used to label
the different solution-curves in any plane in which the Lane-Emden
equation reduces to one of the first order.

The problem now is to determine w,, in such a way that the con-
figuration consists of an #,-core occupying a fraction g of the radius.
To do this it is necessary to write down the equations governing
the structure of the core. To avoid confusion we shall use the vari-
ables ¢ and 5 to describe the core. With the substitutions

S
p=2Ng™; P =K\ mgrtt, (479)

.+ DK} 5
r = [(” ;|1-er) ]’7\: ", (480)
we reduce the equation of equilibrium (7) to the Lane-Emden equa-

tion (in ¢ and ) of index #,. Further, we have

ue) =~ SEDRINE (2

In the foregoing equations A, is the constant of homology. Let the
values of the variables at the interface between the core and the
envelope be 0, £, ¢, #. At the interface the values of P, p, 7, and
M(r), given by the two sets of formulae ([472], [473], [474] and [470),
[480], [481]) should be identical. These “equations of fit” are

MO = Npma (482)
+L +X
K\, ™ot = Ko\, ™Mgratt ) (483)

(m + DK 52 [(n,+ DK, |} 52
[T] A E = —‘MT] Ao, (484)

(m + DK RE do_ [(+ DK 52 dg
[P e @ [ e e e



POLYTROPIC AND ISOTHERMAL GAS SPHERES 173

We will now show that we can eliminate the constants of homology
\, and \, and reduce the system to one involving only the homology-
invariant functions » and v. Raise (484) to the third power, multiply
by (482), and divide by (485). We are left with

£ _ ng™
v "¢’ (486)
which can be written as
u(ny; §) = wu(na; m) . (487)

From (482) and (483) we have
K2/ = KA/™¢ . (488)

Divide (485) by the product of (484) and (488). We then have

m+ 0% =+, (480)
which can be written as
(1 + 1)0(n3 £) = Vn; §) = V(g m) = (na + 1)2(na; 1) . (490)
Our equations of fit then are
w(ng §) = ulnsn) ;. Ving & = Ving n), (491)

£ and 1 still referring to the interface.

We will now show how the equations (491) enable us to solve the
problem. In § 21 we have already described the nature of the so-
lution-curves in the (x, v) plane. The solution-curves in our pres-
ent (#, V) plane can be obtained very simply by multiplying the
ordinates in the (%, v) plane by (n + 1). Itis therefore clear that all
the characteristic features of the (#, v) plane are retained in the
(u, V) plane; in particular, the E-curve separates thé region of the
F-curves from the region of the M-curve.

Since the n.-polytropic equilibrium extends to the center we can
choose for ¢ the Lane-Emden function 6., and let N\, denote the
central density. Thus, the [u(n,; ), V(2 n)] curve to be considered
is the E-curve. Now the [u(n.; £), V (n:; £)]= T'», curves form a one-
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parametric family and some (or all) of these will intersect the E(n,)
curve. A point of intersection between the E(x,) curve and any of
the T, curves corresponds to a particular solution of the equations
of fit. On the other hand, each point of a (x, V) curve corresponds
to a definite value of £/£,, where £, defines the corresponding zero
of the solution in the (9, £) plane; the value of £/, on a solution-
curve in the (, V) plane is the same for all members of the homolo-
gous family in the (6, £) plane which it represents. Hence, the point
of intersection between the E(n,) curve and a T's, curve defines the
value £/¢, which defines the fraction ¢. Since this ratio is pre-
scribed, it is clear that only certain of the T',, curves will intersect
the E(n,) curve in such a way that the point of intersection will
define for the #, envelope an extent equal to that specified. We
select, then, each such solution (there can be more than one solu-
tion), and the value of w,, which labels it is the one appropriate for
use in the mass-radius relation (477). This is the procedure to solve
the equations of fit.

After solving the equations of fit in the manner described, it is
readily seen that the configuration becomes determinate.

Let us assume that we have integrations for all solutions of the
Lane-Emden equation of index #, which passes through some fixed
point £, = 1 (say) on the £-axis. A solution of the equations of fit
selects one (or more) of the solutions with certain definite value (or
values) for w,,. This value, substituted in (477), gives K,, and (476)
now determines A;, the homology constant. A knowledge of w,,
K., and \, will determine the structure of the envelope completely,
and in particular the interfacial density p;.

Also, as we have already pointed out, we can choose pe = A,
Then ¢ = 6,, is the Lane-Emden function of index #,. The solu-
tion of the equations of fit provides the value of 7 = £ at the
interface corresponding to the point on the E(n.) curve through
which the appropriate I',, curve passes. Hence, we have

pi = pBE(E™) . (492)

Since p; is already known from the structure of the envelope, p, can
now be determined, thus making the structure determinate.
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The procedure of solving the equations of fit becomes slightly
altered if, instead of the extent (1 — ¢), the constant K is assigned
some definite value. In this case, equation (477) determines wn,
and therefore the particular T',, curve. We must find whether this
T, curve intersects the E(n,) curve. If it does not, then a composite
configuration of the character contemplated is impossible. If, how-
ever, the T, curve intersects the E(n,) curve, then the equations
of fit have a solution and the point of intersection will determine the
fraction of the radius occupied by the core. The following theorem
is-of interest in this connection.

If [u(n,; n), V(n,; n)] corresponds to the E(n,) curve, then the equa-
tions of fit have a solution if, and only if, the nr-envelope is described
by an F- or an M-solution according as n, is less than or greater than
n.. Further, it is assumed that n; < 5, n, < 5, and N; 7 N,.

From our discussion in § 21, it is clear that to prove the foregoing
theorem we have only to show that the E(n,) curve lies entirely be-
low or above the E(n,) curve according as 7, is greater or less than ..

Since the ordinates in the (#, v) plane are increased by the factor
(n + 1) to transform to the (#, V) plane, it is clear that the start-
ing-slope of the E(n) curve is given by (Eq. [329]),

av.
@f = —3(1 +1£;) (493)

Consequently, the E(n,) curve lies initially below the E(n,) curve if

I I
1+ <1+, (494)
or
n > n. (495)

Similarly, the E(n,) curve lies initially above the E(n,) curve if
n, < n.. From our discussion in § 21, it follows that, if #,, n, < s,
then an E(#,) curve lies entirely below (or above) an E(n,) curve if
it lies initially below (or above) it.

Finally, since the M-curves lie entirely below the E-curve while
the F-curves lie entirely above it, it follows that the E(xn,) curve
intersects all the M-curves belonging to #; if #, > n., while the
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E(n.) curve intersects all the F-curves belonging to #, if %, < n,.
This proves the theorem.

For # > 5 the arrangement and the character of the solutions
become different and the enumeration of the different possibilities
becomes more complicated. Nothing new in principle, however,
arises.

BIBLIOGRAPHICAL NOTES

As has been pointed out, the notion of convective equilibrium is due to LorD
KELVIN (Mathematical and Physical Papers, 3, 25 5-260, first published in 1862),
whose investigation may properly be described as the real forerunner of the sub-
sequent studies by Lane, Ritter, and Emden. In view of the fundamental char-
acter of the work of these authors we shall describe in some detail the actual
contributions of each of them.

I. J. HomER LaANE, Admer. J. Sci., 2d ser., so, 57—74, 1869. Lane’s paper,
“On the Theoretical Temperature of the Sun under the Hypothesis of a Gaseous
Mass Maintaining Its Volume by Its Internal Heat and Depending on the Laws
of Gases Known to Terrestrial Experiment,” considers for the first time the
equilibrium of a stellar configuration. It should, however, be pointed out that
the problem of the gravitational equilibrium of a gas sphere is considered only
incidentally and that the “theoretical temperature’ refers to the surface tem-
perature of the sun. Lane’s principal object in his investigation was to determine
the temperature and the density at the surface of the sun. In order to deter-
mine these quantities, he adopts the following procedure. From the value of
the solar constant as known at that time (Herschel and Pouillet’s determina-
tion), he attempts to derive the surface temperature. Stefan’s law was still un-
known (Stefan published his law in 1879), and Lane therefore uses certain ex-
perimental results of Dulong and Petit and of Hopkins on the rate of emission
of radiant energy by heated surfaces. Using the empirical law derived by Hop-
kins, Lane estimates the surface temperature of the sun to be 54,000° F or
30,000° Kelvin. Lane realizes that this estimate depends on a gross extrapola-
tion of the experimental results, but it is interesting to note that, in principle,
his method is not different from modern methods of determining the effective
temperatures from Stefan’s law.

Lane’s next problem is to determine the density corresponding to his derived
surface temperature. To this end he solves the equilibrium of the sun as a whole.
Assuming that the sun is in “convective equilibrium,” according to the then
recent ideas of Lord Kelvin and referring to the work of Clausius, Lane argues
that, because of the “fierce collisions of compound molecules with each other at
the temperatures supposed to exist in the sun’s body, their component atoms
might be torn assunder’” it would be safe to assume for the ratio of the specific
heats the value for a monatomic gas namely v = s/ 3. (Lane also considers,
formally, the case v = 1.4.) The mathematical problem of the equilibrium of
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a configuration under its own gravitation with an underlying law P o« prt(t/n)
is formally solved and the appropriate “Lane-Emden” function numerically
isolated. He gives the graphs of p and T as functions of the radius vector. From
these graphs he finally reads off the value of p corresponding to T' = 30,000°
and obtains p = 0.00036. When the crudeness of the then available data is
considered, Lane’s success in estimating p and T at the surface of the sun isa
remarkable achievement. It may thus be said that his paper has made him the
author not only of the first investigation of the physical conditions in the solar
atmosphere but also of the first investigation on stellar interiors though the
latter was not his primary concern.

Lane’s paper contains no explicit reference to what is generally called “Lane’s
law.” Indeed, he does not consider homologous transformations at all—it was
Ritter who first considered such transformations explicitly; the reason the law
y T(r) = constant (for a uniform expansion or contraction of a gaseous con-
figuration) is called “Lane’s law” is explained in SiMoN NEwcoMmB’s The Remi-
niscences of an Astronomer (1903, Cambridge, Mass., U.S.A.). The following is
an extract from Newcomb’s book (pp. 245-249):

After the paper in question appeared I called Mr. Lane’s attention to the fact that
I did not find any statement of the theorem which he had mentioned to me to be con-
tained in it. He admitted that it was contained in it only émpliedly and proceded to
give me a brief and simple demonstration. So the matter stood until the centennial
year 1876 when Sir William Thomson paid a visit to this country. . . .. Among other
matters I mentioned this law originating with Mr. J. Homer Lane. He did not think
it could be well founded and when I attempted to reproduce Mr. Lane’s verbal demon-
stration I found myself unable to do so. . . .. When I again met Mr. Lane I told him
of my difficulty and asked him to repeat the demonstration. He did so at once and I
sent it off to Sir William. The latter immediately accepted the result and published a
paper on the subject in which the theorem was made public for the first time.

Newcomb concludes:

Altogether T feel it eminently appropriate that his name should be perpetuated by
the theorem of which I have spoken.

Three points of historical interest should be noted: (1) Lane’s interest was
primarily with the solar atmosphere; (2) his interest in the gravitational equilib-
rium of a gaseous configuration was incidental to the main object of his pub-
lished investigation; and, finally (3), Lane must have derived the law asso-
ciated with his name essentially from an argument involving the homology in-
variance of the equilibrium configurations built on the law P o« p#+G/"). In
KELVIN'S paper, Phil. Mag., 22, 287, 1887, the homology theorem (as we have
proved it in § 8) is explicitly proved; and since, further, Kelvin’s paper con-
tains a reference to Lane’s paper and also to a letter from Newcomb, it is clear
that Newcomb’s reference to Kelvin’s paper as making “public for the first
time” Lane’s law must refer to Kelvin’s proof of the homology theorem.

II. A. RITTER. Ritter’s investigations are very remarkable in their range



178 STUDY OF STELLAR STRUCTURE

and depth; through his papers he shows himself to be a pioneer of very great
originality. Unlike Lane, Ritter was primarily interested in the equilibrium of
stellar configurations, and his contribution to the formal mathematical theory
is so great that such aspects of the theory of gaseous configurations built on
the law P o pr+(1/n) ag are commonly known are almost entirely due to Ritter.
It should be noted further that Ritter’s work was all done independently and
without knowledge of Lane’s paper. Ritter’s studies extended over a period of
six years, and his eighteen communications on “Untersuchungen iiber die
Héhe der Atmosphire und die Constitution gasfSrmiger Weltkorper’” presented
to the Wiedemann Annalen during the years 1878-1889 form a classic the value
of which has never been adequately recognized, though Emden refers very en-
thusiastically and at great length to the wealth of material that is contained in
Ritter’s work. The following is a list of Ritter’s papers; the most important of
them are starred (*), and the essential results contained in them are briefly
reviewed.

1. 5, 405, 1878 *8. 11, 332, 1880 14. 17, 332, 1882

*2. 8, 543, 1878 *9. 11, 978, 1880 15. 18, 488, 1883

*3. 6,135, 1878 10. 12, 445, 1881 *16. 20, 137, 1883

4. 7, 304, 1879 11. 13, 360, 1881 *17. 20, 897, 1883

*s5, *6. 8, 157, 1880 12. 14, 610, 1881 18. 20, g10, 1883

7. 10, 130, 1880 *13. 16, 166, 1882

In (2) the uniform expansion and contraction of gaseous configurations are
considered, and Lane’s law (independently of Lane) explicitly proved. The cos-
mogenetic equation of state is here defined, and what we have called “Ritter’s
theorem” (chap. ii) is also proved in this paper.

In (3) the fundamental differential equation for # = 2.44 is established, and
the appropriate “Lane-Emden” function obtained. This paper also contains the
derivation of the Helmholtz-Kelvin time scale (cr. chap. xii).

In (5) and (6) the equation @ = —3fPdV is obtained (his Eq. [186]) and
what we have called “Ritter’s relation,” namely,

T o3(v—1n)

is also obtained (his Eq. [190]). In this paper the adiabatic pulsation of a gas
sphere is considered for the first time, and the fundamental result is proved
that (v = 4/3) separates the configurations which are stable (v > 4/3) from
those which are unstable (v < 4/3). Ritter also proves the important result
that the period of oscillation of a gas sphere is inversely proportional to the
square root of its mean density. It should be noted that Ritter develops the
theory of pulsating configurations with a definite view toward a theory for the
variable stars.

In (8) Ritter establishes (explicitly for the first time) the fundamental differ-
ential equation governing the structure of gaseous configurations with an under-
lying law P o« pr+/n), His equation (295) is what we have called the “Lane-
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Emden” equation, though it should have been more appropriate to have called
it the “Lane-Ritter” equation. The “Lane-Emden” functions for n = 1, 1.5,
2, 2.44, 3, and 4 are obtained—for # = 1, he uses 8 = sin £/ This paper also
contains proofs of the important formulae

g 3 GM. ___y Gm
’ T (sv—6) R

s—n R
Ritter also discusses the importance of the case n = s.

In () Ritter considers composite configurations consisting of incompressible
cores and gaseous envelopes. In this connection Ritter draws attention to the
importance of the solutions of the fundamental differential equation other than
those which are finite at the origin. In particular he uses the general solution
0 = A sin (¢ — 8)/& when considering the case # = 1. Ritter was thus not
only the first to consider composite configurations but also the first to recognize
the importance of solutions which have a singularity at the origin.

In (13) Ritter considers the isothermal gas sphere and isolates the singular
solution e—¥ = 2/g. In this paper he also proves the integral theorems which
are referred to in the bibliographical note for chapter iii.

In (16) and (17) what is generally called the “‘giant-dwarf” theory of stellar
evolution was originated and considered for the first time.

From this very brief and inadequate summary of the important results that
are contained in Ritter’s papers, it should be clear that almost the entire founda-
tion for the mathematical theory of stellar structure was laid by him. His
papers contain, in addition, discussions of a variety of both stellar and meteoro-
logical phenomena which are beyond the scope of our present note.

11I. Lorp KELvIN. It is somewhat surprising that twenty-five years should
have elapsed before Lord Kelvin applied his idea of convective equilibrium to
the study of gaseous configurations. His paper in the Philosophical Magazine in
1887, to which we have already referred several times, is still of interest because
of the very short space in which he (independently of his predecessors) derived
many of the essential results. It is interesting to recall that Kelvin’s interest
in the problem “of the equilibrium of a gas under its own gravitation only”
originated in a question set by P. G. Tait in an examination paper (Ferguson
Scholarship Examination, Glasgow, October 2, 1885). Tait’s question reads:

Assuming Boyle’s Law for all pressures form the equation for the equilibrium-density
at any distance from the centre of a spherical attracting mass, placed in an infinite
space filled originally with air. Find the special integral which depends on a power of
the distance from the centre of the sphere alone.

In his 1887 paper Lord Kelvin promises a further paper, but actually he re-
turned to the subject only twenty years later in his posthumous paper on “The
Problem of a Spherical Gaseous Nebula” (Collected Papers, 5, 254-283), which
appeared in 1go8. This last paper contains an extremely attractive summary of
the state of the subject prior to the publication of Emden’s book. Finally, it
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may be noted that an appendix to Kelvin’s paper by G. Green contains fairly
accurate tables of the “Homer Lane” functions; actually, Emden has a slight
priority over Green.

IV. Among the early works published prior to the publication of Emden’s
book, reference should be made to the following papers.

1. E. ZoLLNER, Uber die stabititit kosmischer M assen, Leipzig, 1871. Zollner
appears to have been the first to consider the equilibrium of an isothermal gas
sphere and isolate the singular solution e™¥ = 2/£, Zgliner, however, draws
a number of wrong conclusions on the basis of this singular solution.

2. M. TaIesEN, Uber die Verbreitung der Atmosphire, Berlin, 1878. This
paper is not available to the writer, but from references to it in the literature
it appears that Thiesen treated the problem of an isothermal gas sphere very
powerfully, and that he was aware of the oscillating nature of the general solu-
tion about the singular solution.

3. E. BErT1, Nuovo cim., 7, 26, 1880. Betti seems to have been the first to
discover the expressions for the potential and the internal energies for a poly-
trope, though his priority over Ritter is only very slight.

4. A. SCHUSTER, Brit. Assoc. Rept., p. 427, 1883. The Lane-Emden function
for n = 5 is obtained.

5. G. W. Hivx, Collected Papers, p. 125, 1888. The isothermal gas sphere is
considered. Hill does not seem to have been aware of the existence of either
Ritter’s or Thiesen’s work.

6. G. H. DARWIN, Collected Papers, 4, 362, first published in 188¢. The cases
n = 3/2 and n = o are considered, and many of Ritter’s results are used.

7. P. Rupzki, B.A., 19, 134, 1902. Homologous transformations are intro-
duced as a general notion.

8. T.J. J. SEE, A.N., 169, 322, 1905. In this paper the starting series for the
function 65/, including the first eleven terms, is given. This series enables See
to compute 63/, up to the boundary.

V. R. EupEN. The publication of Emden’s Gaskugeln marks the end of the
first epoch in the study of stellar configurations. Emden’s book not only system-
atizes the earlier work but also contains a fair proportion of new results and a
wealth of material, including accurate and extensive tables of the necessary func-
tions. This is not the place to describe the contents of Emden’s book, but we
may refer specifically to such parts of the analysis contained in our chapter iv
which are due to Emden. They are:

1. The use of the (y, z) variables introduced in § 3. Indeed, Emden was the
first to reduce the equation to one of the first order.

2. The discovery of the explicit formula for 6;, independently of Schuster.

3. The discussion givenin §§ g, 10, 11, and 12, and also the discussion in §13,
leading up to the two lemmas which in the form given are due to E. Horr,
M.N., o1, 653, 1931. These lemmas without rigorous proofs are already implicit
in Emden’s book (chap. xiii), and Emden himself uses them.
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4. The analysis in § 14, and in particular the discovery of the behavior
0 ~C/kforn<zas§—o.

5. Emden was fully aware of the fact that the E-solutions form a ‘“grid,”
though the explicit theorem is due to R. H. Fowler.

6. The analysis in § 18. In particular, Emden was the first to isolate the
critical role which # = 3.18767 (Eq. [255]) plays in the subsequent discussion.

7. The discovery of the behavior near the origin of the general solutions for
3 < n < 5. In particular, equations (272) and (28s), which describe the be-
havior of @ as £ — o.

8. The analysis of § 19.

9. Thebehavior of the general solutionsas§ — w fors < # < = .

10. The use of the (y, 3) variables in § 24 for the isothermal gas sphere and
the behavior of the general solution as £ — .

1t is thus seen that Emden’s own investigations in this field have consisted
almost entirely in the discussion of the general solutions; this aspect of his in-
vestigations has never been adequately recognized. Though there are a great
number of references to Gaskugeln in the literature, it is unfortunate that what
are generally associated with Emden’s name have been derived by the earlier in-
vestigators. This is stated, not with a view to minimizing the value of Emden’s
very great work, but only to draw attention to the fundamental character of his
own original contributions.

A fairly good idea as to what is new and original in Emden’s book can be
obtained by a comparison of Kelvin’s posthumous paper (already referred to)
with a review of Emden’s book by K. Schwarzschild, V.J.S., 43, 26-55, 1908.

VI. Recent work.—Recent work has consisted almost entirely in the redis-
covery of a part of Emden’s work, and we shall not attempt to give a complete
bibliography. We shall, however, refer to such investigations as have been in-
corporated in our chapter.

1. R. H. FowLER. M.N., o1, 63, 1930; Quart. J. Math. (“Oxford Series”), 2,
259, 1031; also Quart. J. Math., 45, 289, 1914. Fowler’s work is the most im-
portant of the recent investigations. Its importance lies not so much in the
discovery of new results as in the mathematical rigor with which even known
results are obtained. He obtains the behavior of the general solution for # = 3
as £ — o. Fowler also explicitly states the grid properties of the E-solutions
and gives an enumeration of the arrangement of the general solutions somewhat
more complete than Emden’s. Finally, his work brings out the importance of
Hardy’s theorem for the discussion of the differential equations which are of
astrophysical importance. Fowler’s discussion also includes differential equa-
tions which are somewhat more general than Emden’s, but these are beyond the
scope of the present chapter.

2. E. HopF, M.N., o1, 653, 1932. The lemmas given in § 13 are proved
here. Hopf considers only 1 < # £ 3.
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3. E. A. M1LNE, M.N ., 91, 4, 1930; 92, 610, 1932. In these papers Milne in-
troduces the variables # and v, which are particularly suited for the discussion
of composite configurations. His method is largely used in § 28.

4. S. CHANDRASEKHAR. The author has included in this chapter several of
his results on the Lane-Emden equation. The discussion in §§ 17 and 20,
where Hopf’s methods are generalized to cover the cases # > 3, is mostly new.
The D-solutions with the behavior § ~ C/£ as £ - « are isolated here for the
first time, as are also the grid properties of these D-solutions. The complete dis-
cussion in the (%, v) plane (§ 21), the introduction of the («, v) variables for the
isothermal gas sphere (§ 24), most of the discussion of §§ 25 and 26 [with the
exception of the part dealing with the derivation of equation (438) describing
the behavior =¥ as £ — =, which is due to Emden], and the results contained
in § 27 are all new.

5. H. N. RusseELy, M.N., 91, 741, 1031.

6. N. FaircLoUGH, M.N., 91, 62, 1030; 92, 644, 1932; 95, 585, 1935. These
papers contain the tabulation of the general solutions for » = 3 and n = 3/2.



CHAPTER V

THE THEORY OF RADIATION AND THE
EQUATIONS OF EQUILIBRIUM

We have already shown in chapter ii, by an application of the
laws of thermodynamics, that the energy density u of black-body
radiation at temperature T is proportional to the fourth power of the
temperature (Stefan’s law). In this chapter we shall be concerned
with a further discussion of radiation problems and the bearing of
these problems upon an understanding of the physical conditions
that could be encountered in stellar interiors.

1. Fundamental notions and definitions.—We shall begin with a
few definitions:

@) The specific intensity of radiation at a given point, P, and in a
given direction.—Let do be an arbitrarily chosen small element of
surface containing the point P. At a given instant of time there will
be rays® traversing this element in all the different directions. Let
us consider a specific direction—say the s-direction. Through every
point of do construct cones abutting on do having axes parallel to
the s-direction with solid angles at the apex all equal to a definite
infinitesimal amount dw. These cones define a semi-infinite volume
in the form of a truncated cone.? The energy in the form of radiation
traversing the element of area do and in the semi-infinite volume
defined, during an interval of time d¢, can be written as

I cos 6 dodwdt , (1)

where 6 is the angle which the s-direction makes with the normal
to do. The quantity I, thus introduced, depends naturally on the
position of the point P, the direction s, and (if the state is nonsta-
tionary) on the time . I is said to define the specific intensity of ra-
diation at the point P and in the prescribed direction.

A radiation field is said to be isotropic if I depends only on the

* In the language of geometrical optics.

2 The construction used here is said to define a “pencil of radiation.”

183
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position of the point P and is independent of direction at P; if,
further, I is independent of the position of the point P as well, then
the radiation field is said to be homogeneous and isotropic.

The s-direction can be completely specified by the angle 8(c <
6 < m), which we have already defined, and the ‘“azimuth” ¢
(0 € ¢ < 2m). The element of solid angle dw, defined by the ranges

(6,6 + d6) and (¢, ¢ + do), is
dw = sin 0 d0d¢ ; (2)
and the expression for the energy traversing the area do in the di-

rections confined by element of solid angle dw (9, 8 + df; ¢, ¢ + do)
during a time d¢ is, then

I sin 6 cos 0 dédedodt . (3)

b) The flux of radiation—The total amount of radiant energy
traversing the surface element do from one side to another, expressed
in terms of unit area and unit time, can be written as

27 x/2
F, =f f I sin 6 cos 6 dodo . (1)

In the same way, the amount of radiant energy traversing do in
the opposite direction, expressed also in terms of unit area and unit
time, is given by

F_ = —f f]sinocosodadq&. (s)
o /2

The net flux of radiation, F, across do per unit area and unit time is,
therefore,

F=F,—F_, (6)

or by (4) and (s)
F=j'f’rlsin0cosf)d0d¢, n

or, again, by (2)
F =T cos 0 dw, ®

where the integral is extended over the complete sphere.
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If we consider a Cartesian system of co-ordinates, (X, ¥, Z), and
denote by F.,, F,, and F, the net fluxes at a point across elements of
surfaces normal to the directions X, ¥, and Z, respectively, then we
should have

F.= flldo; Fy,= fImdo; F.= [Indo, (9)

where I is the specific intensity at the point under consideration
and in the direction specified by the direction cosines /, m, and #.
If we consider the flux across any surface dg, the normal to which has
the direction cosines I,, m,, and #,, then we should have

Fi,m,n = {I(x,9, 2,1, mn)cosydo, (10)

where ¢ is the angle between the direction (/, m, ) and the direc-
tion (I,, m., #.); hence,

cosy = U + mm; + nn, . (11)
By (9), (10), and (11) we now have
P‘ll,mx,nx = lle+mey+ﬂze. (IZ)

In other words, we can regard the flux as a projection of a vector
which has the components F,, F,, and F. in the three principal di-
rections.

¢) Distribution in the frequency of radiation.—The specific inten-
sity which is related to the total energy radiated in a certain direc-
tion can be further divided into the intensities of the radiations in
the different frequencies which travel independently of one another.
If we consider an infinitesimal interval (v, » + d»), then the specific
intensity I, is so defined that the total energy in the frequency in-
terval (v, » 4 d») which crosses an element of area do in a direction
making an angle 8 with the normal to do and in an element of solid
angle dw, is, during a time d¢,

I, cos ¢ dodwdidy . (13)

Strictly speaking, we can never consider a rigorously monochromatic
pencil of radiation. It is always necessary to consider a nonzero,
though infinitesimal, frequency interval.
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From our definitions it follows that

f Lav=1. (14)

We shall refer to I as the “integrated intensity,” in contrast to the
monochromatic intensity, I,.

In the general theory of radiation we have to distinguish, further,
the different states of polarization of the radiation, but in the appli-
cations that we shall consider it is not necessary to go into these
finer details.

d) The amount of radiant energy flowing from one element of surface
to another element of surface.—As the treatment of this problem is
the same for the integrated intensity, I, as for the monochromatic
intensity, I,, we shall explicitly consider only the former case.

Let do and do’ be the two elements of surface surrounding the
points P and P’, respectively. Let r be the distance between P
and P’. Further, let PP’ make angles 8 and ¢’ to the directions of
the normals to do and do’ at P and P’, respectively. Finally, let
I be the specific intensity at P in the direction PP’

In free space the energy which traverses the element do in time
dt and which also traverses do’ is, according to our definition of

intensity,
dE = I cos 0 dodwdt , (15)

where dw is the solid angle which the element do’ makes at P. This
is seen to be

do =250 (x6)
From (15) and (16) we have
4 ’
dE = 1 8 0 cos 0’ dodo . (x7)

r2

An immediate corollary of the foregoing result (17) is that the spe-
cific intensity is constant along the path of any ray in free space.

For, if dE’ is the energy which traverses the element d¢’ and
which also traverses the element do, then, according to (17),

, cos 8’ cos 0 do’do
rZ

dE' =T dt, (18)
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where I’ is now the intensity at P’ in the direction PP’. But it is

clear that
dE = dE’'. (19)

Comparing (17) and (18), we see that I = I’; we thus have

4 ’
cos 0 cos 8’ dodo @

dE =dE =1 >

(20)
We see that equation (20) is symmetrical between the unprimed
and the primed quantities and exhibits in this sense a certain reci-
procity; equation (20) is in fact a special case of a more general
reciprocity theorem.

¢) The energy density of radiation at a given point.—The energy
density, u, of the integrated radiation at a given point is the amount
of radiant energy per unit volume which is in course of transit, per
unit time, in the neighborhood of the point considered.

Consider a point P, and construct around it an infinitesimal ele-
ment of volume v, the bounding surface of which we shall denote
by . We shall further restrict the surface o to be convex every-
where. To allow for all the radiation traversing v, we surround o
by another convex surface = such that the linear dimensions of Z are
large compared with the linear dimensions of ¢; nevertheless, we can
arrange, at the same time that the volume element inclosed by Z is
still so sufficiently small, that we can regard the intensity in a given
direction as the same for all the points inside Z.

Now, all the radiation traversing the element » must have crossed
some element of the surface Z. Let dZ be such an element. The
energy flowing across dZ which also flows across an element do of ¢
per unit time is; according to (20),

I c_qﬂw_;w , (21)
where 6 and © are the angles which the normals to do and dZ
make with the radius vector » which connects the two elements. Let!
be the length traversed by the pencil of radiation considered through
the volume element ». The radiation incident on do will have trav-
ersed the element in time [/¢, where ¢ is the velocity of light.
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Hence, the contribution to the total amount of radiant energy in
course of transit through the volume element v by the pencil of
radiation considered is

cos 6 cos © dedZ !

I 2
r c

(22)

But the volume dv, intercepted by the pencil of radiation from the

element 9, is
dv =1 cos 0ds. (23)

Hence, we can write (22) as

d
1= 4o, (24)
where
s O dT
dw = E"_rT_ (25)

is the element of solid angle subtended by d% at P. Therefore, the
total energy in course of transit through the volume element v by
radiation from all directions is

% f f Idvdw =1; Idw, (26)

where the integration with respect to w is extended over the whole

sphere. Hence,
u = -CI-fI dw , (27)

since the energy density is expressed in terms of unit volume.
We can similarly define the energy density %,dv of the radiation
in a specified frequency interval (v, v + dv). We have, as before,

u,=£f[.du; u=f #dy . (28)
(2 (-]

If the radiation is isotropic,

u..=t—rl,,; =271, (20)
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f) The emission coefficient—Let us consider a small element of
mass m which is radiating. Let us further consider the radiation
emitted in the directions specified by an element of solid angle dw
and in a definite frequency interval (v, » 4 d»). The amount of ra-
diant energy emitted in the element of solid angle in time d and in
the frequency interval (v, v 4 dv) can be written as

jomdwdtdy . (30)

The quantity 7,, thus introduced, is called the “emission coefficient
for frequency ».” It should be remarked that, even if the element of
mass is isotropic, it does not necessarily follow that the emission of
radiation takes place uniformly in all directions. As we shall see
presently, a further necessary condition for the emission of radiation
to be uniform in all directions is that the element of radiating mass
should itself be in an isotropic field of radiation.

1 we consider the emission in a definite frequency »,m, correspond-
ing to a quantum transition between two definite states, m and #, of
the atoms forming the medium (the states need not be discrete
states), then, according to the Bohr frequency condition,

hom = En — Enm (31)

where E, and E,, are the corresponding energies of the two stationary
states. Emission in the frequency v.. takes place because in a given
instant of time there will be a certain number of atoms in the excited
state #, and when these atoms jump to the state m, they will emit
quanta of energy hv... Quantitatively, the emission of radiation in
the frequency .. is determined by the Einstein coefficients A4 ,.» and
B.n of spontaneous and induced emission, respectively. These
coefficients are defined as follows: The probability that in an in-
terval of time df an atom in the excited state 7 emits a quantum
of energy hv.., in the directions confined to an element of solid
angle dw and in the absence of an external field of radiation, is
A,mdwdt. This spontaneous emission takes place uniformly in all
directions. The probability of the emission of a quantum /v, is in-
creased if the atom in the state » is exposed to a field of radiation of
frequency v... We take account of this induced emission by intro-
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ducing the coefficient B,; it is defined in such a way that the prob-
ability that an excited atom in state # is stimulated by an external
field of radiation to emit a quantum /v, in the directions specified
by an element of solid angle dw, in time dt, is given by

Bunly , dwdt , (32)

where I, is the intensity of the radiation of frequency v.. at the
point where the atom is located and in the direction defined by dw.
The expression (32) for the probability of induced emission arises
because the emission of radiation induced by a given pencil of radi-
ation takes place in exactly the same direction as the incident pencil.
Hence, the total probability per unit time of induced emission is

BunfI,, dw . (33)

Thus, the total emission of energy by one single atom in the state
» per unit time is given by

#mlaT Anm + Bam[ 1, dw] . (34)

Finally, if there are N, atoms per unit volume in the state %, we
have

. N,
]y”mdw = _P_ [A am + BnmL’“m]h"nmd"’ ) (35)

where p is the density. From (35) we see that an element of mass
radiates uniformly in all directions only if it is in an isotropic field of
radiation.

The total emission in all directions per gram of material is given by

. N, dw]
v 'd = - Anm Bnm Iv - h nm o 6
f] nm e 4w P [ + f nm 4T v (3 )

g The absorption coefficient.—A pencil of radiation traversing a
medium will be weakened by absorption. If the specific intensity
I, of radiation at frequency » becomes I, 4 dI, after it has traversed
a medium of thickness ds, we can write

dl, = —xplds . @37
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It should be remarked that I, + dI, is the intensity of the emergent
radiation which is in phase with the incident radiation. The quan-
tity , so introduced is defined as the “mass absorption coefficient”
for radiation of frequency ».

From (37) we find, on integration, that

L(s) = L(o)e k™™ (38)

where I,(s) is the intensity after the radiation has traversed a length
s of the medium. Equation (38) is generally written in the form

L(s) = L,(o)e™™, (39)

s
T =f %pds . (40)
o

The quantity r, is called the “optical depth” of the material trav-
ersed to radiation of frequency v. :

If we consider the case of absorption between two stationary
states # and m as in section f above, then the absorption of radiation
of frequency v, arises from the excitation of the atoms from the
lower state m to the higher state n. We express this quantitatively
in terms of the Einstein coefficient of absorption, B, defined in
such a way that the probability of an atom in the state m, exposed
to radiation of frequency ¥am, absorbing a quantum hv,n in time d¢,
is given by

where

BunfI,, do dt, (41)

where the integral is extended over the complete sphere. The rela-
tion of the coefficient B, to the mass absorption coefficient «,,,, is
easily seen to be (cf., sec. /, below)

N
K”mn = '—p" anhvnm 1) (42)

where N, is the number of atoms in unit volume in the state m and
p is the density.

k) Total absorption.—Consider a small element of mass m which
is exposed to a field of radiation. Then in order to calculate the
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total absorption of radiant energy in the frequency » per unit time,
we inclose the element of mass by a larger surface = outside the
bounding surface of m which we denote by o; the linear dimensions
of o are taken to be much smaller than those of =. Then, proceeding
as in the calculation for the energy density, we have for the amount
of energy traversing an element of surface dZ of 2 in unit time, and
which is incident on an element do of the bounding surface of m,

I cos 6 cos O dodZ dv, (43)

rz
where we have used the same notation as in section ¢ above. Of the
amount of energy (43), the amount absorbed by"the element of
mass is obtained by multiplying (43) by «.pl, where I is the length
intercepted in m by the pencil of radiation under consideration.
Hence, the amount of energy absorbed per unit time from the pencil
of radiation under consideration is

cos 0 cos O dodZ

I, —_— wpldv = k,[.dwdmdy , (24)
where
dm = pl cos 0 do (45)
and
cos 6 d2
dw = —7— . (46)

Hence, the total energy absorbed is obtained by integrating (44)
over m and w. We thus find that

mmdufl»dw ' (47)

specifies the amount of energy absorbed by the element of mass con-
sidered from the radiation field in the frequency interval (v, » + dv).

i) The pressure of radiation.—The existence of light pressure fol-
lows from Maxwell’s electromagnetic theory of light. It also follows
from the quantum theory, according to which a quantum of energy
hv is associated with a momentum &v/c (where ¢ is the velocity of
light) in its direction of propagation. From this it follows that ra-
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diant energy of amount E traversing a medium in a specific direc-
tion carries with it a momentum E/c, the momentum exerted being
in the same direction as the pencil of radiation.

To calculate the pressure of radiation at a given point P, we have
to consider the net rate of transfer of momentum normal to an ar-
bitrarily chosen element of surface do containing P.

If we consider radiation of frequency » as incident on the surface
do and making an angle § with the normal to do, the amount of
radiant energy in the frequency interval (v, v + d»), traversing
do in directions specified by an element of solid angle dw in time d¢, is

1, cos 8 dwdvdadt . (48)

This amount of radiant energy carries with it the momentum
% I, cos 0 dwdvdodt (49)

in the direction of I,. Hence, the normal component of the momen-
tum transferred across do by the pencil of radiation under consider-
ation is

-;— dodt I, cos? 0 dw dv . (50)

Therefore, the net transfer of momentum across do by the radiation
in the frequency interval (v, v + dv) is

dodt % f I, cos® 0 dw dv , (s1)

where the integration is to be carried over the complete sphere.
Since the pressure at a point P is defined as the net rate of transfer
of momentum normal to an arbitrarily chosen infinitesimal element
of surface containing P and expressed in terms of unit area, we can
write for the pressure [p,(v)dv] due to radiation in the frequency
interval (v, v + dv):

p6) =1 f ) f "1, cos? 0 sin 6 d6de . (52)
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If the radiation is isotropic, we have
L O . 4
pr(v) =2xI,- | cos*@sindd =+~ I, . (53)
¢ Jo 3c

Comparing this with (29), we have

2:(v) = }u, . (54)

We can define the integrated radiation pressure, p,, due to radiation
in all the frequencies, by

pr= j p-(w)dv, (55)
or by (52)
pr=

S -

fI cos® 0 dw , (56)

where I now defines the integrated intensity. For isotropic radia-

tion we have )
pr=1u, (s7)

a result we have already used in chapter ii, § 11, to derive Stefan’s
law.

7) The pressure tensor—Let us consider an element of surface
normal to the X-direction. The rate of transfer of the x-component
of the momentum across the element of surface (per unit area) by
the radiation confined to an element of solid angle dw, about a di-
rection whose direction cosines are I, m, and #, is

% Tdo 1. (58)

(We are considering integrated radiation but the treatment is
equally valid for monochromatic radiation; we need only to replace
I by I,dv.) The total rate of transfer of the x-momentum across the
element per unit area is, then,

-z- f IFde . (59)
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The foregoing quantity defines the x-component of the pressure ex-
erted across the element under consideration. We write it as pa
(strictly speaking, we should have a suffix 7 for radiation, but this
would unnecessarily burden the notation).

In the same way, the y- and the z-components of the pressure
across the element of surface considered are

Pay = %f[lmdw ; Pzz = %fllndw . (60)

Similarly, by considering elements of surface normal to the ¥- and
the Z-directions, we can define the further sets of quantities (py,
by, Dve) and (Pus, pu, P-:). The nine quantities we have thus de-
fined are said to form the “stress tensor’’:

baz = f f Pdw;  pu= % f Imde ;  pu = % f Iinde

by = EfImldw C b= f (Imzdw S = %f[mndw, (61)

p,,=§f1nzdw; p,,,=§fznmdw; p,,=§f1n=dw.

We see that

Py = Pz 3 Pz = Pz ; Pyvz: = Doy ; (62)

in other words, the tensor is symmetrical. The mean pressure 3 is
defined by

; = 5(pzz + P + D) (63)

From (61) it follows (since * + m* + n* = 1) that

I
=% Idw = 3u, (64)

)

a relation which is generally true.
If the radiation is isotropic, we have

; = Paz = Py = P = ju (65)
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and
Pry = Py =0 Pz = Pz = 0 Py: = py=0. (66)

Whenever relations (65) and (66) are true, we say that the stress
tensor reduces to a simple hydrostatic pressure.

There is another simple case in which the system of stresses (61)
reduces to a simple hydrostatic pressure, namely when

n=0cQ
I=L+3 > zIaga,‘l“mBn" , (67)
(a+ﬁ+"-r==[2n+!)
where I, and the “coefficients” I.g, are all arbitrary functions of
position only. The triple summation in (67) is extended over all
possible sets (a, 8, ¥ > o) such that a + 8 4 v is odd. From (67)
and (61) it follows that

T
Pz = Puy = P = ;4‘6“ Io; poy = pyz = 0 ; etc. (68)

k) The mechanical force exerted by radiation.—To determine the
mechanical force exerted by radiation, consider a thin cylinder of
cross-section do and length ds in the direction normal to do.

The amount of radiant energy in the frequency interval (»,
v + dv) incident on do, in the directions specified by an element of
solid angle dw, about a direction making an angle § with the s-di-
rection, and in unit time, is

1, cos 0 dodwdy . (69)
The amount of this energy which is absorbed in the cylinder is
1, cos 6 dodwdv x.p sec 0 ds , (70)

since sec 8 ds is the length of the path intercepted in the cylinder by
the pencil of radiation under consideration.? The amount of momen-
tum thus communicated in the direction of I, is obtained by divid-
ing (71) by the velocity of light, ¢. The normal component of the

3 For the validity of (71) (to the first order) it is necessary to assume that ds is of
a higher order of smallness than do. This assumption is also made in § 1 (k) and § 2.
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momentum thus communicated to the cylinder by the pencil of
radiation under consideration is given by

I, cos 8 dodwdy x.p sec @ ds% cos 9. (71)

To obtain the normal force per unit area, we have to divide the fore-
going by do. Finally, integrating over all the directions of the in-
cident radiation, we obtain for the mechanical force per unit area of
a cylindrical slab of thickness ds:

K'stfly cos 8 dw dv . (72)

The foregoing force per unit area in the s-direction, on the cylindri-
cal slab considered, arises from absorption.

We shall now examine the possibility of there beingsome additional
mechanical force arising from emission. The spontaneous emission
which takes place uniformly in all directions will not give any net
resultant force. On the other hand, the induced emission which takes
place in exactly the same direction as the incident stimulating radia-
tion will give a net resultant if the incident field of radiation is not
isotropic. From equation (32), which gives the atomic probability
of induced emission, we obtain for the normal component of mo-
mentum communicated to the cylinder by the emission induced by
the pencil of radiation defined in (70) the expression

——% Bumhvumly,, dvdw pdcrds% cos 0 Wam =v). (73)
We have the negative sign in (73) because the emission takes place
in the forward direction and corresponds to a loss of momentum by
the infinitesimal cylindrical slab considered.

Using (42) for our definition of the absorption coefficient and in-
tegrating (73) over all the directions, we obtain for the normal force
per unit area on the slab considered and in the s-direction:

N1Bum 1 _
o N B pds ;fl,. cos 0 dwdv (vam = 7). (74)
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Combining (72) and (74), we have for the net normal force per unit
area acting in the s-direction on a cylindrical slab of thickness ds:

o (v~ T2m) ts B)r Gun=2), (9
where F,(v)dv is the net flux of radiation in the frequency interval
(v, v + dv) in the s-direction.

I) The equation of transfer—Consider a small cylinder of cross-
section do and length ds normal to do. Let I, be the intensity of the
radiation of frequency » on one face of the cylinder and in the s-di-
rection. Let the intensity emergent through the second face in the
same direction be I, -+ d/,. The amount of radiant energy travers-
ing do in an interval of time d¢ and in directions confined to an ele-
ment of solid angle dw about the s-direction is I,dvdwdadt. Of this,
the amount of energy «,pds I,dvdwdadi is absorbed by the cylinder.

Let 7, be the coefficient of emission. The mass of the material
inside the cylinder is pdods; hence, the amount of radiant energy
emitted by this element of mass in the frequency interval (v, v + dv)
and in directions confined to the element of solid angle dw is

pdads j.dwdvdt . (76)
Therefore, if the state is steady, we should have
dl,dvdwdodt = pj.dvdwdedtds — pk.1,dvdwdedids , C2))
or
al, .
pdS = ]v - Kva . (78)

The foregoing equation is generally referred to as the “equation of
transfer.” Of course, we have to consider I, as a function of posi-
tion and of direction; if it is necessary to refer to this explicitly, we
may write

Iy = I”(x’ y’ z; l} m) n) ? (79)
where the direction cosines (I, m, n) refer to the direction we are
considering. In a Cartesian system of co-ordinates we can write the
equation of transfer in the form

) 9 9\y, = i —
(15; + ma_.y + n;’)—z>L = pjy — pxly . (80)
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In terms of the Einstein coefficients introduced in (f) and (g), we
can write the equation of transfer (78) in the form (cf. Eqgs. [35]
and [42])

dI"nm

ds = Nn(Anm + BnmIrmn)hV'nm - NmBmuhVnmIvnm 5 (81)

or
dIvﬂm
ds

_ _ NuBum
= NoAnomhVom — NuBunlvmn (I Nman) L, - (82)

2. The thermodynamics of radiation.—We shall now investigate in
some detail the properties of radiation fields in systems adiabati-
cally inclosed. We shall first consider the case of a homogeneous
isotropic medium which, since we assume it to be adiabatically in-
closed, must be characterized by the same temperature T' through-
out the medium. If we restrict ourselves to regions sufficiently dis-
tant from the walls of the inclosure, it is clear from considerations
of symmetry that in such regions the radiation field must be homo-
geneous and isotropic. In other words, the specific intensity I, of
y-radiation must be independent of the position and the direction of
the ray. From the equation of transfer (78) it follows immediate-

ly that
jv = KVI v . (83)

In other words, the ratio of the emission to the absorption coefficient for
the radiation of frequency v in the interior of a homogeneous isotropic
medium adiabatically inclosed is equal to the specific intensity of the
radiation for frequency v. This is one of Kirchhoff’s laws of radia-
tion.

Tf we express the emission and the absorption coefficients in terms
of the Einstein coefficients as we have done in equations (35) and
(42), we obtain from (83)

No[dwm + Bunls,,) = NuBuals,, ; (84)
or, solving for I, , we have )
NaAun |

I (8s)

nm = NmBnm - Nanm,
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which can also be written as

Apm 1
Lun = B, (e - (86)
N.B..) 1

Kirchhoff’s law in the form we have now derived is stated only
for those regions of the medium which are very far from the walls
of the inclosure, since it is only in these regions that we can derive
the homogeneity and the isotropy of the radiation field. It is, how-
ever, relatively simple to remove this restriction and to show that
I, has the value j,/«, for all directions and all points arbitra ily near
the walls of the inclosure. For, in an adiabatic inclosure, every pencil
of radiation must be characterized by the same value for I, as the
pencil of radiation traveling in the opposite direction, since other-
wise there would be a unidirectional transport of energy. Hence, a
pencil of radiation emergent from an element of the surface on the
walls of the inclosure must be characterized by the same value for
1, as the pencil traveling in the opposite direction and coming from
the interior of the medium. An immediate consequence of this re-
sult is that the state of the radiation is the same on the surface of the
walls of the inclosure as in the interior. This result is also due to
Kirchhofi.

We have thus shown that the specific intensity, I,, of radiation
of frequency » in an isotropic homogeneous medium adiabatically
inclosed depends only on the temperature and the nature of the me-
dium. We will now show, following Kirchhoff, that I, does not also
depend on the nature of the medium.

For this purpose consider a small element of mass dm in the form
of an infinitesimal cylinder of cross-section do and height ds normal
to do. Let p be the density of the material, so that dm = pdods.
Let the element dm be at the center of a hollow spherical reflector
of unit radius which has, at the opposite ends of a diameter, two
small equal infinitesimal openings of area w; as the notation implies,
we assume that do is very small compared to w. Let the whole sys-
tem be adiabatically inclosed by an inclosure the inner surface of
which is “perfectly absorbing” while the outer surface is a “perfect
reflector.” We shall further suppose that the inclosure is completely
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evacuated, so that a pencil of radiation is not weakened by absorp-

tion except when it strikes the element of mass dm, or the spherical

reflector (the outer surface of

which is also perfectly absorb-

ing), or the inner walls of the in-

closure itself. Finally, let the

whole system considered be at s

temperature T (see Fig. 21). %22
Since the radiation field inside

the inclosure is isotropic, it follows

from our remarks in § 1 (f) that

the element of mass dm will radiate Fo. 21

energy uniformly in all directions.

Let j, be the emission coefficient. The energy radiated by dm in

unit time through each of the infinitesimal openings w in the fre-

quency interval (v, v + dv) is

Jowwdmdy = pj.wdedsdy . 87

The energy emitted by dm in all the other directions is reflected at
the inner surface of the spherical mirror and, after repeated reflec-
tions, will again be incident on dm; it will thus be reabsorbed eventu-
ally by dm.

Now the walls of the inclosure radiate toward the interior only
since the outer surface is a perfect reflector. Part of the energy emit-
ted by the walls passes through the two openings on the outer sur-
face of the spherical inclosure containing dm, strikes the element
dm, and is partially absorbed. The elements of surface of the walls,
=, and Z,, which are accessible to the element dm have the areas

i r

Z:=mw; 2,=€05—92w, (88)

where 7, and r, are the distances of dm from Z; and Z,, respective-
ly, and ©, and O, are the angles which the normals to the elements
2, and Z, respectively make with the direction r which connects
the middle point of do and w.
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Now the total energy of »-radiation emitted by the element 2,
which is incident on do per unit time, is, according to equation (17),

BY cos 4 c0526, Z.do d

£

v, (89)

where B is the specific intensity of the »-radiation emergent from
2, in the direction making an angle O, to its normal, and 6 is the
angle which the normal to do makes with the direction ». By (88)
we can write, instead of (89), '

B cos 8 wdody . (g0)
The amount of this energy absorbed by the element dm is given by

B{Y) cos 0 wdodv xp sec 8 ds = k,pBwdodsdy , (o1)

In the same way, the amount of energy absorbed by dm in unit
time from the total radiant energy of »-radiation emitted by =, and
incident on do is given by

xpBP wdadsdy | (92)

where B{* is the specific intensity of the y-radiation emitted by
2, in a direction making an angle 6, with its normal. Hence, the
total amount of energy absorbed by dm in unit time from the »-ra-
diation is given by

kp(BSY + B wdodsdy . (93)

Now, since the system is in a steady state, the energy emitted by
the element through the two openings must be equal to (93). From
(87) and (93) we have

(B + B{?) = 2j,. (94)

The foregoing equation remains unaltered if the walls of the inclosure
are deformed, thus varying the angles 8, and 6,. It follows, then,

that
BY = B® =B,, (95)
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or the intensity of the radiation emergent from a black surface is inde-
pendent of the direction of the radiation. We can now write (g94) as

KB, = jv . (96)

If different black surfaces are taken for the inner surfaces of the
walls of the inclosure while the element dm is kept unchanged, it
follows that B, remains constant. In other words, the intensity 1, of
the radiation emitted by a black surface is independent of its nature
and is o function only of the temperature. Finally, comparing (96)
with (83), we see that I, = B,. We have thus proved: The ratio
j»/ &, of the emission to the absorption coefficient of any body in thermo-
dynamical equilibrium depends on the temperature only and is inde-
pendent of the nature of the body; further, ju/ ks s equal to the specific
intensity B, of the v-radiation emitted by a black surface. This is Kirch-
hoff’s law in its complete form.

Thus we have shown that B, = j,/x is a universal function of
temperature and frequency. About this function B, thermody-
namics makes one important prediction. The energy density, %, of
radiation in an adiabatic inclosure at temperature T is, according
to equation (29),

u= “C—Tf Bidy ; (97)
and by Stefan’s law (proved in chap. ii) we have
u = i} f B.dv = aT*. (98)

Hence, if we denote by B the integrated black-body intensity, we
have

® ac
B(T) = j: B,(T)dv = - T+. (99)
For the integrated intensity, B, it is customary to write
=974, =% ’
B=-T¢ o . (99"

¢ is called the “radiation constant.”
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We shall not go into the details of the derivation of the function
B,(T) at this place; the derivation is given in chapter x on the basis
of the quantum statistics. We note here that the quantum theory
predicts for B,(T") the expression

2hv3 1
BAT) =~ womr— » (100)

where % is the Planck constant and # is the Boltzmann constant.
Equation (100) expresses the well-known Planck law, and the ex-
pression for B,(T) is often referred to as the “Planck function.”
Comparing (86) and (100), we see that in thermodynamical equi-
librium we should have
Anm _ 2M, N..Byn

— ph /6T
Bnm ¢ Nanm = e ) (IOI)

Finally, we obscrve that Planck’s law enables us to evaluate the
radiation constant ¢ and the Stefan-Boltzmann constant a in terms
of the fundamental constants #, ¢, and k. For

* 2h (° widy
B(T) = <£ B»(T)dl/ = F'{; W 5 (102)
or, writing x = kv/kT, we have
2h (RT\* (® x3dx
B(T) = 27 <7l—>j, e’_—-_r . (103)
Now,
f ezﬂixl = f wer 1+ et e+ ..., (104)
or, integrating term by term, we obtain for the integral, the series
1 I 1 e
6<I+-2—4+37‘+;‘+.>=;g (105)
Hence, we have
B(T) = 2™ 1 (106)

15¢%43
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Comparing this with (99’), we obtain

_ emtk _ 8mtke
T oisehs’ = 1ok

(107)

3. Local thermodynamic equilibrium.—The thermodynamical the-
ory of radiation described in the previous section is valid only when
the system is adiabatically inclosed, and, as a result, when all parts
of the system are at the same temperature. Nevertheless, we often
encounter physical systems which, though they cannot be described
as being in rigorous thermodynamical equilibrium, may yet permit
the introduction of a temperature T to describe the local properties
of the system to a very high degree of accuracy. The interior of a
star, if in a steady and static state, is a case in point. For, even if
the temperature at the center of the sun, for instance, were 10® de-
grees, the mean temperature gradient would correspond to a change
of only 6 degrees in the temperature over a distance of 1o* cm.
This fact, coupled with a probably high value for the stellar ab-
sorption coefficient, enables us to ascribe a temperature T at each
point P such that the properties of an element of mass in the neigh-
borhood of P are the same as if it were adiabatically inclosed in
an inclosure at a temperature T. Under these circumstances we shall
say that the material in the neighborhood of the point P is in “local
thermodynamical equilibrium.” In particular, if x, and j, are the
coefficients of absorption and emission of an element of mass, we

should have
j» = xB(T), (108)

where B,(7) is the Planck function and T is the local temperature.
In using the foregoing equation, we have to remember that 7, will
depend on the incident intensity of the radiation in the frequency
interval (», v + dv) (cf. § 1 [f]). It is therefore more convenient to
use, instead of (108), the equivalent relations (Eq. {101]) between
the Einstein coefficients:

Anm - 2hV}nm . NmB"m
Bom T NoBum

= eMam/tT (100)

where T is the local temperature.
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Let us now examine the steady-state set up in a medium in a
static condition and which is in local thermodynamical equilibrium;
this type of equilibrium was first studied by Schwarzschild.

Consider the equation of transfer in the form (cf. Eq. [82])

dI"nm NnA nthmn Nmanlanm Nann
= — I— 55— )L . (110)
pds P P NwBmn) = 7m

Introduce the absorption coefficient k. as defined in equation (42):

NmanhVnm
Ky = ———2 (111)
P

We can write

N, _ Aum NuBam

—p- AphVnm = K, Bu N.B..' (112)
or by (109)

3
Na Avnm = K 2hvam ¢ Mnm /T (113)

nm 62
Hence, we can write the equation of transfer in the form

dI"nm 2hv3,,

—h kT — gt/ kT
pds = um c? ¢ rnm! K"nm(I € nm )I"nm‘ (114)

Suppressing the suffixes # and m and remembering that

h 3
B,,, = 22 (franltT — 1), (115)

=B, —«l,, (116)

where
K, = k(1 — /Ty (x17)

It will now be clear why we did not take the equation of transfer

in the form
dar,

pds 7"

— w1, (118)
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and simply insert for j, the Kirchhoff expression (108); the reason
is that 7,, which includes the induced emission, is in general not a
scalar but depends on the incident intensity I,. Butin the form (116)
we have allowed for the induced emission by reducing «, by the ap-
propriate factor [1 — exp (—hv/kT)]. The equation of transfer in
the form (116), with «, defined as in (117), is due to Rosseland.

4. The equation of radiative equilibrium and the solution of the
equation of tramsfer for the far interior—We shall now solve (116)
under the circumstances applicable to the interior of a star. For this
purpose consider a medium which is in a static state and which ex-
tends (for all practical purposes) to infinity in all directions. Let us
further assume that the material is in local thermodynamical equilib-
rium. We shall suppose that a gram of material generates per unit
time an amount of energy e,dv by processes of an irreversible char-
acter. (We shall refer to e,dv as the “heat liberated,” including in this
term the net gain of heat per unit mass by an element of mass by
“convection,”® “conduction,” and finally by the internal energy
converted into heat. Under the last item we include the [subatomic]
energy sources of a star.)

Now the total spontaneous emission per gram per unit time by an
element of mass at temperature T is

4mx,B,(T) . (119)

The total absorption, less the total induced emission, is given by

(cf. Eqgs. [33] and [47])
x,',f[ Ldw . (120)

Hence, the excess of emission over absorption, given by
xﬁf(B,, — 1)dw, (121)

must, in a steady state, equal the heat liberated, ¢. Hence, the con-
dition for a steady state is

& [(B, — I)dw = ¢, . (122)
The foregoing equation is generally referred to as the “equation of

radiative equilibrium.”

4 This term is used loosely.
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We shall now write the equation of transfer (116) in a Cartesian
system of co-ordinates:

9 ad i) ’
<15;c+m6_y+”5> I, =xp(B, - 1,). (123)

Multiply (123) by dw and integrate over the complete sphere. By
(122) the right-hand side reduces to ¢,p. Hence, by equation (o),
which defines the flux components F,, F,, and F., we have

dF.(v) -

dF.(v) , oF,(»)
ax + ay + aZ vP » (124)
or
divF, = ep. (125)

Equation (125) is simply a statement of the conservation of energy.

Now multiply the equation of transfer successively by ldw, mdw,
and ndw, and integrate over the complete sphere. By the definitions
for the components of the stress tensor (Eq. [61]) we have

apzz(”) aP:y(") apu(”) i _ﬁg
dx ,+ dy T ¥z ¢ O (126)
ua(v) | 3t | 0p() _ _Kip
aw tToy T . BB, (x27)
ap,,(v) 61?;,,(1') apzz(") _ _"x,:p
Fp + 6y + 92 = T Fz(”) ) (I28)
or ,
div p, = —% F,. (129)
We shall now proceed to solve the equation of transfer. Let
™= fx' . K, pds ; ds = ldx + mdy 4 ndz , (130)
%oy Yo, %o

the integral being taken from a fixed point (x,, ¥, z) and in the
direction (I, m, n). The solution of the equation of transfer can be
written as

I(%o, Yo, 205 8, m, n) = j B.(—7)e v dr, . (131)
o
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The physical meaning of (131) is: The specific intensity at a given
point and in a given direction is simply the sum of the contributions
of the emission due to all the elements of mass behind (i.e., in the
direction negative to the one defined) the point under consideration,
after allowance has been made for the weakening of the separate
pencils of radiation from the different elements of mass, owing to

the appropriate amounts of intercepting material.

We assume that we can expand B,(—t,) as a Taylor series. We
shall retain only the first three terms in the Taylor expansion, and
we shall presently verify that this is sufficient for a high degree of

accuracy. Hence, we write

dB.,

d’B,
Bv(—’rv) = Bv(o) - Ty —‘E

- .
dr?

+

Inserting the foregoing in (131), we have

dB, d*B,
I(%0, Yoy 205 1, m, n) = By(0) = (d’r») =0 + (d‘r2 ) ’

Now
dB, 1 dB, 1 0B, aB, 0B,
dr, Kp ds _xﬁp[l ox Tom dy T Bz]’
or
(115” = - grad, B,

In the same way,

B, 1 , 9 (1 4B
-l > (G %)

I, mn

or

(132)

(133)

(134)

(135)

(136)

(x37)
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Instead of (133) we can now write
I, = B, — - grad, B, + — rad(—I—radB) (138)
TT T e B S T gk | o grade By ) 13

Inserting the foregoing in the equation of radiative equilibrium, we
have

&p = f { grad, B, — grad, (é grad, B,)} dw . (139)
Since
flmdw = fmndw = fnldw =0 (140)
and
fl’dw = fm’dw = fn’dw = '—431, (141)

we have by (139), (134), (136), (140), and (141)

_ 4T i(LO_B»
“P =73 ~ 9x \K;p 32 /"

%,

(142)

From (138), (139), and (142) it follows that the ratio of the succes-
sive terms in (138) are of the order of magnitude

€ €
E ~ B’ (143)

where e is the total amount of heat liberated in all the frequencies;
B, the integrated Planck intensity; and k, a mean absorption coeffi-
cient. Now in the interior of a star e ~ 100 ergs per gram per sec-
ond, k ~ 100 gm™* cm? and T ~ 10° degrees. Hence, the ratio of
the successive terms in the expansion is of the order of magnitude

100

g
100 X — X 10%
m

~ 107, (144)

Therefore for all practical purposes it would be sufficient to write

1
I, =B, — e grad, B, . (143)
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From the foregoing it follows that

Uy = éf].,dw = 477'- B., (146)
u=fu,.dv=4-clB=4—;-T4=aT4, (147)
Pzz(y) = PW(V) = Pzz(l’) = Pr(l’) = ;jEer, (148)

and
pn(?) = pus(v) = p(v) = 0. (149)

In other words, the stress tensor reduces to a simple hydrostatic
pressure. From (126), (148), and (149) (or more directly from f145])
we now have

aBV an
F.() = =27  R0) = -5
3k,p Ox 3k,p 0y (150)
F ( ) _ 4T an 5
T T 3dp 6z
or
_ 4T __c
F, = W grad B, P grad p.(») . (151)
Finally, we have the exact relation (Eq. [125])
divF, = ep. (152)

Equations (151) and (152) are the fundamental equations of the
problem.

We shall next consider the equation for the integrated flux. From
the first of the equations in (150) we have

_ had _ 4T wi aB.
F, —J: F.(v)dv = 30, K ox dv, (153)

or

4T ®1 8B, , 0T

F¢= 30). IZ&T dl’g. (154)




212 STUDY OF STELLAR STRUCTURE

We now define the coefficient of opacity, «, by

1 (*aB, ®1 4B,
;-J; T dv = j‘: K_,', 3T dv . (Iss)
Equation (154) can now be written as
o = 47 (T9B., 4 0B
F. = 3:<p‘1> x b = 3kp Ox ' (x56)

where B is now the integrated Planck intensity. Similarly, if F, and
F, are the integrated fluxes in the ¥- and the Z-directions, we have

_4r 3B = _4% 9B
= FR=—EZ (x57)
Thus,
- AT = -
F = 57 grad B s grad p,, (158)

where p, is the radiation pressure §aT*. Thus for the integrated
flux we have an equation of exactly the same form as (151), pro-
vided we average (x,)™* over the frequencies suitably. According
to (155), the coefficient of opacity, «, is a sort of harmonic mean of

x,. Explicitly,
© Vsezhv/lcT hy d
1)y w(FT = 1) k1=

K (T weiT ’
ho KT dv
o (eM/*T — 1)2 kT

(159)

where we have substituted the Planck function B, in (155). The
formula (159) for « is due to Rosseland, and for this reason « is also

called the ‘“Rosseland mean absorption coefficient.”
Equation (152) in the integrated form can be written as

divF =¢p, (160)

where e is the total amount of heat energy liberated by unit mass in
unit time over the whole frequency interval (o0 € v £ ).
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For a spherically symmetrical distribution of matter, equations
(151), (158), and (160) take the simpler forms

_ < ()
FT(V) - K,,,P dr ) (161)
__c4d,
F, = o dr (3aT9), (162)
and
1d
GP—;%(’ Fr)) (163)

where F,(v) and F, are the monochromatic and the integrated fluxes,
respectively, across elements of surface normal to the direction of
the radius vector 7.

5. The equations of hydrostatic equilibrium.—Consider a thin
cylinder of unit cross-section and height ds in the direction (I, m, n).
By equations (75), (309), and (117) the mechanical force exerted
by radiation on the cylinder in the frequency interval (v, v + dv)
in the s-direction is ‘

MF;_(_VW_K ds . (164)
By (151) this can be written as
— grad p.(v) - ds. (165)

Hence, the mechanical force exerted by radiation in all the fre-
quencies is obtained by integrating (165) over all the frequencies.
By Stefan’s law we then have

— grad (3aT¥) - ds. (166)

On the other hand, if p, is the gas pressure, then this material
pressure gradient would exert a further mechanical force on the
cylinder considered of amount

— grad p, - ds. (x67)
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Let V be the gravitational potential. For hydrostatic equilibrium
we should have

grad (3aT4 + p,) = —pgrad V. (168)

For a spherically symmetrical distribution of matter (cf. Eq. [7], iii)
equation (168) is equivalent to

d GM

& (0 + dary = GO (169)
The other equations of equilibrium are equations (158) and (160);
for a spherically symmetrical distribution of matter the appropriate
equations are (162) and (163). When these equations are used, the

quantity L(r), which is the net amount of energy crossing a spherical
surface of radius r, is generally introduced instead of F,. Then,

_ L
F, = et (170)
In terms of L(r) equations (162) and (163) take the forms
d L
5 Gy = —20), (x71)
and
dL
% = 47rp . (172)

Equations (169), (171), and (172) are the equations of equilibrium
for a star in radiative equilibrium.
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CHAPTER VI
GASEOUS STARS

In the last chapter we showed that the equation of hydrostatic
equilibrium of a spherically symmetrical distribution of matter in
radiative equilibrium is
GM(r

r=( ) ,

L ot 1) = - , )

where p, is the gas pressure, p,(= §aT*) is the radiation pres-
sure, and the rest of the symbols have their usual meanings. If the
stellar material is a perfect gas, we can write

P=pﬂ+p,=l-%pT+%aT4. (2)

The radiative temperature gradient is determined by (cf. Eqgs. [171]
and [172], v)

dp. _ «L(r)
dr T qmer (3)
and
dL(r) = anripedr . (4)

In discussing the structure of model gaseous stars in radiative equi-
librium, we have to exercise considerable care, inasmuch as we do
not, as yet, know the exact dependence of € on p and 7.

In this chapter we shall attempt a first discussion of the equations
of equilibrium for a gaseous star in radiative equilibrium. The prob-
lem of the “stability” of the radiative temperature gradient will
also be considered.

We shall begin our discussion by proving a few integral theorems
on the radiative equilibrium of a gaseous star.

1. Integral theorems on the radiative equilibrium of a star.~—Divid-
ing equation (3) by equation (1), we have

dpr _ KL(')
P = 4xeGM(r) (s)

216
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We introduce the quantity 7, defined by

L
,- V0 ®

M

where L is the luminosity of the star. As defined in this manner, ¢
is the ratio of the average rate of liberation of (“the heat”) energy
€(r) interior to the point 7, to the corresponding average ¢ for the
whole star:

=2 )
From (7) it follows that
2R =1; =23, ®

in an obvious notation. Inserting (6) in (5), we have

dpr L
dP ~ 4wcGM - (9)

Integrating the foregoing equation from 7 = 7 to 7 = R and using
the boundary condition p, = o at r = R, we have

L P
pr = WJ; kndP . (IO)

Following Stromgren, we now define the average value xn(r) by
_ 1 (*
kn(r) = ?ﬁ xkndP . (11)
(In writing equation [11] we have used the boundary condition

that P = o at r = R.) Hence, we can re-write (10) as

L

P = ml)ﬁ(f) . (12)

Let
pr=G0—BP; p,=p8P. (13)
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Then by (12) and (13)

w(r) = ‘&Mg___ﬁ_). (14)

We have thus proved the following theorem due to Strémgren.
THEOREM 1.—Te ratio of the radiation pressure to the total pres-
sure ab a point inside a star in radialive equilibrium is proporiional
lo the average value of kv for the regions exterior to the point r, the aver-
age being taken with respect to dP, where P is the lotal pressure.
As a particular case of (14) we have

_ 41I’CGM(I - Br)
B kn

L , (15)
where k7 now defines the average value for the whole star. Equa-
tion (15), which is an exact equation, is a formula for the luminosity,
L, of a star in terms of its mass, M, and an average value of k5. We
shall refer to equations (14) and (15) as the luminosity formulae.
Sometimes it is useful to have an equation similar to (15) but which
involves an average value of (1 — f) instead of the value of (1 — 8)
at the center. A formula of this kind can be obtained as follows:
Write equation (10) in the form

L P
(I - ﬂ)P = mﬁ K’I]dP . (16)

Multiply both sides of the equation by P%dP and integrate from o
to P.. We then have

1 P, L P, P
7+ 2£ (1 — B)d(P+) = 41rcGM_£ P"L/; m]dP]dP. (x7)

Integrating the right-hand side by parts, we obtain

1 Pe
[ - paee)
L {_Pg+x P,

8)
- e R T +1 } <
T 4mcGM q+ 1) kndP g+ 1 j; kPP g
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Define the following averages:

=B = 3 f " — gdEmy, (10)
1 [P
R = 3 ). xnd(P") . (20)

In terms of these averages equation (18) can now be written as

TR - L (1T I &
TP = g (L2 — s Fiem) s (a0

which is the required formula. If ¢ = o, we have, as a special case
of the foregoing,

_ awcGM (1 — B).

27 — K72

L (22)

THEOREM 2.—If ¥7(x) decreases outward from the center in a star
in radiative equilibrium, then (1 — B) must also decrease outward from
the center.

This is an immediate consequence of equation (14).

The following theorems, 3 and 4, are due to Chandrasekhar.

THEOREM 3.—In a wholly gaseous configuration in radiative equi-
Librium in which the mean density p(r) inside r does not increase out-
ward, we have

g 4TCM = BY) (23)

L

where B* satisfies the quartic equation

O (G e =

Proof: Since we have assumed that the mean density does not in-
crease outward, we can apply Theorem 7 of chapter iii, according
to which

1 —B. <1 — B%, (25)
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where 8* satisfies equation (24) and is determined uniquely by the
mass M. Combining (25) with the luminosity formula (15), we ob-
tain

L

—_ — Q¥
_ 4mcGM K_(_; B.) < 4mcGM ,é,—: 8*) ’ (26)
which is the required result.
THEOREM 4.—In a wholly gaseous configuration in which the mean
density p(r) inside r and the rate of liberation of energy € do not increase
outward, we have

Eg‘%___ﬁ*)’ (27)

where K is a mean opacity coefficient defined by

K= 1%; P (28)
and where the equality sign in (27) is possible only when € is a constant
throughout the configuration.

Proof: This is an immediate consequence of Theorem 3 above.
For, if € decreases outward, then (= €(r)/€) must also decrease
outward, and consequently the minimum value of 7 is unity. Hence,

2R, (29)

where, according to (11), the opacity & is to be defined as in (28)
above. The equality sign in (29) is possible only when n = con-
stant = 1, that is, when €(r) = € = ¢ = constant throughout the
configuration. Combining (23) and (29), we have the required re-
sult.

We shall apply equation (27) to certain practical cases of interest.
Numerically, equation (27) reduces to

- M L
K<I.318XIO46TO(I"‘B*); (30)

where Lg refers to the luminosity of the sun.
For the sun, on the assumption that u. = 1, the solution of the
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quartic equation (25) (obtained by interpolating among the figures
given in Table 2, iii) yields 1 — 8* = o0.030. Hence, by (30)

ko < 391 gm™* cm?. (31)

For Capella, on the other hand, M = 4.180 and L = 120Lg; on
the assumption that p, = 1, 1 — 8* = 0.22. According to equation
(30), we now have

KCapella < 100 gm™ cm?. (32)

We shall see in chapter vii that the stellar opacity coefficient plays
a fundamental role in the further development of the theory; it is
therefore satisfactory to have the upper limit (30) proved under ex-
tremely general circumstances. It should be noticed that the meth-
od of averaging weights the central regions of the configuration very
heavily, and hence the upper limit (30) is essentially an upper limit
to the opacity at the center of the configuration. The inequality
(30) can be interpreted in the following manner:

If, for a star of given mass M and luminosity L, k should be great-
er than the limit set by (30), then, either the density or the rate of
generation of energy, e, or both, must increase outward in some
finite regions of the interior of a star.

We can prove a somewhat less sharp inequality for « at all points
in the star. The following theorem is due to Eddington.

THEOREM §.—For a gaseous star in radiative equilibrium in which
the density, temperature, and the rate of liberation of energy do not
increase outward, we have

cGM
k< ﬂL—— (33)

at all points inside the configuration.

This theorem is an immediate consequence of equation (g). For,
if p(r) and T(r) do not increase outward, dp, will be positive (or
zero), for positive increments in p and T, and must always be less
than dP. Hence dp,/dP must be less than unity. By (9) we should
therefore have

L
el VAN 4 (34)
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If, further, the rate of generation of energy, ¢, does not increase out-
ward, then, as we have already pointed out, 5 > 1; and hence,
by (34)

L
arcGM k<1, (3s)

which proves the theorem. It should be noticed that the upper lim-
its for « and % differ only by the additional factor (1 — B*) in the
expression for the latter. For stars of small mass this factor can be
very small (c.g., for the sun 1 — 8* = 0.03), and thus the upper
limit for % is physically of greater interest.

Finally, we shall derive a very useful alternative form of equa-
tion (g9). Combining equations (g) and (14), we have

dp, _
which can also be written in the form
dp. _ _xkn_dP.
pr “I?I"l(") P ’ (37)
again, since p, = 1aT*,
dT 1 _«kn dP (38)

T 4 in(r) P

2. Stability conditions for radiative equilibrium.—1If a spherically
symmetrical distribution of matter is in hydrostatic equilibrium,
and if further radiative equilibrium obtains, then the radiative tem-
perature gradient is determined by

ar _ 1 _«xn 4P (39)
T = 4 P’ 39
where
P =t o1+ yars. (40)
wH

We shall now consider the stability of the radiative gradient: To
examine this, suppose an element of mass dm, originally at tempera-
ture T, density p, and pressure P, suffers a sudden increase of tem-
perature of amount 67" > o. Then this element exerts a pressure of
a definite amount, 8P > o, on its surroundings and expands and be-
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comes less dense than its immediate neighborhood. The element dm
will then experience a force tending to displace it into regions of
lower density. During such a movement the element continues to
expand, the temperature altering in the meantime.

We shall now make the following assumptions: (a) that at each
instant of time the element dm expands (or contracts) to such an
extent that the pressure exerted on the element by the surrounding
material is the same as that which the element exerts on the sur-
rounding material; (b) that the process of expansion (or contraction)
takes place adiabatically; (c) that the viscous forces restricting the
movement of the element dm can be neglected. We shall first ex-
amine the consequences of these assumptions.

By our second assumption, since the expansion of dm takes place
adiabatically, we should have, according to equations (124) and

(134) of chapter ii,
iy _Liordh (a1)
T)m T. P’ 41

_ (4 — 38)(y — 1)
L=t e =G - PG+ 8’ (42)

for the rate of change of the temperature of the element om as it
moves outward into the regions of lower density, expanding in the
meantime.

Comparing (39) and (41), we see that the temperature of d, as
it moves outward, alters at a rate different from that of its imme-
diate surroundings because, according to our first assumption, the
pressure P alters in the same way for both dm and the surroundings.

Let us now suppose that

where

I.—1 I K7
r i@ 43)

Then it follows that the element ém, after moving outward for a cer-
tain distance, will find itself at the same temperature, pressure, and
density as its surroundings at that point; consequently the original
disturbance dies out.

In the same way, if the element 3 originally suffers a decrease of
temperature of amount 87, then it will become denser than its im-
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mediate neighborhood and consequently will sink to regions of high-
er density. If we make the three assumptions as before, then the
adiabatic compression it experiences as it sinks to regions of higher
density increases the temperature of & at a rate greater than the
local temperature gradient. Again, it will soon find itself at a point
where dm and its neighborhood at that point have the same density,
pressure, and temperature. Thus in either case, i.e., either for a
positive or a negative increment 87 of an element dm, the disturb-
ance dies out if equation (43) is true. In this sense the radiative
equilibrium is stable if the radiative gradient is less than the correspond-
ing adiabatic gradient. This result is due to Schwarzschild.
On the other hand, if

T 2 T (44)

and if the element ém suffers an increase of temperature, then, as
before, it will move outward to regions of lower density; now, how-
ever, the temperature of ém will decrease less rapidly than that of
its surroundings, and hence it is always at a temperature higher
than its surroundings. In the same way, if the element ém suffers a
decrease of temperature, it will sink to regions of higher density;
but the adiabatic compression it experiences (according to our as-
sumption [5]) will not ever be sufficient to raise the temperature
of m to that of its surroundings (if equation [44] remains true);
consequently, it always remains cooler than its surroundings. Hence,
we have proved on the basis of the assumptions that the radiative
equilibrium is stable or unstable according as

I'.—1

T,

-
4 > or < 50 (45)

Table 5 gives the values of 4(I', — 1)/T, for different values of
(r —B).

TABLE 5

0.5 0.6 0.7 0.8 ©.9 1.0

—_——. ... 1.6 |1.304{1.177|1.108|1.065|1.030[1.022|1.010 1.004|I.000|1.000
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3. The equations of equilibrium when the radialive gradient is un-
stable.—Suppose that we have initially a situation in which the ra-
diative gradient obtains but one which exceeds the adiabatic gra-
dient. By our discussion in the previous section, the radiative gra-
dient is unstable, in the sense that a slight alteration of the local
temperature will give rise to a system of ascending and descending
currents which will have the effect of reducing the existing tempera-
ture gradient. Eventually a steady state must be set up, though it is
not a priori clear what the nature of that steady state will be. Under
the circumstances, the general picture which is adopted is the fol-
lowing one.

We suppose that masses of gas are continually being detached
from the surrounding matter and that they move bodily through a
certain distance before they are reabsorbed into the main mass of the
material. Alternatively, the situation can be described by saying
that “eddies” are continually being formed which travel, on the
average, a distance / with a certain mean speed u before being re-
absorbed into the main mass of the material. The quantities / and %
thus defined are referred to as the “mean free path” of the eddies and
the “mean speed of turbulent motion,” respectively. We further
suppose that we can define a certain mean temperature T at each
point to describe the local properties.

Consider the transfer of heat energy across an element of surface,
=, at 7, which is large compared with the cross-sections of individual
eddies. The eddies which are absorbed into the main mass of ma-
terial at 7 will have been formed, on the average, at points distant /
from 7.

The eddy which is formed at (» — ) will have a temperature

ar
T -1 -
When the eddy appears at 7, and before it is reabsorbed, it will have

a temperature
aT aT\*
T—1 I + 1 (37) ,

where (dT/dr)* is the rate at which the temperature of an eddy alters
during its motion. If we assume that during its motion an eddy
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expands or contracts adiabatically to such an extent that the pres-
sure exerted by it on its surroundings is equal to that exerted on it
by its surroundings, then

(dlogT*_I‘,—IdlogP
dr T T, dr

At r the eddies are reabsorbed into the main mass of the surround-
ing material at constant pressure. Hence, the total energy, Q, cross-
ing the surface, 2, and expressed in terms of unit area, is

0=Cr %f pul{(dr)* ~ (‘Z)} iz, (46)

where Cp is the specific heat at constant pressure of the matter and
radiation (cf. Eq. [146], ii). The foregoing expression can be writ-

ten as
o=cref(G) - (%)) )

where the eddy conductivity, o, is defined by

It should be mentioned here that o will itself depend upon the de-
gree of instability as specified by {(dT/dr)* — (dT/dr)}. Indeed,
we should expect that with increasing instability the turbulent mo-
tions will become more violent; this would, in turn, lead to larger
values of # and, hence, of ¢. In general, the magnitude of the eddy
velocities will be determined by the balance of energy which be-
comes available to the eddies from the mean internal energy, and
the energy lost by the eddies through viscous dissipation.

Further, the mean value of the rate of transfer of momentum
across T is pu? per unit area. Also, the transport of turbulent energy

is measured by 1pu(u® + v* + w).r

* #, v, and w are the components of the eddy velocity with respect to a fixed frame
of reference. Further, it is assumed that # is in the direction of .
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When writing down the equations of equilibrium, it should be
remembered that

dp. _ kel
dr - ¢ ) (47)

where p, is radiation pressure and F, is the actual net flux of radiant
energy. If € has the same meaning as in equation (4), we then have

r
gwr*F, = 41rf epr’dr
o

(48)
T\* T _—
- 4#"[6‘? 0{(%;) - <%>}+ Lou(w + v + w’)]
The equation of hydrostatic equilibrium can now be written as
d — GM
d—,(m+m+pu’) = ———1_2(4,)p. (49)

Equations (47), (48), and (49) are quite general. A more detailed
discussion is needed to make these equations more explicit. The case
of vanishing radiation pressure has been investigated by Cowling,’
whose results we shall quote:

(a) The transport of turbulent energy, Lou(w + v* + w?), in (48),
and the turbulent pressure, pu?, in (49) can be neglected in compari-
son with the other terms occurring in the respective equations (d).
The temperature gradient as defined by (47) and (48) differs from
the adiabatic gradient (d¢7/dr)* only by a very small amount. The
temperature gradient set up will therefore be only very slightly
superadiabatic.

The foregoing simplifications seem to arise mainly from the cir-
cumstance that the internal energy of a gram of the material is so
very large compared to the energy loss, ¢, due to subatomic proc-
esses. Consequently, even very slight mass motions are sufficient to
reduce a superadiabatic gradient to a stable one which differs from
the adiabatic gradient only by an insignificant amount. Thus, on
the basis of the Biermann-Cowling analysis we can conclude that

s Essentially equivalent results were given by L. Biermann.
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when the radiative gradient becomes unstable, we have an adiabatic gra-
dient set up with the relations

p o« p¥ o« T¥/Om1) |

The case when the radiation pressure is comparable to the gas
pressure has not yet been fully investigated.

Finally, it should be pointed out that, if the convection currents
become violent, we may have to introduce entirely new considera-
tions. In particular, the three fundamental assumptions of § 2 need
not necessarily be valid. For, if the “inertia of motions” (to use
Kelvin's phrase) is large, then the elements of ascending and de-
scending masses will experience viscous friction, which may result
in the communication of probably quite appreciable amounts of
heat to the eddies during their motions.

4. The standard model.—In the Introduction we pointed out the
fact that an attack on the problem of stellar structure is made pos-
sible at the present time only on the basis of certain assumed laws
concerning the rate of generation of energy, ¢, or the energy-source
distribution, as defined by . A model which was first introduced by
Eddington and which has played an important role in subsequent
developments is the so-called “standard model.” This is defined as
one in which 7 is a constant throughout a given configuration.

From the luminosity formula (Eq. [14])

L __
1—8= ancGHT wn(r) (50)

we infer that (1 — @) is a constant throughout the configuration.
Since we can write (cf. Eq. [87], iii)

4 — 1/3
G e

it follows that for the standard model we have the relation

k\+ 31— g1/
P = Kpi3; K=[(E>E 64] , (52)
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where, if we further assume that p is a constant, K is a constant.
The equilibrium configurations are therefore polytropes of index
n = 3, and the general theory of chapter iv can be applied. In par-
ticular, the Lane-Emden function f; completely determines the struc-
ture of the configurations. We have

P =P p = pb; T =T, (53)

where P., p., and T, are the values of the variables at the center.
From §§ 6 and 7 of chapter iv we have the following results.
a) The mass relation.—By equation (70) of chapter iv and equa-
tion (52) above, we have

in other words, 8 is determined uniquely by M and satisfies a quartic
equation. Equation (54) was first derived independently by Bialob-
jesky and Eddington. It is of interest to compare (54) with the
quartic equation for * (Eq. [24]), which gives the minimum value of
8. at the center of a star of given M, in which the density does not
increase outward. By comparison we find that the ratio of the nu-
merical coefficients in (54) and (24) is given by

—_ 4 2 ‘10_3 . 6X/z = 1/2 —
pury <E P >e=s,' —7 = @) X 2.0182 = 3.296.  (55)

Table 6 gives the values of M for different values of 1 — 8.

TABLE 6
(1—B) FOR THE STANDARD MODEL
M M
- (&)~ = ()»
2.993 0.5 civenrnnnen 50.86
4.456 0.6. . it 87.04
7.020 (o2 167.16
12.56 0.8 .t 402.0
20.10 < T« T 1705.9
31.50 1.0 cnennons ®
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b) The ratio of the mean to the central density.—According to equa-
tion (78), chapter iv, and Table 4, we have

=gl S =
po = [3 %] P =54.18p. (56)
dE t=&

¢) The central pressure—According to equations (80) and (81) of
chapter iv and Table 4 we have

I GM> GM?
" (@) T =~ 11.05 i (57)
W e
dE Je=t,
or, numerically,
P, =1.242 X 107 (%)2 (%)4 dynes cm™2 . (58)

d) The central temperature—We have for the present case

k

;}_IPcTc=ﬂcPc=BPcn (59)
From (56) and (57)

_BH 1 Gu

Tc = k [_Ed_as] R y (60)
4 dE E=¢,

or

T. = 0.8543 _ﬁ*;_H GT . (61)

Numerically, the foregoing is found to be
Te=19.72 X Bu (M) <@) X 10° degrees. (62)
©/ \R
e) The potential energy.—By equation (go) of chapter iv we have

3 GM?
7

—Q = (63)

[N
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f) The mean temperature.—If T is the mean temperature de-
fined by

MT = [TdM(r), (64)

then
MT = "qufpgasdv = ’ig—]fﬁPdV, (63)
or, since 8 is a constant,
T o LBl

MT = 3k Q, (66)
or by (63)

T o LB GM

T= 2 k R~ (67)

Numerically, the foregoing is found to be
T = M\ (Ro 6
T = 11.54Bu (O) (R>X10 degrees . (68)

¢) The internal and the total energy.~—The internal energy con-
sists of two parts: the contribution by the gas and the contribution
by the radiation. A slight modification of Ritter’s relation (Eq. [55],
iil) yields
B
Ugps = ——F——= &, 6
& 3(y — 1) (69)

where 1 is the ratio of specific heats of the gas. The internal energy,
Unaq, due to the radiant energy, is

Una = [aT4dV = 3 { (x — B)PAV, (70)
or for the standard model
Urad = _(I - B)Q . (71)

Hence, the total internal energy is

_ o B4 — 37)
U"Ugas“"Urad— [I+ 3(7_1)]91 (72)
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where @ is given by (63). The total energy, E, is seen to be

4~ 37
E=U+0=—-pg4=37 o 3
+ B8 O (73)
k) Numerial applications.—As an example of the application of
the foregoing formulae, we shall calculate the values of P, p., and
T for three typical stars—the sun, Sirius A, and Capella A. (More
extensive tables are given in Appendix TII.)

TABLE 7
M/O | R/RO | L/LO | 1—8)* Pe pc Te
Sun.......... 1.00 | 1.00 1.00| 0.003 | 1.2X107 | 76.5 20X 1o®
Sirius A....... 2.34 1.78 | 38.9 | 0.016 | 6.8X10% | 31.7 26X 108
Capella A. . ... 4.18 | 15.9 120 0.045 | 3.4X 108 0.080 5X 108

* 4 has been assumed to be equal to unity in all cases (cf. chap. vii).

5. The luminosity formula for the standard model—By the lu-
minosity formula we have, quite generally, that

_ 4mcGM (1 — B,)
N

L (74)

For the standard model, (1 — 8) and kn are constants ; and conse-
quently we can write

I—ﬁc=1*ﬁ; ﬁ="cﬂcy (75)
and the luminosity formula can be written as

_ 4mcGM(1 — B)

L 6)4
- (76)
3 If 8 is not constant, the general relations are
| ()
and
4 — 3y
E= PdV . !
= (73

4 The reason for writing the equation in this way will be clear from the discussion
in § 7.
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For the coefficient of opacity we assume a law of the form
k= kpT 7, (77)

where , is a numerical constant which may depend upon u. We can
quite generally re-write (77) as

oull B _p-. (78)

Substituting for k. (according to {78]) in (76) and using equation
(60) for the central temperature T, we get

PR LC By (G a - G

Koe do, %( k
[-(%),...

On the other hand, from the quartic equation (54) we have

_2s6 1 (R N3V _ ,(,@g)*
M= w G° <ByH> (d) (r—Bri¢ dt Je=t (80)

Eliminating (1 — B)? from (79) and (80), we have

m (GH\"t ac & 1 Mste .
-5 (TS e e @

For the case s = 3, equation (81) is numerically found to be

L _ s L (MNS RV oy
Lo-1.793><105"0m<®> (R) (uB)7s . (82)

Equation (81), then, is the mass-luminosity-radius relation for the
standard model. It is, of course, clear that, since on this model the
stars form a homologous family, . must be the same for all stars;
it is a pure number.

6. Homologous transformations.—In the previous section the (L,
M, R) relation was derived for the standard model. We have now
to examine the question as to how general the results based on the
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standard model can be expected to be.5 This problem has a twofold
character. (1) How general is the form of the relation (81)? (2) How
can we apply the standard-model distributions of density and tem-
perature to configurations in which «y is not accurately constant
but shows only slight variations from constancy?

Regarding the form of (81), we shall prove, following Stromgren,
that for a star in radiative equilibrium, in which the radiation pressure
is negligible throughout the configuration,

+s

Ms
FOL (83)

I
L = constant —
Ko

if the rale of generation of energy, €, and the coefficient of opacity follow
the laws
€ = €p*T” ; L (84)

where a, v, and s are arbitrary. The constant in (8 3) depends only on
the exponents a, v, and s.
Proof: The equations of equilibrium can be written as:

dP GM
- —‘% P, (85)
dM(
dr(r) = 4mrip, (86)
k
P = I oT, (87)
[ (88)
& | p* M T ridr 88
ﬂ‘=—-ixp2T‘6_’—"—————.
dr 4ac "’ r?

$ In an investigation (4. J ., 87, 535, 1938) completed since the writing of the mono-
graph, an important minimal characteristic of the standard model has been proved. It
can be shown that for gascous stars in equilibrium in whick p and (1 — B) do not increase
outward the minimum value of (1 — B,) is the constant value of (1 — B) ascribed to a
standard-model configuration of the same mass. For stars in radiative equilibrium the
condition that (1 — g) should not increase outward is equivalent to i7(r) not increas-
ing outward.
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In writing equation (87) we have neglected radiation pressure, ac-
cording to our assumption.

The system of equations (8 5)-(88) has to be solved with the bound-
ary conditions

Mr)=M, p=o0, T=o0 at r=R (89)
and
M@) =o0 at r=o0. (g0)

These provide four boundary conditions; and since the system of
equations (85)—(88) is equivalent to a single differential equation of
the fourth order, it follows that there is just exactly one solution
which will satisfy the foregoing boundary conditions. We shall now
show that from such a solution we can construct another solution
such that it will describe another configuration with a different M,
R, and g; we shall see, in fact, that the transformation required to
go over from one set of values, M, R, and p, to another set, M,, R,
and u, is the successive application of three elementary homologous
transformations. To show this, we proceed as follows:

Let the physical variables, after a general homologous transforma-
tion has been applied, be denoted by attaching a suffix “1”. For a
general homologous transformation we should have

ro=ynr, pr = Ysp,
P, = y™P T, = y»T,
M(r): = ysM(r), (ko€o)r = Y™1(Ko€o) » (o1)
pr = YUp,
where #,, . . . ., n, are, for the present, arbitrary constants and y
is the transformation constant. The exponents (z5, . . . ., n,) should

satisfy certain relations, namely, those which are necessary for the
continued validity of equations (85)—(88) in the suffixed variables.
Substituting (1) in (83), we find that we should have

y"z_"x = yn3+n4—2n, , (92)
or
Ny, — Ny = My + ny — 200 (93)
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In the same way, equations (86), (87), and (88) yield:

Ny — = 2m; + n,, (94)

N2 = ny + 1 — ng, (95)

ns— =1+ (a+ 3)n,— (6 + 5 — g+ . (96)

We thus have four equations between the seven unknowns. Hence,
we should be able to express any four of #’s in terms of the other

three. We shall choose #,, #;, and 7 as the independent quantities.
Solving for #,, n,, n6, and %, in terms of N1, w3, and n;, we find:

1= —4n; + 2n,, (97)
ny = —38:+ n;, (08)
ne = —n+ n; + ng, ‘ (99)

ny = —(s—u—3a)nx+(4+5‘l’—a)”3+(7+5_1’)”s- (100)

If we choose n, = 1,7; = 0,and #5 = o, we have a homologous trans-
formation in which a star of a given mass M and molecular weight u
is expanded or contracted. In the same way, the choice #, = o,
n; = 1, and #ns = o corresponds to an alteration of M while R and
u are kept fixed. Finally, the choice #, = o, 7, = o, and n5 = 1
corresponds to an alteration of u while R and M are kept unchanged.
These three elementary homologous transformations are schemati-
cally represented by

1= Ypr 1 =7 rn=r,
P, = yx*P P, = y},P P.=P,
M(r:): = M(r) M(r:): = yM(7) M(r:): = M(r),
pr = Yg°p P = Yyp pr=p, (101)
M = M M1 = U B1 = Yu,
T: = y%' T.=yuT Ty =9,T,
(koo)r = YR (kota)  (kota)r = Y3 (ko) (Koto)r = Y14 (koto)
R: = yrR M. = yuM Mr = Yut .

We have now to consider how the luminosity is changed by a homolo-
gous transformation. Since

R
L= 47rf r*pedr , (102)
o



GASEOUS STARS 237

we have, according to our law (84) for ¢,
R
kL = 41rKoeof rep*tTvdr . (103)

Hence, by a general homologous transformation, «,L alters to
(x,L),, where

(L): = yn7+3nl+("»+l)ﬂ4+vn6(xo L), (104)

or by (97), (8), (99), and (100)

(kL): = y—anx+(5+a)n3+(7+s)ns(xo L). (105)

In other words,
L = constant 257 e 6
= constant - oo u’™ . (106)

It is clear that the constant in (106) can depend only upon the ex-
ponents s, », and a.

We have thus proved the invariance of the form of the luminosity
formula for stars in radiative equilibrium. If, however, the law of
energy generation is such that it leads to a sufficiently strong con-
centration of the energy sources toward the center, then we should
reach a stage when

Kn I',—1
=>4 (07)

In other words, going inward® toward the interior of a star, the
radiative gradient will become unstable at some definite point
r = ri, (say). For stars with negligible radiation we have from
(10%) that

K__:% =1.6 (r=r). (107)

For r < 7;, kn/xn(r) > 1.6. Now the right-hand side of (107’) is a
pure number, while the quantity on the left-hand side is homology
invariant. Hence, the fraction, q = r;/R, of the radius at which the

6 We shall see in chap. viii that the radiative gradient is stable in the outer parts,
including the stellar envelope.
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instability of the radiative gradient sels in is the same for all stars with
vanishing radiation pressure. The fraction ¢ depends only on the ex-
ponents s, a, and », which occur in the laws for k and e.

According to the discussion in § 3, the material interior to
ri = gR will be in convective equilibrium. Since the radiation pres-
sure is assumed to be negligible, in the convective core we should

have
2t _ (_1">y
ry MR (108)

where p; and p; refer to the pressure and the density at the “inter-
face,” i.e., at r; = ¢R. Equation (108) is clearly homology invari-
ant. Hence, the structure of the convective core is also homology in-
variant. We have thus proved the invariance of the form of the
luminosity formula (106), quite generally.

We have stated and proved Stromgren’s theorem for strictly van-
ishing radiation pressure. It is, however, clear that if 8 is very nearly
unity, the variation in 8 can be properly neglected’ and a mean
value chosen. The result is equivalent to defining a new “molecular
weight” ufB instead of u: in other respects, the method of argument
remains as before. Hence, we have, more generally than (106),

M5+s e
L = constant ™3 (Bu) (B~ 1), (100)

which is identical in form with the (L, M, R) relation derived for
the standard model. The present restriction that the radiation pres-
sure is negligible means that we should restrict ourselves to stars of
small mass (cf. Theorem 7, iii). We shall see in chapter vii that the
majority of stars for which we have observational material concern-
ing L, M, and R fall into the class of stars with ‘“‘negligible radiation
pressure.” Thus, the use of the (L, M, R) relation derived on the
basis of the standard model can be largely justified—especially as
we now see that the same form for the relation results for a wide
class of stellar models.

Again, since the stars form a homologous family under the restric-

7 This is not the same thing as neglecting the variation of 1 — 8.
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tions of Stromgren’s theorem, we can apply Theorem 13 of chapter
iii, according to which

I —- B[ _ I_"—__&) AII 2
(/J'xﬁt)" - (y°ﬁ0)4 <M0> 4 (IIO)

where 8, and B, refer to the values at the corresponding points in
two stars of mass M, and M,. Hence, we should have, as a particu-
lar case of (110),

1 — B. = constant M*(uB.)*. (110")

In other words, (1 — B.) should satisfy a certain quartic equation—
the constant in (110’) will of course be different from that in the
quartic equation for the standard model.

We thus see the complete parallelism between the standard model
and these more general models.

v. Perturbation theory for varying xn.—The nature of the problem
presented can be described in the following way.

We first assume that ky is constant; this leads to a perfectly defi-
nite distribution of density and temperature. Now a physical the-
ory, on the other hand, may be expected to specify the precise de-
pendence of the opacity and the rate of generation of energy on the
density p and the temperature 7. From the march of p and T, de-
rived on the basis of the constancy of x5, we can calculate « and 5 at
each point and form the product «n; a test of the consistency of the
model is that the product x», determined in this way, should be
reasonably constant. If this is so, the question arises as to how we
can apply the results based on the hypothesis of «n being constant
to cases where kn shows slight variations from constancy. The an-
swer to this question can be given only on the basis of a perturbation
theory, which we shall proceed to outline. The following analysis
is a modified version of the theory which was first developed by
Stromgren.

Now, the luminosity formula predicts that

L _
1— 8= mlﬂ](f) . (111)
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We can re-write (r11) in the form
e
1— 8= = (1 —B) - (112)

If we make definite assumptions concerning the dependences of
x and eon p and T, we can evaluate the march of the quantity ky(r)
inside the star on the basis of the standard model. Equation (r12)
will now specify the variations in (1 — ) as determined by the
luminosity formula.® We suppose that the variation of (1 — 8) thus
predicted is small and that we can write

P= [(’%) 31— Bc]’“a + 9)p¥, (113)

a B

where we can regard ¢ as a small quantity of the first order. It will
be noticed that in writing (113) we have assumed that the varia-
tions of both 1 — 3 and B as determined by (112) are small. This
implies that for values of 1 — . near unity, the permissible range
of variation for xx is much narrower than when 1 — 8, is small;
for example, a variation of k7 by 10 per cent will be permissible for
1 — B. = o.1, while a variation even by this amount should be ex-
cluded for 1 — B. = 0.8 or 0.9, if the standard model is to be re-
garded as a reasonable first approximation.

We assume that ¢, as introduced, is a known function of 7; ¥ will
be simply related to xn(r)/xn. We write (113) as

P =K(1+¥)p¥s, (114)

<= [Ga) 2] @9

In the equation of hydrostatic equilibrium,

where

1 d (rdP .
el <; d—r> = —4rGp, (116)

8 Not as determined by the local values of density and temperature.
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set (cf. Eq. [10], iv)
p=2N03; P =KNM(1+¥)0*, (117)

1/2
r = [E] N"U3E = af. (118)
Equation (11€) reduces to

II —

1B [93 dE( 1+ 'P)e“] = —6s. (119)
In the foregoing equation ¢ is to be regarded as a known function
of £. At £= o, ¥ must satisfy the boundary condition,

v=o; ‘Z E=0). (120

Also, ¥ is a small quantity of the first order and is to be regarded
as arbitrary otherwise.
In (119) write (Kelvin’s transtormation)

x=£T. (121)
We have
x4 d

. & [93 G +¢)e4] ey (122)

To solve the foregoing equation, we shall assume that we can write
6=0+x, (123)
where 6 satisfies the Lane-Emden equation

d*0
o= — 6 (124)

and where x is a small quantity of the first order. Equation (122)
can now be written as (if quantities of the second order are neglected)

R E v G = e, @)

or
ase

a0 5A0dY | 4, V] _ g g
+‘l/ dx2+ 4l:doc’-'_4docdx+i dx’] 6 — 305 (126)
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or, using (124), we have

ax &y | dody
x4dxz = —30x + y6 — [0(7;4- 5 7% a] . (127)
We can also write the foregoing as
X _ _ e _xd (e dv)
B o= —36x + y63 20 3 (05 dx) . (128)

Reverting to the variable in £, we have

2 dx 6 dy
d&**‘s & 50 & <£ e) (x29)

which is a linear differential equation for x. Equation (129) has to
be solved subject to the boundary conditions

= —30x + yb& —

Z—?=o at E=o; XxX=0=o0 at E=%, (130)
where £, is the boundary of the Lane-Emden function 6;; we have
chosen 6, for ¢ in (123). The boundary conditions (130) are clearly
necessary and are, further, sufficient to determine x uniquely. We
have thus solved the formal problem of obtaining a second approxi-
mation.

The mass relation is easily found to be

M=—WML210+Wﬂ& (131)
4 & & I 3

or, using (120), (123), (130), and the boundary conditions that 6,
satisfies (Eq. [67], iv), we have

(l + ‘p‘=“)(%>e=e. + (%)e#.] ’ (132)

which, on substituting for a (Eq. [118]), is seen to be a quartic equa-
tion for 1 — B.. Hence for a given M, equation (132) determines
(1 — B.). To use the luminosity formula

4wcGM (1 — B.)

S (133)

= —4mwa\i]
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we have to determine kg by

Kn = %c ) kndP , (134)
or by (117)
_ I T+xe
= T ) j; knd[(1 +¥)64], (135)
or by (123)
1+4Xe
Bi= i [ Ry a0 (39)

Hence, we can re-write (133) in the form

_ arcGM (1 — B.)

KeNe

L ) (x37)

where

fom i [ S il o+ 400 . (139)
nc—(I+Xc)4 o Kcn 3 3 A%x) - 13

a) First approximation.—It is clear from our analysis that a first
approximation can be obtained by using Eddington’s quartic equa-
tion to determine (1 — B.) and by evaluating 7. in the luminosity
formula (137) by (cf. Eq. [138])

5 = f £ it (139)

o K

If we assume for « a law of the form already used in § 5, equations
(77) and (78), then, for the standard model distribution of density
and temperature

—=6,"°. (140)
Hence, by (139)
o= 4 f oread, (r47)

The quantity 7., determined by (139), is a homology-invariant con-
stant and is the same for all stars. We thus see that the luminosity-
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mass-radius relation derived in § 5 (Eq. [81]) can be used as it stands
if 9. in equations (81) and (82) is replaced by 7.:

_ w8 (GH\"*"ac & 1 Mste o
L= Zm (T) ? [—ow3]4+, KT;'I: _R’ (#3)7 . (142)

As an illustration of the method, we shall consider the case where
€ varies as some power of temperature and the opacity varies accord-
ing to (140), with s = 1. Table 8 shows the run of #»0~* with ¢* as
argument.

TABLE 8
,’0—1/1
A
€= Constant exT exT €exTs
1.00 1.70 2.57 4.71
1.01 1.69 2.53 4.40
1.02 1.60 2.48 4.08
1.04 1.69 2.40 3.85
1.00 1.68 2.34 3.65
1.09 1.68 2.27 3.40
1.12 1.67 2.20 3.14
1.16 1.05 2.13 2.87
1.22 1.67 2.06 2.55
1.33 1.71 1.96 2.24

An examination of Table 8 shows that for the cases ¢ = constant
and e ~ T the first approximation can be safely used—at any rate,
for stars with negligible radiation pressure. For the case ¢ = con-
stant, the value of 7. can be evaluated directly from (141):

I
7. (¢ = constant) = 4] 03%do, = § = 1.14. (143)

If ky were accurately constant, then for this model in the luminosity
formula (76) (or [142]) we should strictly have 5. = 1. Thus our
approximation probably introduces an error of 1o per cent in the
luminosity formula. (A more detailed investigation of the model
[k o« pT735, n = constant] given in chapter ix confirms the present
conclusion.)

For € = T, the standard model is a very good approximation with
7. = 1.68 in the luminosity formula. The model ceases to be good,
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in the first approximation, when e varies with a higher power of T.
For these cases a second approximation will be necessary. However,
in using the formula (142), it is customary to adopt (following Ed-
dington) a value of 7. = 2.5; this probably corresponds to a rather
“high value for the concentration of the energy sources toward the
centre.”

b) Second approximation.—To obtain a second approximation, it
is necessary to solve equation (129) for x. We shall write equation
(129) in the form

d? d
d—gf + % f = —36;x + (%), (144)
where
PR SR PO 4
Q) = v - 5 5 (#05)- (149)
The boundary conditions are (cf. Eq. [130])
Z—?=o at §=o0; x=o0 at £=4§. (146)

These boundary conditions are at different points; hence, if we wish
to solve for x directly, it would be necessary to adopt a method of
trial and error. This can, however, be avoided by first solving the
corresponding homogeneous equation

Ix  zdx _ g
ae +£ dt 36 (147)

and by then obtaining x by quadratures. This is the method of
the variation of the parameters.

Let x: and x. be any two linearly independent solutions of (147).
Then the solution of (144) can be written as

x = A@®)x: + B(®)xz» (148)

where A(£) and B(£) are, for the present, two unknown functions,
which, however, are restricted to satisfy the relation

dA dB
x"&'{+x’d_g=°' (149)
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By (148) and (149) we have

X _ 4% | pix
e I (x50)
and
X dx g dd da , dB do
ae = TPue T T a (157)

By substituting (150) and (151) in (144), and remembering that
x: and x, satisfy the corresponding homogeneous equation, we find
dA dx: | dB dx: _
GE dE TaE a TI(¢) . (152)
We can now solve for d4/d¢ and dB/d¢ from (149) and (152). We
find

dA _ Xz
Xr gy T X g
and
aB _ Xt
XigE T X g

Integrating the foregoing equations, we have

4= f m I(£)dE + (155)
Je ¥ T &
and
i " X
B=-— [ & i (¢)dt + c., (156)
X g T X2 gg

L3

where ¢, and ¢, are two integration constants, which have to be
determined from the boundary conditions (146). Since x has to van-
ish at £,, we immediately have that

Xttt X2 =0 (E=E!) (157)
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The other boundary condition yields (cf. Eq. [150])

31
dxs X2
(%), |+ — O
R
" o (158)
dx. ' Xt _
+(%) |- g Ok o
I dE 2 dE

In choosing the two linearly independent solutions X. and x, of
(147), we can arrange that one of them (say x.) is such that

dx: _ _
U o at ¢£=o. (150)
If x. has been chosen in this manner, then from (157) and (158)
we have
El X
W(2) = mem - | gm0
X2/ ¢=t X1 dE Xz dt

L)

Hence, we have finally

El El

. < EE— —[ X X T(d)d
oA ) W oy e TR
. X1 ds X2 dg . Xz dE Xz dE
and
¢ X
Xx dt Xz dt

o

In this way the problem can be formally solved. For applications
to practical cases we shall need x; and x,. Once x; and x, are known,
then for any given II(§) two quadratures are sufficient to determine
the appropriate solution x for (144)-

(161)
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CHAPTER VII

STROMGREN’S INTERPRETATION OF THE
HERTZSPRUNG-RUSSELL DIAGRAM

In the last chapter the mass-luminosity-radius relation for gase-
ous stars in radiative equilibrium was derived. The relation in ques-
tion (due essentially to Eddington) was first derived on the basis of
the standard model; but, as we have seen, the same form for the
relation results for a wide class of stellar models if the radiation pres-
sure is not very appreciable. Further, by a perturbation method we
have seen how the luminosity formula may be applied to cases where
xn is variable. For most practical purposes it is sufficient to restrict
ourselves to the first approximation considered in the last chap-
ter (§ 7).

In this chapter we shall be concerned mainly with concrete appli-
cations of the luminosity formula to the available observational ma-
terial regarding the masses, luminosities, and radii of the stars.

1. The statement of the problem.—On the first approximation con-
sidered in chapter vi, § 7, we have

_ 4meGM (1 — B.)

KeNe

io= | (&) nass. 2)

Further, (1 — 8.) is determined once M and the mean molecular
weight are known, as the solution of Eddington’s quartic equation.

Now we shall show in § 5 that the physical theory of the stellar
opacity coefficient « leads to a formula of the type

L (1)

where

k() p
L Tes (3)

249
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where «, is a constant depending on the molecular weight, and ¢,
called the “guillotine factor” (Eddington), is a slowly varying func-
tion of p and . We can write equation (3) as (Eq. [78], v)

apll B oy
3 k I — 6 T M (4)

=
t

Inserting the foregoing in the luminosity formula (1), we have

_4mcGM 3 k (1 — B)*
(ko/t)n. @ pH B,

L TY?, (5)

where 7. can now be expressed in the form

~ Tt
o= oo nans, ©)

which can also be written as
~ . (F
o= % o5 oy (1)
In the foregoing equation /is a certain harmonic mean value of ¢ de-
fined by
T I -
L 7 07 4/2) nd 64

- .
f 03—(:/2) nd@g
o

Now the integral on the right-hand side of (%) is the value of 7, if
the guillotine factor were unity. We shall accordingly define 7,(1) by

1

(8

7)) = f 67072 ndp (o)
By (7), then,
- t. ~
Ne = ? 0(1) . (IO)

From (5) and (10) we have

amcGM (1 — B 3 k

S G B e (x1)
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Proceeding exactly as in chaper vi, § 5, we find (cf. Eq. [81], vi)

_ 7 GH\"S ac &8s 1
-5 () i e R e 0
or, numerically (cf. Eq. [82], vi),
L=I.79XIO’T(I‘5 R°5 (I-‘Bc) (13)

where L, M, and R are expressed in solar units. According to our
remarks in § 7 of chapter vi, we shall adopt 7.(1) = 2.5. Inserting
this value in (13), we finally have

L=7.17X 10“— T 2w (14)

Now if we know the mass and the radius of a star and if, further,
we assume a value for u, then the foregoing formula enables us to
calculate L. In general, the value of L so calculated may not agree
with the observed value. We should, however, be able to adjust x in
such a way that the observed and the predicted values of L agree.
In other words, a knowledge of L, M, and R should enable us to de-
termine the mean molecular weight of a star, or, what is equivalent
to it, the mean chemical composition of the stellar material. This
is precisely our present problem. The solution consists essentially
in (a) determining the appropriate u for stellar material of a specified
chemical composition and at a prescribed density and temperature,
(b) determining the dependence of , on the chemical composition,
and (¢) determining the appropriate value of # for individual stars.
Once these questions have been settled, the determination of  is
immediate. We can then compute the value of u for a number of
stars for which values of L, M, and R are available. Our final prob-
lem is to examine if these computed values of u enable us to give a
general interpretation of the characteristic features summarized in
the Hertzsprung-Russell diagram.

We shall consider, following Stromgren, these questions in the
order stated. It is necessary, however, as a preliminary to the whole
discussion, to consider a fundamental theorem due to Vogt and
Russell.
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2. The Vogt-Russell theorem.—The theorem in question states that
if the pressure, P, the opacity, x, and the rate of generation of energy, e,
are functions of the local values of p, T, and the chemical composition
only, then the structure of a star is uniquely determined by the mass and
the chemical composition.

To prove this theorem we shall first consider the case of a gaseous
star in radiative equilibrium. For this case the equations of equilib-
rium can be written in the form

¢ = GO

" dP = —gpdr dM(r) = amripdr

Im; I .

I;
- IO + o _ _KF, o
F’ - 47r? d(sdT“) = P pdf dL(r) = 477 épdf

The foregoing system of equations can, in principle, be solved as fol-
lows: We choose a definite value for r and prescribe an arbitrary set
of values for the variables P, T, g, and F,. From P and T we can
calculate the “local” values for p, «, and ¢; to deduce these values,
we require a knowledge of the chemical composition or its equivalent,
the mean molecular weight. The second set of equations above then
enables us to compute dP and dT for an increment dr of 7. In the
same way the third pair of equations enables us to compute dM(r)
and dL(r). Thus we have a set of values for the variables P, T, g,
and F, for » + dr. We can therefore continue the solution for a fur-
ther increment of r. In this way we can integrate the solution both
inward, toward the center, and outward, toward the boundary. For
a solution to be physically possible the following boundary condi-
tions must be satisfied:

M(r)=0 at r=o0 (15)
and
p—o, T — o simultaneously , (16)

or, more exactly, p — o and T — T, (a definite limit), but this is a
refinement hardly ever necessary. We thus see that there are three
relations between the four values initially adopted for P, T, g, and
F,, respectively. Hence, we are left with only one disposable con-
stant. Since at the end of the integrations we should be able to find
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the total mass M of the configuration, it follows that an assumed
fixed chemical composition can lead us only to a one-parametric se-
quence of configurations; the parameter can clearly be chosen to be
M. In other words, given M and p, we should, in principle, be able
to calculate the other two observable characteristics of the star,
namely, L and R—of course, on the basis of an assumed chemical
composition.

We have thus proved the Vogt-Russell theorem for gaseous stars
in radiative equilibrium. From our method of argument, however,
it is cdlear that the theorem is valid quite generally, i.e., also when
a part of the stellar interior is in convective equilibrium (cf. chap. vi,
§§ 2 and 3); for no new parameters are introduced. The theorem es-
sentially arises from the fact that the equations of equilibrium are
equivalent to one differential equation of the fourth order, while a
solution, to be physically possible, has to satisfy three boundary
conditions. Thus we have proved the general validity of the Vogt-
Russell theorem.

It is necessary, however, to point out that there are conceivable
physical circumstances under which the Vogt-Russell theorem will
not be valid. Thus, € need not, in general, depend upon the local
values of p and T; this would be the case if the origin of stellar
energy were due to physical processes occurring at nearly equilibrium
rates, e.g., nuclear transmutations occurring at approximately equi-
librium rates but slightly more in one direction than in the other.
There are, however, good reasons why such cases can be excluded;
we shall return to this question in the last chapter. Meanwhile, we
shall accept the validity of the Vogt-Russell theorem. The applica-
tion of the theorem we have in view is this: Does the use of the lu-
minosity formula to determine the chemical composition of the stars
allow us either to confirm or to deny the validity of the Vogt-Russell
theorem for stars in nature? We shall see that the answer to this
question is largely in the affirmative.

In the next two sections we shall consider the question of the mean
molecular weight and the theory of the stellar opacity coefficient.
Unfortunately, we cannot start from first principles in our discussion
of these two quantities, as we have done so far in the treatment of
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the other problems. The importance of these quantities in the pres-
ent connection, however, makes a treatment—even if only a partial
one—essential. In the following two sections we shall assume a gen-
eral familiarity with methods of statistical mechanics and of the
quantum theory.

3. The mean molecular weight of highly ionized stellar material. —
The first problem is to determine the appropriate molecular weight
that has to be used in the equation of state adopted:

k
e = ;ﬁ eT . (17)

This problem, as we shall see, is essentially one of determining the
number of particles per unit volume. For we have also

po = N&T . (18)

Suppose we have a mixture of elements and that an element of atom-
ic number Z occurs with an abundance factor xz—in other words,
1 gram of the material contains x; grams of the element. Let us
suppose, further, that each atom of the element contributes, on the
average, n, free particles per unit atomic weight, i.e., if 4 is the
atomic weight (that of hydrogen being taken as unity), then each
atom contributes 4n, free particles. We then have

N = l% Zxgnz , (19)
where the summation is to be extended over all the elements. By
(18) and (19) we have

k -
=45 (Zxznz)eT . (20)

Comparing the foregoing with (17), we find
g (21)

szﬁz '

The determination of u involves, therefore, the specification of the
state of ionization of the stellar material at a prescribed density and
temperature.
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a) First approximation.—We shall first give an elementary first
approximation. Let us suppose that the conditions are such that
the ionization is complete—that is, an element of atomic number Z
and atomic weight 4 gives rise to Z + 1 particles. Then

nz = g—jl_——l . (22)
It is well known that, except for the lightest elements (hydrogen
and helium), the ratio 7,, defined as in (22), is approximately 1 : 2.
Hence, if we assume that in 1 gram of the stellar material there are
X grams of hydrogen, ¥ grams of helium, and (1 — X — V) grams
of the “heavy” elements, then we can write

=2} =1 FZ=%‘ (23)
The expression for u then becomes
= : (24)
FE X+ 3y +ia-X - Y)’ 4
or
2
F= T ¥ 3X+o.sV" (25)

If the helium content can be neglected, we shall denote the abun-
dance of hydrogen by X,; then (1 — X o) is the abundance of the
heavy elements. In this case

2

e & o
The general expression for the number N. of free electrons is
No=£52% (zd — 1) (27)

TH&~4A
In the present approximation (Eq. [22]) we have

LA g
Ne=$52"5 (28)
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If a mixture of hydrogen, helium, and the heavier elements is con-
sidered; we have, according to the abundances leading to (24),

Ne=£X+3V +3Ga-X - 1), (29)
or

Ne=>FG+X). (30)

L
H

b) Second approximation.—In order to determine p more accu-
rately, it is necessary to calculate 7i; more accurately, with allow-
ance for the state of ionization. Stromgren has developed the fol-
lowing elegant method of doing this. .

In this method an approximation is made in which the differences
between the states of the first and the second K-electrons, or be-
tween the states of any of the L-electrons, are ignored. The differ-
ences between the states of L- (or M-) electrons belonging to normal
or excited configurations are also ignored. Any atomic configuration
is then specified sufficiently by the numbers (ng, nz, ny, ... .),
which give, respectively, the number of K-, L-, M-, etc., electrons
bound to an atomic nucleus of charge Ze. The energy of such a state
may be taken to be

(Z) (Z)

@ T OMXMT T - - .-, (31)

TNKXK T NLXL
where the x’s are constants representing the mean ionization po-
tentials of the various shells. Since, as we shall see presently, at
most common temperatures and densities in stellar interiors the
ionization is generally very far advanced, it is clear that, consistent
with our present scheme of approximation, it is sufficient to use for
the x’s the expressions derived for hydrogen-like atoms. If the nu-
clear charge is Ze, then by Bohr’s theory we have

z) _ 2meimZ2?
X2 = nzhze ’ (32)

where 7 stands for the principal quantum number (# = 1 for the
K-electrons, n = 2 for the L-electrons, etc.,), m, is the mass of the
electron, and the other symbols have their usual significance.
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The statistical weight for the configuration (nk, nz, ny, - . . . ),
for short (n), is given by
q(K’ nK)q(Ly nL)Q(M) nM) seey (33)
where, according to Pauli’s exclusion principle, it is easy to verify
that
g(K, nK) = Cog;  q(Ly 1) =sCay s q(M, ) = uCoppy (34)

where the C’s are the binomial coefficients.

We now consider the equilibrium between the single configura-
tions (n), free electrons, and the corresponding bare nuclei, denoted
by (o, o, .) or (o). From statistical mechanics (cf. R. H. Fow-
ler, Statzstzcal Mechanics, 2d ed., Cambridge, 1936) we have

N(O)N2K+nL+nM+ e
N(n)
_ [G(T)]"K+"L+"M+"" X e—(ngx}(z)+an}_Z)+....)/kT (35)

Q(K, nK)q(L) nL)q(L, nM) PP ’
where N(o) and N(n) are the number of atomic configurations in

the states (o) and (n) and N, is the number of free electrons per
unit volume and where G(T) is defined by

G(T) =2 (i’%hs’iT—)si (36)

Equation (35) can also be expressed in the form

N(n) _ ) ]nK+nL+nM+

N(O) [G(T) X [Q(K, nK)lI(L, nL)q(M’ nM) DR ]

X e(nKx}(Z)-i-an}‘Z)-l'nfouZ)-i- co o )/RT

(37

The evaluation of the total number of bound electrons by this meth-
od can be sufficiently illustrated by the calculation of Af”, which
gives the average number of bound electrons with pr1nc1pal quan-
tum number 2 around a nucleus of atomic number Z.

Let
e (Z)/kT

G(T) (38)
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Then, by (34) and (37) we have

8
2 ey 8y(1 + 3)

-~z _ o _ 8y(x ¥ 8y

”i =3 TTGFy 1+ (39)

Z sCry”

o

The other shells give similar contributions Quite generally, we see
that the number of bound electrons, n\*, of principal quantum
number 7, around a nucleus of atomic number Z, is given by

—2) _ 2n? o
S G =2 e (4)

Since in an unionized atom there are 2#* bound electrons with prin-
cipal quantum number #, equation (40) corresponds to a number
of free electrons per atomic nucleus and arising from the ionization
of the #-shell:

_ =@ _ __L
21 — Dy N, (Z)/kT' (41)
1+
G(T)

Finally, the number of free particles per nucleus of charge Ze is

2n?
1+ z N. x(z)/kT ] (42)
I+ o en
G(T)
where the summation is extended over all the relevant »’s. In prac-
tice it would suffice to consider only K-, L-, and M-electrons. (If it
should be necessary to consider higher orbits, then factors neglected
here, such as “‘excluded volumes,”” should be taken into account.)

By definition we have

nz = ZZ{I + E 2:1 (Z)/“} . (43)

G(T)
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If we have a mixture of elements with definite abundance factors,
then the molecular weight is, according to (21),

_ I
Exz—ﬁz

1
I = (44)
where

7= Zxzz . (45)

Table g, due to Strémgren, illustrates the calculation of u for the
so-called “Russell mixture,” in which the elements O, (Na + Mg),
Si, (K + Ca), and Fe are assumed to occur by weight in the ratio

TABLE 9
Total
Number Number | Number of
Element n fin of Bound of Free | Free Par- EZ stZ
Electrons | Electrons | ticles per
Nucleus
O......... 1 0.04
2 0.07 0.24 7.76 8.76 0.548 0.274
3 0.13
Na, Mg 1 0.09
2 0.09 0.3 1.7 12.7 .53 .132
3 0.15
Y 1 0.24
2 0.1I 0.5 13.5 14.5 .52 .032
3 0.17
K, Ca..... 1 1.46
2 0.23 1.9 18.1 19.1 .48 .030
3 0.23
Fe......... 1 1.99
2 0.61 3.0 23.0 24.0 0.43 0.054
3 0.36
G
T = 107 degrees; log [ Z(VT>1 =3 A=Zxyn, | 0.52
e |
p=n" 1.92

8:4:1:1:2 We thus see that, given the temperature T and
the quantity G(T)/N., we can calculate 7 and u. Table 10, also
due to Stromgren, gives the values of g calculated for the Russell



260 STUDY OF STELLAR STRUCTURE

mixture for different values of T and G(T)/N.. The reciprocals
of the values of 7y tabulated in Table 10 give the mean molecular
weight, u, for the Russell mixture. This is not generally far from 2.

TABLE 10*

w[g—;;—)] AR FOR RUSSELL MIXTURE
e

Loy T \ 3 4 s 6 7 8 9 10

6.4 ... oo 0.46 0.49 0.50 0.5I 0.52
0.6, ... . e 0.48 .51 .52 .53 .53 .54
6.8, ... 0.48 .51 .53 .53 .53 .54 .54
7.0 0.44 .50 .52 .53 .54 .54 .54 .54
720, .46 .51 -53 -54 .54 .54 .54 .54
T4eoii . 47 .51 .53 .54 .54 .54 .54 .54
760 ... . ... 0.47 0.5I 0.53 0.54 0.54 0.54 0.54 0.54

For a Russell mixture completely ionized, ip=0.54

* We shall use “Log’ to denote logarithms to the base 10 and “log” to denote natural logarithms.

On the other hand, if 1 gram of the stellar material contains X
grams of hydrogen, ¥ grams of helium, and (1 — X — ¥) grams of
the Russell mixture, then

F=Eﬁzxz=2X+%Y+ﬁR(1—X—Y): (46)

or
I

P X F W A =X =¥ (47)

If the helium content can be neglected, then ¥ = o, X = X, and

we have
I

B= 2AXo + BR(I - Xo) ’ (48)
or, solving for X,, we obtain
Xo = £ _—nR . (49)

Equation (49) will give the hydrogen content after the value of u
has been found from the mass, luminosity, and radius of a star.
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Finally, to determine p for a given density p and temperature T,
it is necessary to know N,. To determine N, it is sufficient, in the
first instance, to use the result of the first approximation, namely,
equation (30):

Ne=>p@+X). (50)

If necessary, it would be a simple matter to use a method of reitera-
tion. Accurately, i.e., in our present scheme of approximation, we
have, according to (41),

= EZ20 N
Ne= 7 4z 2 1+ e ex1(|Z)/kT’ (50)

G(T)
where the summation is extended over all the elements and all
the relevant principal quantum numbers, and where it may be re-

called that

G(T) = 2 (2—"”—”};—”1 O (s2)

¢) The accurate determination of p.—To determine u more accu-
rately than by Stromgren’s method, we must allow for differences
between the different electrons in the same shell, for “excluded vol-
umes,” and also for electrostatic corrections. Such calculations have
been made, for certain special cases, by Fowler and Guggenheim.
We shall not go into these refinements here, but reference may be
made to Fowler’s Statistical Mechanics.

4. The stellar opacity coefficient.—The main contribution to the
opacity for the radiation in stellar interiors arises from photoelectric
jonizations of the electrons bound to the nuclei of the highly jonized
atoms. If the ionization potential for a particular state of the atom
considered is x, then radiation of frequency » 2 »,, where

hvy = x, (53)

can ionize the atom photoelectrically. In addition to these bound-
free transitions, there is still another kind, which can be described
as “free-free” transitions and which also contribute to the opacity.
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These free-free transitions correspond to free electrons which ab-
sorb quanta of a definite frequency while in the attractive field of
an atomic nucleus.

Now, since the atoms in the interior of a star will be highly ionized,
it is sufficient to consider for the probability of these bound-free and
free-free transitions those computed for hydrogen-like atoms, i.e.,
for assumed Coulomb fields around charged nuclei. According to
the theory of this phenomenon, as developed by Kramers, Gaunt,
and others, we have the following results.

a) Bound-free transitions.—If an atomic nucleus of charge Ze is
considered with an electron in the state of principal quantum num-
ber %, then the atomic absorption coefficient a.(v; Z; ) is given by

. _ 641r4Z4mee‘°l I .
ao(v; Z; m) = “Vadh m glv; n) (54)
if
v 2o =22 (s5)

In the expression for a,(v; Z; u), the quantity g(v; #), called the
“Gaunt factor,” is a factor which depends on # and », and which,
for the values of # and » of importance in contributing to stellar
opacity, is very near unity. Table 11, due to Stromgren, gives the

TABLE 11

v/vp n=1 n=2 n=3 n=4
I.0 .o, 0.80 0.88 0.9 1.0
I.5.0.iuenun. 0.89 0.94 i
2.0.. ... ..., 0.94 0.97 |
3.0 i, 0.98 1.02  leeooooooii oo,
4.0 ..., 1.00 1.04 |oeiiiiiiioni i
5.0 i, 0.99 .05 feeiiiiiiiiie i

values of g(v, n) for some values of #, with argument »/v,. As
v/vn— ©, g— 0; but, as will be shown in the subsequent discus-
sion, only such values of g are of significance as are very near those
at the series head. Hence, we can, in practice, regard g as independ-
ent of » and take as its value some constant value g. We shall re-
turn to this question later.
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b) Free-free tramsitions—If we consider an atomic nucleus of
charge Ze, then the rate of absorption of energy ao(v; »), from radia-
tion of frequency » and of unit intensity by electrons of velocity v.
and unit mean density, is

o 4wZS
a.(v; v; Z) = —————3\/3 hemivv (56)
There is a Gaunt factor for (56) as well, but we shall take it equal
to unity (the free-free transitions do not in any case contribute ap-
preciably to the stellar opacity).

We shall now calculate the Rosseland mean coefficient of opacity
as a function of density and temperature:

Let us first consider the case of a single element of atomic num-
ber Z and atomic weight A. By (56) the contribution to the absorp-
tion coefficient per nucleus, expressed per gram of the material,
which arises from free-free transitions and which is due to electrons
with velocities in the range v, v 4 dv, is

a.(v; v; Z)

g Vv, (s57)

where N,dv is the number of electrons per unit volume in the speci-
fied velocity range. By Maxwell’s law of the distribution of veloci-
ties we have

3/2
N.,dv = 47N, <2:Z ) ek T g2dy | (58)

The absorption coefficient «@ (=, ), due to the atoms under con-
sideration and arising from free-free transitions, is given by

e (m,m)=£ MN,,dv, (59)

AH
or by (56) and (58)

(Z) = I IGTiZZ em.N. © —m o2/2kT
(e, =) AH 37/3 s he(2mmekT)¥2 Jo ° wv, (60)

or, after integration,
1 16mZ° e N, 1
AH 3\/3 he(2mme)¥? (RT)Y? »3°

":EZ)(‘”’ °°) =

(61)
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If we put
hy
il (62)
we can re-write (61) in the form
D

K£Z)(°°’ °°) = ’ (63)

u3
where
(z) _ 1 16mZ* &k N,

fo Zﬁ 3\/5 C(erme)3/2 (kT)3-s (64)

Let us now consider the bound-free transitions. By equation (40),
the average number of electrons per atomic nucleus in the state of
principal quantum number # is

2n’

) = . (65)
Nn
1+ G—Zﬁ,T—) e~ /it

Hence, the contribution to the absorption coefficient which is due
to the electrons in the state #, expressed per gram of the material, is

W0, o) = “EZ M am (5 ,0), (66)

where », is defined by

)
@ = @ = 2TemL X2
" " n*h n

(67)
By (54) and (66) we have

474 mee® 5 o1 _
KD (n, o) = L 4L Mk 1 iz (68)

where, according to the remarks on page 262, the quantity g(v; n),
which occurs in (54), has been replaced by a constant 3. We now
re-write (68) in the form

1 16wZ° et 2(2am.)3? 2me'mZ® § b nf
AH 3V/3 hc(amm.)i h b
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Substituting for x?, according to (67) and remembering the defi-
nition of G(T) (Eq. [52]), we can write, instead of (69),

_r 16222 S gG(T)x,(‘Z) ﬂ
AH 333 cGermy wkET) s w '

KSZ) (n, ) =

(70)

Comparing (70) with (64), we can express #(n, ©) in the form

<)
(7)(n 00) Du3 (u 2 My(;Z) = h%('Z)/kT) , (71)
where
2 — p& x& §G(T) 2n?
D,. D n3 N kT G(T) —x(Z)/kT . (72)
I + _ZV— e "
We have the following alternative form for D{':
(Z)
(Z) o /*T
@ = p@ 28 xt e
D =Dy L T L4 N, B : (73)
N

Hence, the absorption coefficient due to electrons in all the electronic
shells and also due to the free-free transitions can be expressed as

@ _ PP )
K, = ’

” (74)
where |
DD () = D@ + D@ + D + ....+ DP (w2 w), (75)
DD (u) = D& 4+ D® + ...+ DP (w>u2u), (76)
DD () = DP +....+ Df(fZ) (2 >u 2 u), (17)

Finally, if we consider a mixture of elements, we have to consider the
functions D'® (x) for each element defined as above; we then form the
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net absorption coefficient by weighting each of the values of «#
with the appropriate abundance factors. Thus we have

D
K = Sxz?) = —1%—) , (78)
where
D(u) = 2xzD9 (u) . (79)

The summations in (78) and (79) are to be effected over all the ele-
ments.

It is clear that D(u), as defined above, is a discontinuous function;
it changes discontinuously at the absorption edges but remains con-

28]
26}
241
22F
2 Kedge of No and Mg
18}
16
14}
K'v 12
10F
8l
6f
Ar Kedge of Kand Ca K-edge of Fe
o S P e
0 [ 2 3 4 5 6 7 8 510
:'VT —
Fi6. 22

stant between any two edges. Figure 22 illustrates the variation of
x, with frequency for the Russell mixture at 7 = 1.4 X 10 degrees
and when log [G(T')/N.] = 3. [The unit of absorption coefficient in
Figure 22 is 3.89 X 10%pT 735,

We have so far considered only the monochromatic absorption
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coefficients. We have now to calculate the Rosseland mean coeffi-
cient of opacity, as defined in equation (159) of chapter v. Intro-
ducing the variable % (defined as in Eq. [62]) in equation (159) of

chapter v, we find that
f C1 e™uldu
= Jo Ko (e — 1) (80)

© evusdu
o (6“ — I)Z

<]

L

By (78) we have
1 e uldu
s D(u) (v — 1)3
® e*urdu

o (e* — (e — 1)°

(81)

x|
]

By what has already been stated, the quantity D(u) is constant
between two absorption edges. Let the absorption edges (of all the
elements present), arranged in descending order, be u;, 4., . .. .,
%iy . ... . Then

D(u) = D(ui, ui+r) (’ui >u 2 ui+,) . (82)
We can therefore express « in the form

S(ui) — S(ui)
- = E D(u” qu) ’ (83)

where S(u) is the function defined by

% g2uyldu
(e — 1)}

T cutdu
o (¢ — 1)?

The integral in the denominator is easily evaluated. By a partial
integration we have

e“urdu ° uddu
f (eu — I)z .J: et — 1 * (85)

S(u) = (84)
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The integral on the right-hand side has already been evaluated (Egs.
[104] and [105], v); it has the value 7*/15. Hence, we have
_ _]i, u u’,'ezu

S(u) = i ), e = du . (86)
The function S(x) was first introduced by Stromgren, who also tabu-
lated the function sufficiently accurately for purposes of evaluating
the stellar opacity coefficient.

Stromgren expresses the opacity in the form

VA g
x = Dy <7 = 6)% , (87)

where Dy, defined as in equation (64), is evaluated for Z2/4 = 6,
and ¢ is a numerical factor (the guillotine factor) depending on
[G(T)/N.] and T. Numerically, it is found that

VA 144N,
Dy, </T - 6> = el (88)

So far, we have neglected the g-factor. Now the g-factors, strictly
speaking, enter as multipliers of the D{*’s. It is, however, clear
that only g-values near the absorption edges are of importance, for
g becomes different from (and smaller than) unity only far from the
absorption edge; in these regions, however, there will be an absorp-
tion edge of another element which will contribute to the stellar
opacity for the region considered. In other words, if we go to fre-
quencies » > »{¥), then the particular D (which contributes to
the absorption near » = v{”’) becomes small, compared to D(x).
An exception occurs for the absorption edges at high frequencies,
but for these the weight AS(«) soon becomes negligible. Stromgren
estimates that § = o.go will not lead to more than a 2 or 3 per cent
error in the final formula for the opacity. Hence, by (87) and (88)
we have

130N,
= T3'5t * (89)
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Table 12, due to Stromgren, gives values of Log;, ¢ for different
values of T and G(T)/N., the computation having been carried
through for the Russell mixture. Thus, for any given electron con-
centration the table enables us to calculate the opacity arising from
a Russell mixture of elements.

TABLE 12
GUILLOTINE FACTOR Log: ¢
log [G(T)/Nl
T
@ 6 5 4 3 2

1X1ob... ... 0.03 devrieieiiidiii
2 i 00 e e
3 .. 02 i
4 .00 0.06 F T & S PO Y
5 .. .o1 .07 J 7 O O
6 ... .08 .14 .22 0.35 0.56 0.79

8 ... .23 .30 .37 .50 .68 0.93
10 ... .33 .38 .45 .58 .76 0.99
12 ... .37 .41 .48 .60 .78 1.01
4 ... .39 .43 .49 .61 .79 1.02
6 ... .40 .43 .49 .60 .78 1.02

18 ... .40 .44 .49 .58 .78 1.02
200 ... .41 .44 .49 .60 0.79 1.03
25 ... 0.48 0.51 0.56 0.66 |........ .|l

We must now consider the effect of an admixture of light elements
(hydrogen and helium) with the Russell mixture. First of all, it is
clear that hydrogen and helium cannot directly contribute to the
stellar absorption coefficient, the essential reason being that the ab-
sorption edges of these elements lie in a spectral region the absorp-
tion in which region does not contribute (for all practical purposes)
to the Rosseland mean. The admixture of lighter elements has, how-
ever, an indirect effect.

Let us consider a mixture of elements—hydrogen, helium, and
the Russell mixture—with the abundance factors X, ¥, and
(1 — X — Y), respectively. Since, as we have seen, the lighter ele-
ments do not contribute to the opacity, the coefficient of opacity
is, accordingly,

130N,
Kk = ;‘Nt 1—-X-7). (90)
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On the other hand, we have (cf. Eq. [50])

Ne=>FG+X). (o1)

i
H
Combining (go) and (g1), we can write

K =

TR+ NE-X-71), (92)

RIS

or, numerically,

k=3.9X 105 (14 X)(1 — X — 7). (93)

If the helium content is negligible, then

sI P
K=3'9X105;’f3—,g(1—X§)~ (94)

From (93) (or [94]) and Table 12 we can calculate the stellar opacity
as a function of the density, temperature, and chemical composition
(here “chemical composition” is essentially equivalent to the abun-
dance of hydrogen and helium). Of course, Strémgren’s table of the
“guillotine factor” ¢ has been calculated for the case where the heavi-
er elements are assumed to occur in a definite ratio. A closer ex-
amination shows, however, that this does not materially affect the
formula for the stellar opacity.

We have so far restricted ourselves to photoelectric ionization as
contributing to the main source of stellar opacity. At high tempera-
tures, however (higher than in the interiors of the more common
stars), there is another physical process which becomes of impor-
tance in contributing to stellar opacity. The process in question is
the scattering by free electrons.

According to the classical electromagnetic theory, an accelerated
electron emits radiation; we are here concerned with the converse
phenomenon. J. J. Thomson has given for the scattering coefficient
o, per electron the formula

8mwed
T = .
¢ amict

(95)
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It will be seen that ¢ is independent of the frequency. Using (g1) for
the expression of the number of free electrons, we have for the con-
tribution to the mass absorption coefficient by electron scattering
the expression

8met
Ke(ll)dv = W 2 H (I + X)dll ; (96)
or, numerically,
k() = 0.20 (1 + X). (97)

If electron scattering were the only source of stellar opacity, then
the Rosseland mean coefficient k, would be given by (cf. Egs. [80]

and [85])
1 _ 15 I ule*
R Mo Tl (98)

Since, however, .(«) is independent of #, the integral in (g8) is
easily evaluated. It is found that

15 (© wiedu 1 [ 4! + 234334 ... ] (9

- 1+ 244344+,

) (" — 18 2

The numerical value of the right side of the foregoing equation is
found to be 1.055. Hence, by (97), (98), and (99),
_o.200(1 +X) _ .
=T o o.19 1+ X). (100)
If photoelectric ionization and electron scattering are both about
equally important, then we must form the Rosseland mean of the
combined absorption coefficient, which by (78) and (97) is

i) = 29 4 (101)

Thus, the resulting coefficient of opacity is given by

x5 [ uie*tdu (
Keri 4T Jo D(u)u‘3 F k(u) (e — 1)3° 102)

11t is incorrect to allow for “induced emission” for electron scattering when allow-
ance has not been made for the Compton shift in wave length, Equation (100) is
therefore incorrect. In this equation, the factor should be 0.20 as in equation (97).
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Stromgren has evaluated k.4: according to (102) for a number of
typical temperatures and densities at which electron scattering be-
comes important, and he has given the following empirical rule:

For a given T and [G(T)/N.}, calculate the coefficient of opacity
x: due to tHe ionization process only, using the table of guillotine
factors. Then calculate «,, which is given by (100). The actual opac-
ity ke+: s equal to the greater of the two quantities «; and «, plus 1.5
times the smaller of the two.

This completes the discussion of stellar opacity.

5. Determination of the mean molecular weights of the stars—We
have shown in the last two sections how the mean molecular weight
and the stellar opacity can be determined in terms of the abundances
of hydrogen and helium. In the discussion we shall in the first in-
stance assume that the helium content can be neglected. We shall
return to this question in § g.

Our assumption, therefore, is that the stellar material is a mixture
of hydrogen and the heavier elements in the ratio, by weight,
Xo:1 — X, We shall further assume that the heavier elements
form a Russell mixture. Actually, we make this definite assumption
about the heavier elements because that is the ratio in which
the clements are approximately present in the sun and in stellar
atmospheres (Russell and C. H. Payne), and which further
happens to agree roughly with the abundances with which these
clements are present in the carth’s crust. But this assumption,
made for the sake of definiteness, is from the point of view of
stellar interiors a very ‘harmless one,” in the sense that any
other assumption regarding the abundances of the heavier elements
will lead to substantially the same conclusions regarding the abun-
dance of hydrogen. This is seen when we compare our first and sec-
ond approximations for u, which are given in § 3. On the first ap-
proximation we derived, with no particular assumption regarding
the abundances of the heavier elements but only assuming that the
material is highly ionized, that

2

= F_!_—S“Y'O, (103)
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while a more rigorous consideration of the state of ionization for
the case when the heavier elements form a Russell mixture, led to

= - (r04)
b= 02X, + nr(@ — Xo)? 4

where 7y is tabulated in Table 10. An examination of (104) with
the values of Aig given in Table 10, and a comparison with (103),
readily shows that the actual specification of the abundances of the
heavier elements is hardly of importance in the present connection.
The same thing is true of stellar opacity, for which we can use

K=3.90X1025§T§—5(I—X§). (105)
It should be mentioned in this connection that if, instead of the
Russell mixture, we use one in which there is a higher proportion of
the heavier elements, then, though the coefficient D@ in the opac-
ity formula (Egs. [64], [71], [73], and [74]) increases, this effect is
largely compensated by a corresponding increase? in the mean mo-
lecular weight, which works in the opposite direction. We thus see
that equation (103) is valid over a wide range of the relative abun-
dances of the heavier elements.

We shall now proceed to outline the method of determining the
hydrogen abundance, X,, for a star of known mass, radius, and lu-
minosity.

We shall write equation (105) in the form

K = Ko

o~ |

p
Tss” (106)

where
kK = 3.9 X 10%(1 — X3) . (107)

2 That there is an increase of u is seen as follows: For a Russell mixture we have seen
that when it is completely ionized there are o.54 free particles per unit atomic weight.
If there is a higher proportion of the heavier elements than in the Russell mixture, there
will be a smaller number of free particles per unit atomic weight; this will increase g,
and therefore decrease the number of free electrons per unit volume.
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The formula for « which was used in § 1 (Eq. [3]) is of the same form
as (106), above. We can therefore use the luminosity formula (14),
which can be written as

* M 5.5
k* = 7.17 X 10% IR (uBe)7s (108)
where L, M, and R are expressed in solar units. Further

, (109)

X
I
~Iz

where 7 is a mean value for the guillotine factor (cf. Eq. [8]).

Thus, for a star of known L, M, and R and an assumed value
for u, equation (108) suffices to determine «* and if we can estimate
the value of 7, then we have—so to say-—an astronomical determina-
tion of the physical constant «,. Again, an assumed value for y im-
plies, according to (103) or (104), a definite value for X,; hence we
have, according to (107), a physical determination of x,. We now
arrange by a proper choice of u (or X,) that the astronomical and
the physical values of «, agree. The value of X, (or u) which brings
about this agreement determines the hydrogen content of the star
under consideration. The point which remains to be settled is the
determination of the mean value { of the guillotine factor.

According to the discussion in §4, ¢ depends on [G(T)/N.],
which, according to equation (36), is defined by

G(T 2rmkT)¥? 1
]Efe)=2(1rh3) N, (110)

To determine ? it is clearly sufficient to consider the first approxima-
tion of § 4, according to which

X, k
p”=l—_|_23——1—1pT; NG=%(I+XO)5' (III)

By (110) and (111) we have

G(T) _ (2amkT)¥? 1 + 3X, ]iz
N, 2 W 1+ Xo Py’ (112)
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which is easily seen to be equivalent to

G(T) _ 2(2mmo)¥? ks 3 1+ 3X01 = B 1y

Ne - 3 a I +Xn B ==, (IIS)
Numerically, the foregoing is

G(T) _ wol+3Xer—8. .,

Ty = 263 X 104 X ot T3, (114)
or

l_
log [_G%‘)] = 2.303[14.42 + Log 11—4__'_—‘3%
’ s (115)
—LogI_6 —%LogT].

Since, according to our first approximation considered in §7 of
chapter vi, the standard-model density distribution is to be regarded
as a first approximation, we can use for 8 in the foregoing equation
the value determined by Eddington’s quartic equation. We shall
then have to study the march of [G(T)/N.] through the star and
by using the table of guillotine factors (Table 12) infer the appro-
priate mean value, .. We shall illustrate the estimation of 7 for the
sun. If we assume for p the value 1.05, the solution of the quartic
equation yields 1 — 8 = 0.004, and by equation (62) of chapter vi,
it is found that T, = 20,000,000 degrees. Table 13 (due to Strom-

TABLE 13
G(T) (169}

T log, [ N, ] ' T log, [ W, ] '
20X10%. ....... 2.8 7 12X108. .. ... 3.3 5
8 2.9 6 0 ... 3.8 4
16 L 3.1 6 - 4.1 3
14 .. 3.3 5 6 ... 4.6 2

gren) gives the corresponding variation of ¢ through the star. From
the table Stromgren estimates that the appropriate mean value of ¢
is about 5, which is seen to be the value of ¢ at about two-thirds of
the central temperature. This appears to be a general rule, so that
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to determine the order of magnitude of Z we first determine 7, ac-
cording to equation (62) of chapter vi and then calculate [G(T)/N,]
for T = 2/3T. as given by (114) or (115). From Table 12 we then ‘
obtain the corresponding value of ¢£. This value of £ is used in the |
luminosity formula as a first approximation to I After a first ap- 1
proximation to u has been obtained, the quantity  having been esti- \
mated in the foregoing manner, we can then proceed to a second ap-
proximation by determining 7 defined appropriately (cf. Eq. [8]).

Using this method, Stromgren has computed the values of u and
has thus inferred the hydrogen contents of those stars for which
there is fairly reliable information concerning L, M, and R. Tables
14a and 14b illustrate the determination of u for Capella and the sun.

TABLE 14a
THE DETERMINATION OF THE HYDROGEN CONTENT OF CAPELLA A
X 1—8 Log xo (Astro.) Log xo
¢ # “OR Ko : (Physical)

0.34. . i, 0.95 0.04 25.37 25.53
BT 1.00 .04 25.51 25.54
28 1.05 " .05 25.64 25.55
L25 1.10 .00 25.76 25.56
0.22. .., 1.15 o.07 25.88 25.56

log [G(T)/N.]=17; I=1; Xo=0.30; p=1.01

TABLE 140
THE DETERMINATION OF THE HYDROGEN CONTENT OF THE SUN
X -8 L (Astro.) Log xo
o s ! 08 ko {Astro. (Physical)
0.30. .. ... 1.00 ©.003 8 24.85 24.84
L33 1.05 .004 25.01 24.85
©.20. . i 1.10 ©.004 25.16 24.86

log [G(T)/N.]=3; I=5; X.=0.36; u=1.00

In connection with the foregoing solutions it is necessary to re-
mark that the values of X, given do not represent the only solution
to the problem. For a given star there are, in general, two values of
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X, for which there is agreement between the astronomical and the
physical values of k*. The second solution, as we shall see presently,
however, corresponds to an extremely high abundance of hydrogen.
We can best illustrate the existence of this second solution in the
case of Capella, for which the guillotine factor is approximately
unity.

If therc exists a solution corresponding to which X, is almost
unity, we can put g = o.5 in the luminosity formula. Again, for the
order of stellar masses we shall normally be interested in (masses
less than 10 ©), B. is very nearly unity. Hence, we can also put
B. = 1. Equation (108) now reduces to

5.5

k* = 4.0 X 1022%1137.5 (u=o0.5, Bo=1). (108")

For Capella, M = 4.18, L = 120, and R = 15.8. Inserting these
values in (108’), we find that x* = 2.17 X 10®. It is also found
that ! is unity, and hence

ko (astronomical) = 2.17 X 10%,
while
%o (physical) = 3.89 X 10% (1 — X3) .

From the foregoing it follows that X, = 0.997. In other words, this
second solution corresponds to gg9.7 per cent abundance of hydrogen,
while our first solution corresponds to 3o per cent of hydrogen.
Similar results will be obtained for the other stars. Hence, quite
generally, the second solution corresponds to an extremely high
abundance of hydrogen, and it is improbable that such an extreme
abundance of hydrogen can correspond to reality. Actually, there
are reasons to believe that the hydrogen abundance in stellar in-
teriors must be less than in stellar atmospheres—the essential ground
for this belief being that the heavier elements will “sink” relatively
more toward the center of a star than the lighter elements, and it
appears that hydrogen is not present in stellar atmospheres to any-
thing approaching 99.7 per cent by weight. We shall therefore re-
strict ourselves (unless otherwise stated) to the solution which corre-
sponds to a “moderate” abundance of hydrogen.
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6. General remarks.—Before we proceed to describe Stromgren’s
results for other stars and the bearing of these calculations toward
an interpretation of the Hertzsprung-Russell diagram, it is neces-
sary to make some comments concerning our present attitude, as
compared with that generally adopted in an earlier epoch (i.e., prior
to Stromgren’s systematic work).

In Eddington’s earlier work it was assumed that all stars have
the same mean molecular weight (u ~ 2). This implies, for all prac-
tical purposes, that the lighter elements (hydrogen in the present
connection) are not abundant. The assumption of constant y is not
only characteristic of Eddington’s early work but has been implicitly
assumed quite generally. This assumption, according to our present
point of view, has to be abandoned. The reasons can be briefly sum-
marized as follows:

Let us suppose that the abundance of hydrogen is negligible. Then
we immediately come into conflict with the physical theory of the
stellar opacity. The nature of the conflict can be illustrated by tak-
ing the case of Capella. Observationally, we have

L = 120Lp ; M= 4.180; R = 15.8Rg .

Let us assume (as in Eddington’s early work) that 4 = 2.11. Then
we have
B=o0.717; Te=17.9 X 105.

The guillotine factor 7 is found to be unity, so that, according to
(107)’ (XO = O)’

k* (physical) = 3.9 X 10%.
From (108), on the other hand, it is found that
k* (astronomical) = 8.8 X 10%. (116)

We see that the two values of «* differ by a factor of about 23; this
is the famous “opacity discrepancy.” In spite of this discrepancy,
the tendency was to assume that the origin of it is due to the in-
adequacy of the physical theory, and in Eddington’s early work «*
was assumed to be equal to its “astronomical value.” The luminosity
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formula (108) (with «* according to [r 16]) was therefore used to
predict the luminosities of other stars. It was found that the lu-
minosities thus predicted agreed with observation. This was taken
to imply that the stars in fact form a one-parametric sequence of
configurations.

But the foregoing point of view has to be abandoned, for the
more refined theory of the stellar opacity now available leaves no
room for doubting the physical theory. Consequently, we must ac-
cept an abundance of the lighter elements, in particular of hydrogen,
to remove the discordance between the physical and the astronomi-
cal value of x*. But now it may be argued that we may allow for an
abundance of hydrogen but still use a constant u for all the stars, so
that the luminosity formula can still be used to predict the luminosi-
ties for stars of known mass and radius. This idea gained some cur-
rency when it was found that both Capella and the sun lead to about
the same value of X,. But one important difference has to be noticed.
We obtain the same value of X, for Capella and the sun because
of the guillotine factor. For the sun the guillotine factor is 5, while
for Capella it is unity, so that, if we use for k* the value derived
from Capella, and use (108) to predict the luminosity of the sun, we
should be wrong by a factor of 5. Now, this same argument (due
originally to Eddington) can be employed to show the necessity for
introducing a variable X,. Consider, for instance, the sun and { Her-
culis A3 Both have very nearly the same mass (M; ser = 0.96), but
¢ Herculis A has a radius about twice that of the sun and a lu-
minosity about four times that of the sun. Suppose we assume that
the sun and ¢ Herculis A have the same value for u. It is found now
that for ¢ Herculis 7 is 2.3. Again, since { Herculis has twice the
solar radius, the predicted luminosity would be

2.3 X (0.96)5%

L (predicted) = 25X s

= o0.25,
while L (observed) = 4.0—i.e., a discrepancy of a factor of 16. Thus,
¢ Herculis must have a different value of u from that of the sun.
Indeed, calculation shows that for { Herculis, X, = o.11 and
B = L1.45.

3 This is only an example. We can give other similar examples.
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Thus, for consistency we are forced to accept a variable u for
stars; consequently, the luminosity formula (108) has to be used
to determine u (or X,) for individual stars, rather than to predict
the luminosities for different stars. It is necessary to emphasize
this because Eddington, who, independently of Strémgren, intro-
duced the abundance of hydrogen to remove the “opacity discrep-
ancy” for the case of Capella and the sun, seems inclined to the view
that the luminosity formula can still be used to predict L for other
stars, using a constant u ~ 1.0 for all stars. The objection to using
the luminosity formula in determining u for the individual stars
seems to arise from an uneasiness that u is used as an “adjustable
parameter” to “save” an “inadequate” theory. But the answer to
such an objection is that, if we allow u to be variable, the derived
w’s show a systematic variation in the plane of the Hertzsprung-
Russell diagram and do not show any randomness. In other words,
we derive an interpretation of the characteristic features of the
Hertzsprung-Russell diagram in conformity with the Vogt-Russell
theorem.

7. Inlerpretation of the Hertzsprung-Russell diagram.—According
to the method outlined in § 35, it is relatively simple to determine
the hydrogen contents of stars for which the values of the funda-
mental parameters L, M, and R are known. The computations have
been carried out for about forty stars, and the resulting hydrogen
contents for some of them are given in Table 34 in the form of an ap-
pendix. We shall here be concerned only with the general results,
but it may be mentioned that for the B stars it is necessary to take
into account the effect of electron scattering, which was considered
at the end of § 4.

First of all, the question arises whether we cannot represent the
whole observational material—within the limits of the uncertainty
of the observations—on the assumption of a constant u for all the
stars. We have already considered this question in § 6, and a closer
examination now reveals that, though the most commonly discussed
stars—the sun, Capella A, and Sirius A—have about equal hydro-
gen content (~35 per cent), it is yet not possible to predict the lu-
minosities of all the stars considered on the basis of a constant u.
If an attempt is made, we encounter discrepancies in the predicted
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Juminosities sometimes amounting to as much as by a factor of 50,
and further, these discrepancies show a systematic character. T he
magnitude of these discrepancies and their systematic nature pre-
clude the possibility of constant u. It is highly satisfactory that
we are led to a variable u (or X,) purely from observations, for we
are led to precisely the same conclusion by appealing to the Vogt-
Russell theorem. For, two stars of equal mass can differ (in radius

X
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F1c. 230.—Each dot represents a star and is labeled by the computed X, (Strém-
gren, Zs.f. Ap., 7, 222, 1933).

or/and luminosity) only on account of a difference in chemical com-
position, and we have now to examine whether the observed masses,
radii, and luminosities, and the derived hydrogen contents enable
us to arrange the stars as a two-parametric family of configurations
(the two parameters being M and X,).

In Figures 23¢ and 23b we have plotted Log M against Log R.
Each star is represented by a point in this plane, and we label each
point by the appropriate X,. We see that the plot in this diagram
enables us—more or less unambiguously—to draw curves of constant
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u (or X,) in the (Log M, Log R) plane. Schematically, the situation
that arises is shown in Figure 24.

It is clear from Figure 23 or Figure 24 that, if we consider a se-
quence of stars of a given M but of increasing radii, then along this
sequence the hydrogen content decreases, while the mean molecular
weight increases. This is, indeed, a quite general result: For a given
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F16. 236.—This is a revised diagram in which the more recent data have been used.
As in Fig. 230, each dot represents a star and is labeled by the computed X,.

mass, with increasing radius, the hydrogen content decreases. This re-
sult is easily understood. Observationally, it is well known that a
rough empirical mass-luminosity correlation exists in nature. An in-
crease of radius, then, has two effects: first, the guillotine factor
decreases, and, second, the radius factor in the luminosity formula
increases. Both these effects act in the same sense—toward lowering
the predicted luminosity; to counteract this effect it is necessary to
increase u or, what comes to the same thing, to decrease the hydro-

14
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gen content. In the caseof the massive stars, however, another effect
becomes important: For the massive stars of smaller radii (i.e., for
the B stars which form the continuation of the main series) the cen-
tral temperature is sufficiently high to reduce the magnitude of the
general (i.e., the Kramers-Gaunt) opacity, thus making the con-
tribution to the absorption by electron scattering important. Thus,
while a decreasing radius still corresponds to an increase in the guil-

a7+ om0
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QU246 030 0% 08 gl U6
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0 g 92 03 0% 95 05 47 08 09 10
log A
T16. 24.—The semicmpirical curves of constant X, in the (Log M, Log R) plane

(Stromgren, Zs. f. Ap., 7, 222, 1933). Fach curve is labeled by the corresponding
value of Xo.

<

-ﬂ’f

lotine factor, the increasing importance of electron scattering with
decreasing radius acts in the opposite direction, in counteracting the
decrease of stellar opacity arising from the guillotine factor. Hence,
in the case of the massive stars, though decreasing radius still corre-
sponds to increasing X,, the range of variation in X, for given
change in R is much less than for stars of “ordinary” masses (i.c.,
M < 4 0).

Once we have drawn an empirical set of curves of constant X, as
in Figure 24 (which, it will be remembered, combines the results de-
rived from a theoretical [L, M, R, u] relation and the set of values
of L, M, and R that occur in nature), then, if we specify the mass
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and the radius of a star, the appropriate u or X, can be directly read
off from the diagram; from a knowledge of M, R, and u we can pre-
dict L. Further, we can transform the curves of constant X, from
the (Log M, Log R) plane to a set of curves of constant X, in the plane
of the Hertzsprung-Russell (for short, “H.R.”) diagram. As is well
known, the co-ordinates which describe a star in the H.R. plane are
the absolute magnitude (essentially —2.5 Log L) and the spectral
type (essentially Log T.), T. (the effective temperature) increasing
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F16. 25.—The curves of constant X, (the full-line curves) and the curves of constant
M (the dotted curves) in the plane of the Hertzsprung-Russell diagram (Stromgren,
Zs.f. Ap., 7, 222, 1933).

toward the left. To transform the curves of constant X, from the
(Log M, Log R) plane to curves of constant X, in the H.R. plane, we
go along each particular curve in the (Log M, Log R) plane, and for
each point we calculate L according to the luminosity formula, and
hence also Log T.; for, according to the definition of the effective

temperature, we have

L
4 =
oT? R (117)

Similarly, we can draw curves of constant M in the H.R. plane.
These two sets of curves will enable us to determine both the mass
and the hydrogen content of a star merely from its position in the
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Hertzsprung-Russell diagram (see Fig. 25). It may happen that the
curves of constant X, intersect in the H.R. plane. In such cases ref-
erence must be made to the (Log M, Log R) plane. We have thus suc-
ceeded in arranging the stars in a two-parametric sequence entirely
in conformity with the requirements of the Vogt-Russell theorem.

From the topography of the curves of constant X, and constant
M, we derive the following interpretation (due to Stromgren) of the
characteristic features of the Hertzsprung-Russell diagram:

The main series up to spectral class A is the locus of stars of hy-
drogen content varying between 25 and 43 per cent—i.e., about a
mean of 35 per cent—and masses running up to 2.5 ©. Stars of
small mass and low hydrogen content are relatively rare—they oc-
cur as subgiants of spectral classes G-K. The gap between the M
giants and the corresponding dwarfs (on the main series) arises from
the circumstance that not even stars of low hydrogen content “scat-
ter” in this region. The massive stars (M > 5 ©) occurring in the
region of the B stars which are rich in hydrogen (X, sometimes going
up to 95 per cent) form the continuation of the main series—the
continuation arising from the circumstance that massive stars with
“medium” hydrogen content (0.4 < X, < 0.8) which are on the
main series occur in a very small region of the H.R. diagram between
the B and the A stars. (We shall obtain evidence in chapter viii for
the breakdown of the standard model for the very massive stars.
Further, along the main series the breakdown probably sets in at
about M = 10 ©. The investigations of the hydrogen content of
the B stars is therefore somewhat inconclusive. We shall return to
these matters in chapter viii.) The giant branch is characterized by
stars having about the same hydrogen content as (or somewhat less
than) the main series stars. The giant branch is limited on the side
of low luminosity, since stars of low luminosity are relatively rare.
On the side of high luminosity it is limited again, because, for X, a
little greater than 0.3, the characteristic bend of the curves of con-
stant X, disappears, and also because the stars of large mass with
hydrogen content greater than about 40 per cent scatter over a large
area in the HL.R. diagram, which must, therefore, be sparsely popu-
lated. The gap (the “Hertzsprung gap”) in the giant branch in the
region of spectral class F is probably due to a real scarcity of stars



286 STUDY OF STELLAR STRUCTURE

with masses between 2.5 and 4.5 ©. The supergiants, then, are in-
terpreted as massive stars with medium hydrogen content. The
“spreading-out” of the curves of constant X, in the supergiant region
of the H.R. diagram is easily understood from the remarks made
on pages 282 and 283.

L a 1 1 1

5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4
F16. 26-—The abscissae are Log Te; the ordinates are absolute bolometric magni-
tudes (Kuiper, 4p. J., 86, 176, 1937). The clusters are identified in Table 2 of Kuiper’s
paper.

8. Kuiper’s interpretation of the cluster diagrams: the hydrogen con-
tent of the Hyades stars.—So far we have considered only the charac-
teristic features of the general H.R. diagram. It is clear that we can
construct the absolute-magnitude-spectral-type diagrams, includ-
ing in the plot only such stars as are physically associated—like the
stars in a cluster. The H.R. diagram for stars in a cluster may be
called a “cluster diagram.” The pioneering work on this subject was
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done by Hertzsprung in 1911, and extensive studies of a systematic
nature of the cluster diagrams have been carried out by Trumpler;
for a general discussion of the subject from the observational side,
and for references, see a paper by Kuiper quoted in the Bibliographi-
cal Notes at the end of this chapter. Figure 26 is taken from Kuiper’s
paper. From the similarity of these curves with the Stromgren
curves of constant X,, Kuiper infers that the stars in a cluster are
characterized by approximately the same hydrogen content.

A comparison of the diagrams for the Pleiades and the Hyades in-
dicate that Hyades stars should have relatively low hydrogen con-
tent. In the case of the Hyades cluster, Kuiper’s suggestion is capa-

TABLE 15*
THE HYDROGEN CONTENT OF THE STARS IN HYADES
ADS Log L/LO Log R/R( Log (M/Q) Xo Weight
3264 ... ... +o0.69 +o.11 +4o0.07 <o.23 1}
3483 ... + .40 + .09 + .o .30 1
3135 0.n-n- + .o7 — .od — .195 .14 3
3169... . ... .. + .06 — .03 — .21 < .13 3
34750 e + .03 — .00 — .19 15 3
3210......... —0.37 —0.13 —0.44 0.02 2

* For ADS 3135 Kuiper has revised the data on the basis of additional information. The new
value has been used here.

ble of verification. There are six stars in this cluster for which Kuiper
has derived the values of L, M, and R. For these stars Stromgren
has computed the hydrogen content X, and the results are given
in Table 15. The uncertainties in the values of L, M, and R used
arise essentially from the uncertainties in the parallax of the individ-
ual stars (though the parallax of the cluster itself is fairly reliably
known). According to Kuiper, the weighted mean of the six de-
terminations, which gives X, (mean) = o.16, may be considered as
a reliable estimate of hydrogen content of the Hyades stars.

9. The abundance of helium in stellar interiors—We found in § 3
that for purposes of the analysis of stellar interiors it is sufficient
to consider the abundances of hydrogen, helium, and all the other
heavier elements (Russell mixture) lumped into one group. In the
discussions in §§ 3, 6, 7, and 8 we assumed that the helium content
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could be neglected. This assumption is justifiable in the first in-
stance in so far as investigations of the stellar atmospheres seem to
indicate that hydrogen is very much more abundant than helium.
But it should be remembered that the determination of the abun-
dances of hydrogen and helium in stellar atmospheres is a matter of
great complexity. This has to be borne in mind, especially in view
of the fact that in a recent investigation on the transmutation of
elements in stellar interiors (chap. xii) by von Weizsicker the sug-
gestion is made that helium may be very much more abundant than
all the other heavier elements put together. Indeed, von Weizsick-
er’s theory seems to require helium to be as much as eight to ten
times as abundant as the Russell mixture; and Stromgren has ex-
amined whether this requirement of von Weizsicker’s theory is com-
patible with the data concerning the masses, luminosities, and radii
of the stars. We shall follow Strémgren’s discussion of this matter.

Let us consider the “second solution” for the hydrogen content,
the existence of which we pointed out in § 5. In the case of Capella
we found that the “second solution” corresponds to an abundance of
99.7 per cent of hydrogen. But this extreme abundance of hydrogen
corresponds to the relative abundance of hydrogen to the Russell
mixture which is so high as to be quite improbable. However, if
we reduce the amount of hydrogen by a small amount and replace
it by helium, then we increase u so that the predicted luminosity, in
the first instance, is greater. Hence, in order to predict the correct
luminosity, we must increase the absorption and hence increase the
abundance of the heavier elements. It is clear that by a suitable
increase of the amount of the Russell mixture present we can again
obtain agreement between the observed and the predicted luminosi-
ties. We now have two unknowns—the hydrogen content, X , and
the helium content, ¥. There is only one relation—the theoretical
(L, M, R, ) relation—available, so that we can determine the hydro-
gen content X and the ratio of Russell mixture to helium (U : Y)
as functions of the helium content. Tables 16a and 16b (due to
Stromgren) illustrate the results of such calculations for the case of
the sun and Capella.

The table shows that the (L, M, R, u) relation can be used to de-
termine the maximum value of the ratio ¥ : U. Also, a definite
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physical theory of the transmutation of elements in stellar interiors
would provide a theoretical value for the ratio ¥ : U. For a specified
value of the ratio ¥ : U, we have, in general, two solutions, but it
will be more difficult to decide between them now. For example, if
the ratio were prescribed to be 10, then for the sun we have for the
relative abundances of hydrogen, helium, and the Russell mixture

TABLE 16a
THE HYDROGEN AND HELIUM CONTENT OF THE SUN
Helium Hydrogen Russell-Mixture . .
Content (V) Content (X) Content (U) v:u U:x
0.00. . vt 1.00 0.002 o 0.002
00 e 0.90 .004 22 .005
I € 0.8 .009 21 011
28 0.70 .02 15 .026
30 e 0.61 .04 10 .059
42 0.51 .07 6 .14
[ 0.43 0.14 3 0.32
TABLE 16b

THE HYDROGEN AND HELIUM CONTENT OF CAPELLA A

Helium Hydrogen Russell-Mixture Y:U U:x
Content (Y) Content (X) Content (U) * °

1.00 0.001 o 0.001
0.90 .002 46 .002
0.80 .005 37 .006
0.70 .0I2 24 .02
0.60 .025 15 .04
0.5 .07 6 .13
0.42 o.11 4 0.26

the two solutions 60 : 36 : 4 and go : 10 : ~ 0.3. Of the two so-
Jutions, the first is probably more consistent with the spectroscopic
evidence from the study of stellar atmospheres. It should further
be noticed that the observational uncertainties in L affect the de-
rived content of the Russell mixture directly, so that the chemical
composition derived on the hydrogen-helium-Russell-mixture hy-
pothesis is very much more sensitive to the uncertainties in the ob-
servational values of L than is the case on the hydrogen-Russell-
mixture hypothesis.
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For the other stars we have similar results; for Capella A, Strém-
gren finds that the calculations lead to results very similar to those
for the sun. For the subgiants, it again appears that they are rela-
tively poorer in hydrogen than the main-series stars. Further, the
connection between the radius and the content of the heavy ele-
ments appears to be the same as in our earlier discussion on the basis
of the hydrogen-Russell-mixture hypothesis. Indeed, the run of the
curves of constant abundance of the heavy elements in the plane
of the H.R. diagram derived in § 7 (Fig. 23) is seen to be very gen-
eral: If we consider stars of “medium” masses (M < 2.5 ©), then
an increase in R has two effects: it decreases the guillotine factor A
and it increases the R° factor in the luminosity formula. Both these
effects, acting in the same sense, make the predicted luminosity too
low in the first instance (there being an empirical rough mass-lumi-
nosity correlation). To obtain agreement between the predicted and
the observed values of L, we must increase the abundance of the
heavier elements; i.e., U increases with increasing R. For the more
massive stars, on the other hand, the electron scattering—now of im-
portance—acts in the opposite direction to the guillotine factor and
the R>$ factor in the luminosity formula. The “spreading-out” of
the curves of constant U in the H.R. diagram is thus seen to be very
general. The general conclusions, then, are essentially the same as
before. The important point to note in the present connection is
that an abundance of helium comparable to that of hydrogen is
“compatible with the observational data concerning the masses, lu-
minosities and radii of the stars” (Stromgren).

BIBLIOGRAPHICAL NOTES

This chapter deals almost entirely with the results contained in—

1. B. STROMGREN, Zs. f. Ap. 4, 118, 1932.

2. B. STROMGREN, Zs. f. Ap., 7, 222, 1033.

3. B. STROMGREN, Erg. exakt. Nalurwiss., 16, 465, 1937 (88 16, 17, and 18 of
this paper).

§ 1.—For the whole discussion the luminosity formula L = 4mcGM (1 — B.)
/7 is made the fundamental starting-point. The exposition of the theory
starting with the luminosity formula makes the presentation rather neat, and
this particular arrangement of the arguments is believed to be new.

§ 2—4. H. Vocr, A.N., 226, 301, 1926.



THE HERTZSPRUNG-RUSSELL DIAGRAM 291

. H. N. RusseLL, in RusseLL, DUGAN, and STEWART, Astronomy, 2, 910,
Boston, 1927.

§§ 3 and 4.—References 1 and 2. Also—

6. R. H. FowiER and E. A. GUGGENHEIM, M.N., 85, 030, 1925.

7. A. S. EDDINGTON, M.N., 92, 364, 1932.

§§ 5, 6, and 7.—References 1 and 2. Also—

8. A.S. EppiNGTON, M.N., 92, 471, 1932. In this paper Eddington tends to
a belief that all stars have the same hydrogen content. This differs from the
point of view currently adopted.

§ 8.—9. E. HERTZSPRUNG, Potsdam Pub., 63, 1911. This classical paper,
which is very rarely quoted, contains a summary of Hertzsprung’s earlier work
(1905-1009), in which the giants and dwarfs were discovered. It gives a clear
description of the main series (Hauptserie) as being a group of stars of nearly
the same radii but widely different surface temperatures, which results in the
observed differences in luminosity. Giants and supergiants (c stars) are also
discussed. The paper contains the first diagrams relating color equivalent or
spectral equivalent with absolute magnitude.

10. R. J. TRUMPLER, Pub. A.S.P., 40, 265, 1928.

11. G. P. KurpERr, Harvard Bull., No. 903, 1936.

12. G. P. KuipEr, A4p. J., 86, 176, 1937.

§ 9.—B. STROMGREN, Ap. J., 87, 520, 1938. Also reference 3

The following further references may be noted:

13. R. H. FowLER, Statistical Mechanics, 2d ed., chaps. xiv, xv, xvi, and
xvii, Cambridge, 1936.

14. S. ROSSELAND, Astrophysik auf Atomtheoretischer Grundlage, Berlin, 1931
(§ 16 of this book).

In references 13 and 14 problems connected with “excluded volumes,”
“electrical pressure,” etc., are considered—topics which have not been treated
in the monograph.



CHAPTER VIII

STELLAR ENVELOPES AND THE CENTRAL
CONDENSATION OF STARS

In this chapter we shall discuss the equilibrium of stellar en-
velopes. By a “stellar envelope” we shall mean the outer parts of a
star, which, though containing only a small fraction (for definite-
ness, we shall assume this fraction to be 10 per cent) of the total
mass, M, nevertheless occupy a good fraction of the radius, R. A
study of stellar envelopes has a twofold importance for astrophysical
theories: first, it extends the region of the study of the conventional
stellar atmospheres into the far interior, and second, it has also a
very definite bearing on the studies of the deep interiors which are
our main concern in this monograph. Thus, the central condensa-
tion of a star, defined as the fraction £* of the radius, R, which in-
closes the inner go per cent of the mass, M, must give some indica-
tion of the concentration of the mass toward the center of the star
under consideration. It is clear that (1 — £*) is a measure of the
extent of the stellar envelope. The main problem which we shall
consider in the theory of stellar envelopes is the evaluation of the
central condensations of stars of known L, M, and R and assumed
chemical composition. We shall see that this subject is closely re-
lated to the problems discussed in chapter vii.

1. The equilibrium of stellar envelopes.—The general theory pre-
sented here is due to Chandrasekhar.

In writing down the equations of equilibrium, the following two
simplifications will be introduced: (a) that there are no sources of
energy in the stellar envelope, and (b) that the mass contained in
the envelope can be neglected in comparison with the mass of the
star as a whole. Indeed, these two assumptions can be taken to
define the stellar envelope.

The equations of equilibrium of the stellar envelope, then, are

, GM
d—(%ﬂ =T m°f (1)

292
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and
dp. _ xL
dr ~ 4mcr?

P, (2)

the symbols having their usual meaning. The formula for the stellar
opacity appropriate to the present discussion is (cf. Eq. [94], vii)

=X » (3)

k= 3.89 X 10% ; ik

It is found that, under the circumstances of the stellar envelope, the
guillotine factor ¢ does not vary appreciably; in many cases of prac-
tical importance it is very near unity, and even under the most un-
favorable circumstances it varies only by as much as a factor of 3.
Further, the guillotine factor occurs in the final formulae (which de-
termine the central condensation £*) only as a square root, so that
we can conveniently replace ¢ by a constant £ throughout the en-
velope. We shall therefore write (3) as

. = 3:9 X 10%(1 — X2)

K = KOPT_3-5 H F (4)
Dividing (1) by (2) and using (4), we have
dp, _ 4meGM T3 _
dpr - KoL p I. (S)
The equations of equilibrium, then, are
k3 d(pT) _ 4mcGM T35
ulH o d(T9 L »p T ©)
ad(T) _ _ wL ¢
3 dr  amerr T35’ )
and
aM
——d—fL) = 4mrip. (8)

The foregoing equations are reduced by the substitutions

r=Rt; T=Ta; p=poc; Mr)=DMy, (9)
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to the form
d(ar) _ s
d(r) o t
,d(r) a?
FE T T
and
d:
d;g = of*,
provided
T35 kel T35 kol 31
po  4mcGM’ o2 4wca R’
—k3p — 47Rp
K_p a T3’ 'D_‘M

The solutions of equations (13) and (14) are found to be

KoL a R

T - (41rcGM)2 (§ GM\?
¢ koL a R /)’

D= 4ATR3 (41rcGM S(Q GMY’
T M koL a R ’

oy = (4-/r¢:GM)8 <3 GM)7
o =\ ——F— > B

and

K _k_§<4MGM2<§£ﬂ£
uH a koL ¢ R/’

Numerically, the foregoing are equivalent to

M .
6.41 X 10' (1 — X312,

T, L*R?

I5
po = 2.26 X 1037 I{lls—w (1 — X2)~828,

and
8 —1 —_ 2\—2 j2
2.78 X 109L—2Ru (1 — X3,

x
Il

(10)

(11)

(12)

(23)

(14)

(15)

(x6)

(x7)

(18)

(19)

(20)

(21)
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In equations (19), (20), and (21), above, we have expressed M, L,
and R in solar units.
2. The solution of the equations of equilibrium.—Introduce the
variable v, defined by
yr3 = Ko . (22)

From the equation defining K (Eq. [14]), it can be verified that y, as
defined above, is precisely the ratio of the gas pressure to the radia-
tion pressure, i.e., 8 : (1 — B) in our usual notation. In terms of y,
equation (10) takes the form

d(yt) _ Kr/2 _

P1ED) y I, (23)
which is equivalent to
d
byrF = Krl =yl + 1) - (24)
Introducing the new variable x, defined by
Krl*=x, (25)
we have the following differential equation for y:
1@y
Joy 2 =x =0+ 1) (26)
Instead of (26), consider the more general equation
by 2 =% — 30y + 1) (27)
dx !

where & is a small positive constant. To solve (27) we shall adopt a
method in principle due to Jeans.
Assume a solution of the form

y=yo+6y,+6’yz+..... (28)

Inserting the foregoing in (27) and equating the coefficients of the
powers of 8, we find

dy,
x = vy + 1) xyod—j;c— = —y(2¥%F+ 1) 5., (29)
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or

Yo=(x+ D —%; y'=—rxyil-i%—);”"' (30)
Hence,
y=yo[l—i6x_:_%+....]. (31)

The foregoing series converges quite rapidly for small 8. Thus, for
the case where § = 1/8, we have

y=ni- St (32)
The second term in the brackets in (32) contributes, at most, about
3 per cent. Also, since x is very large, except in the immediate neigh-
borhood of the boundary of the star, it is clear that for our present
purposes it would be sufficient to replace the second term in the
brackets in (32) by its limiting constant value —1/32, in which case

y = 5. (33)

Reverting to the original variable 7, we have, according to equa-
tion (29),

K1/ = % = yo(3 + 1), (34)
or
7=z %00+ D*. (35)
By (22), then,
o=y, (36)
or by (33) and (35)
o =% B W0+ 0. (37)

Equations (35) and (37) determine 7 and ¢ in terms of y,. We shall
now determine the variation of y, with &.
From (10) and (11) we have

K‘f‘f@:_ + 2 (38)

1+ -
o d§ 7387
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or, in terms of v, (cf. Egs. [35] and [37]),

1, 1 4 N
REG o g R+ = 1oy (39)

Equation (39) is found to reduce to

dy, o ;
7 %00 + D173 + 9) —j; = —yy——-—oi?, (40)
or
_r . - _g%
P ¥o(¥e + 1)2(1750 + 9)dYo B (41)

We shall presently see that, except in the very immediate neighbor-
hood of the boundary, y, ~ 10 (often it is very much larger), so
that we can properly neglect the term 1/32 in comparison with y,in
equation (41). It should be remembered in this connection that in
the immediate neighborhood of the boundary y — ¥, (according to
the solution [32]), so that we make the best of both “worlds” by
neglecting 1/32 in (41).* We therefore have as the (y,, £) differential
equation

o + 073+ )i = —K g (42)

Integrating the foregoing equation and using the boundary condi-
tion that at £ = 1, ¥, = o, we have

(30 + 1)3(51y0 + 19) — 19 = 12K (% - I) . (43)

Equation (43), combined with (35) and (37), determines the physi-
cal structure of the stellar envelope completely.

To obtain the mass in the envelope, we have to integrate (12).
We have

Y(; 8 = ﬁr ofrdt = % %L (o + 1)°8%dE . (a4)

t It should be noticed that the solution (32) is a singular solution of the differential
equation (27) (cf. chap. ix), to which all its other solutions very rapidly converge, so
that, in any case, we should be careful not to take the behavior of the solutions in the
immediate neighborhood of the boundary too literally.
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Using (42) to change the variable of integration to v,, we have

Y(1;8) = % -[%, fo Eyi(yo + 1% (170 + 9)dy, ; (45)

or, finally, using (43), we have

¢(y0) — 31 1 yz)(yo + 1)8(17370 + Q)dyo . (46)
3 K [ (o + 1090 + ) — 28] + 1]4

Put

w = ay, = ${ay, (a7)
where
w=-1. (48)

Equation (46) now reduces to

v = 2 (A7 ), (49)

where
) _ "’ w (w4 a)¥(w + La)dw
fla;w) = 4 L, (@ F a)¥(w + 30a) _1 Hat + 1)+ (50)

As stated on page 292, we shall define the extent of the stellar en-
velope by the fraction (1 — £*) which contains the outer 1o per
cent of the total mass of the star. By (g) this means that

W) = 2. (51)

Let w = w* where £ = £*. Then by (49)

I _ 31 325 D "

10 32 (17) K3 G E (52)
or, using the explicit expressions for K and D given in equations
(17) and (18), we have

1 31 4wRs (4 3 GM)‘ ”(41rcGM>° 5<,uH a

o= n o s = e ) e v (59
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Inserting the numerical values for the various quantities occurring
in (48) and (53) and expressing M, L, and R in solar units (which con-
vention we shall adopt hereafter), we have finally the following
equations which determine the central condensation of any star for
which L, M, and R are known:

L*Ru(1 — X2)#]/+

o = 625 1o [ PRI (54)
— X2)°s (LR°S 1/2

f(a; w*) = 0.0618 (122,5#3.7)5 (MS'S) , (55)
and
I
* —
E - @ T @ F e 1 e (56)

Equation (56) is obtained from (43), which, in terms of w (= ayo),
has the following form:

(w+ aw + 130 — pet = (F— ). (s7)

3. Stellar envelopes with negligible radiation pressure.—From (47)
it is clear that a is a measure of the importance of the radiation
pressure (for some typical stars [cf. § 5] a ~ 0.05). We shall con-
sider now the case of negligible radiation pressure, i.e., the case
where a is small.

Let us first consider the case of vanishing radiation pressure.
Then v, is very large, and a can be neglected in comparison with
unity. According to (35) and (37), we have for the case under con-
sideration

=X . 3T I ,
T Kz yﬂ’ o 32 K7 yn (}0_—)@)7 (58)
so that
o= §j K537 (90— @) . (59)

Again from (43)

g1y = 12K (é — I> (3o — =), (60)
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or from the definition of w (Egs. [47] and [48])

I+ w=1 (3o — ®), (61)

oee

a relation which could have been obtained directly from (57) by
making a tend to zero.

Using (60) to eliminate y, from the relations (58) and (59), we
have

=22 e e
and
T 3.25 1 1 3.25
-5 E) B G- )
Using (52), equation (63) can be reduced to the form
1 1 325
= oo () 64)
Since
P = Poo ; T = T,r, (65)

we have, according to equations (15), (16), (17), (18), (62), and (64),

H GM
Tt R () (66
and
I _f1 3.25
P = oo w (E - ) ’ (67)

where p is the mean density of the whole star. If we put £ = ¢*in
the foregoing equation and use for f the value given by (ss), we
shall obtain the density and the temperature at the “base” of the
stellar envelope.

Equations (62) and (63) show that stellar envelopes with negligible
radiation pressure form a homologous family.

For a = o, the equation determining the extent of the stellar en-
velope simplifies considerably. From (50) we now have

flo; w) = f (wz:ﬂ:szl s (68)
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Equation (68) is an elementary integral and can be evaluated. The

result is
f(o;w)=58—5{w— I—[lngﬁ_w\/z-'-I 2 tan™* w\/z]}
96 4\/2 —wVat1 1 — w
(69)
w3 13%° 117w

T3+ 17 24wt + 1) o6(wt + 1)

For the case under consideration, namely, that of vanishing radia-
tion pressure, £ is related to w according to equation (61). In Table
17 the function f(o; £) is tabulated.

If o is small (but not vanishingly small), we can obtain for f(a;
w) a three-term Taylor expansion in a:

fww =sow+e (L) _+5(H), o

when terms of higher order in o are neglected. From the definition
of f(a; w) (Eq. [50]), we verify that

(%)m =48+ 197)1"‘/(7;:) _ﬁw)4 — 16(3 + 4% )r(wszi)s (71)

and

(ZD)_ = sos+ 10y [,

- 32[(8+T%)(3+s%)+3(1 +n>1f e (42)

wt + I)S

The integrals occurring in (71) and (72) are all elementary and can
be evaluated.
We write (70) in the form:

fla; w) = flo; w) + alifo + a’Asfo, (73)

where the explicit expressions for A.f, and A,f, are easily found from
equations (70), (71), and (72).
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To determine the relation between ¢ and w to the order of accuracy
we are working, we write

= £ @ (&%
t=bte <6a)u-o s (30,’)“:0’ (74)

where (cf. Eq. [57])

I

T owT o - He T @s)
and
fo= o (76)
We re-write (74) in the form
£ =&+ alif, + a?Aif,, (771
where it is easily found that
M= =G+ 1D Gy | (79)

and

Ad = (3+ 49 (wfi o - 3@+ 4D @ F 1 + 1)2- (79)

In Table 17 the values of f(o; w), A.f,, A.fo, Ak, and AL, are tabu-
lated with argument &,. This table, combined with equations (73)

TABLE 17
'& flo; &) Arfo Azfo Biko BDako
0.90......... +0.000014 | +0.00020 +o0.00114 —0.5257 —0.8047
85l .000085 | 4+ .oo100 | 4+ .00436 .6634 — .7319
8o......... .00032 + .00303 + .o1166 7631 — .5807
TS .00087 | + . .oo711 + .01873 .8322 — .4138
70 .00201 -+ .oi4o05 4+ .o2709 .8753 — .2203
65, ... 00415 | + .02461 | + .03143 .8957 — .0424
T .00789 4+ .03025 + .02586 | .8958 + .1270
55 .01414 =+ .05788 -+ .00304 .8776 =+ .2738
50 e .02417 + .07042 — .04523 .8431 + .3024
45 .03991 + .10125 — 12674 .7939 + 4787
40, ... .06421 + .11815% — 24684 7314 + .5304
35 .10148 + .12068 — .40521 16572 + .5468
L30... . - 158753 + .o9222 — .50024 .5730 “+ .5285
25 .24771 | + .00342 | — .76909 .4805 + .a777
0.20......... +o0.30051 —0.19996 —o0.86837 —o0.3816 “+0.3085
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and (77), will enable us to determine f(a; £) for small values of a.
Actual comparisons with the values of f (a; £), computed accurately
from the integral which defines it, show that the approximate
solution obtained by using the table is correct to within 1 per
cent for a < o.1; for a = 0.15, 2 maximum error of about 3 per cent
is made.

If a cannot be neglected in comparison with unity, recourse must
be had to numerical methods to evaluate the function f(a; w). For
practical purposes it is convenient to tabulate f(a; w) for different

TABLE 18¢
a=0.05 a=0.10 a=0.15 a=0.20 a=0.25
x
4 f 4 f 13 f £ ! £ f
0.35. . honeeali 0.935/0.0000002]. .. ... ST
0.40. . jeeunifiannn 0.048........ o.gg,oo_ooooooﬁ1 .go8 .0000012/0.8820.000002
O 45 el alennn .0250.000001 .02 .000003 875/ .oco005 | .844] .000009
0.50.... o 896 .000007| .868 .0c00012 | .836; .000021 | .801| .000034
0,85 e efee it -861] .000025| .828| .000043 | .792| .000009 | .753| .000105
0.60... .0 e 821) .000084] .783 .000134 | .744] .000202 | .702| .000287
0.65....0.81300.0002 .775 .000246/ .735 .000368 | .092 .000520 .649, .000700
0.70....| .767] .co00g .726, .000641| .683 .000g02 | .639 .001200 | .500/ .00154
0.75....| .718) .oo11 .674| .001502 .630 .002000 .586/ .002544 | .543 .0031L
0.80....| .666] .0025 .621 .003205 .577 .00406 .534] 004036 | .492| .00578
0.85....| .612 .co50 .568 .006290| .525 .00762 | .483 .008894 | .444) .01005
0.90....| .559| .00Q5 .516/ .01146 | .475 .01333 .436] .o1502 .399! .01643
0.95...., .508 .o169 .467 .01953 | .428/ .02194 .301] .02306 | .357 .02548
1.00....| .450] .0281] .420/ .03139 | .384 .03419 0.3500.03633 [0.3190.03772
1.05....| 413 .0441 .377| .04702 10.344/0.05082 ... ...l
1.1c....] .370 0661 .337| 06904 |.... .| ...
1.15....) .331 .0048 .301] .008IT |.....|.........l.... P R P
1.20.... .290] .13110.26090.1330 |.....|.. oo ]t O
1.25....00.2640.1752/.....J....... [ [ERIEERE T : ......................
| |

specified values of a. The numerical integration has been effected
for the cases & = 0.05, 0.10, 0.15, 0.20, 0.25, 0.50, and 1.00; the
results are tabulated in Tables 18a¢ and 185.

4. General remarks.—An important quantity which has been iso-
lated is «; this determines the relative importance of the radiation
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TABLE 185
a=0.5 a=1.0
x
£ f 4 Iz
O 1.0000 [
0.05. ... 0.8906 ...l
OO0 . ... 0.796 0.000000002
0.15. ©.035 |, 0.703 . 00000007
0.20. ... ... .. .go2 0.00000002 0.619 0000006
©.25............. .862 . 00000017 0.542 .0000033
0.30. ... .816 . 0000011 0.475 .0000126
0.35 v oo 766 0000052 0.416 0000375
0.40. .. .......... 712 .0000195 0.364 0000936
0 45. ... 657 0000617 0.319 . 0002044
0.50. .. ... 601 .0001675 0.280 .0004017
0.55. i .547 .000401J 0.246 .0007253
0.60............. -494 .000863 0.217 .o01222
0.65............. .445 .001694 0.192 .00IQ45
0.70. ... ... ... .399 .003075 o.170 002952
075 i .356 .005222 0.151 .004302
o8............. .318 .00837 0.134 .006057
0.85............. .284 .01276 0.120 .008278
0.90. ... ... ..... .253 01865 0.107 .011026
0.95. . ... 228§ 02624 o0.096 .0I4359
T1.00....oovunnnn. 0.201 0.03576 0.086 0:01834

pressure in the stellar envelope. Let £, be a point where w = 1, or,
according to (57),

&

I

TG EF O F - He

(80)?

If o is small, we can write, according to equation (77) and Table 17,

£:=o0.5 —0.8431a + 0.3924a%.

By (47) at £ = £,; we have

or, according to

(57 ) -
ﬁ =4

2 This is a purely formal definition. It can happen that & < £*.

y(fx) = %%%(Ez) =

(54),

$%a = 6.45 X 10‘3[

3

(81)

(82)

L*Ru(x — X2*]"
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Hence, the particular combination of L, M, and R which occurs on
the right-hand side of the foregoing equation determines whether,
for a particular star, the radiation pressure is important or not. Itis
important to notice that a knowledge of all three parameters L, M,
and R is required to determine the relative importance of the radia-
tion pressure. It is therefore satisfactory that for normal stars—i.e.,
ordinary giants and dwarfs—a correspondence is found to exist be-
tween (1 — B) at & (determined according to [83]) and (1 — B.)
(determined according to Eddington’s quartic equation). Thus, on
the assumption that u = 1, we find that for the sun and Capella A
the quantities (1 — B) at £, are 0.004 and 0.041, respectively, while
the quartic equation yields for (1 — B.) the values 0.003 and 0.046.
The fact that the observed sets of values for L, M, and R for the
normal stars predict values for (1 — B) at £ = £, in such close corre-
spondence with the values of (1 — B.) according to the quartic
equation is a confirmation of the adequacy of the standard model
(in its first approximation cf. § 7, chap. vi) for these stars. On the
other hand, we shall see that this correspondence fails when the
very massive Trumpler stars are considered. For these stars we
should normally expect (1 — B) to be quite near unity, while ob-
servationally the radiation pressure is, in fact, quite negligible in
the envelopes of these stars; we have here, therefore, a breakdown
of the theory which has been found to be applicable to stars of ordi-
nary mass. We shall return to these questions in § 6 (cf. Table 21).
Let us now consider stellar envelopes with negligible radiation
pressure, i.e., stars for which a ~ o. The equation determining the
central condensation of the star can be written as (Eq. [55])

f(o; £¥) = 0.0618

(1 — X3)es (LRo-s)m_ (54)

705375 Mss

The occurrence of (k,LR*5/M5-5) on the right-hand side of (84) is
easily understood. For, according to the discussion in chapter vi,
§ 6, stars with negligible radiation pressure form a homologous fami-
ly, and, further,

ko LR°'S
wiSMss (85)
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is a homology invariant. Also, we have already shown in § 3 that
stellar envelopes with negligible radiation pressure form a homolo-
gous family. Hence, £* is also a homology invariant; and, as it de-
pends on L, M, and R, we should have

£* = function [(::fﬁ:J] . (86)
Equation (84) is simply the explicit expression of this form of de-

pendence.

Another feature of (84) which should be noticed is its remarkable
similarity to the luminosity formula (Eq. [14], vii) for the case
B ~ 1. By equations (14) and (107) of the preceding chapter we

have
i Ms-s
L =o0.184 G=x) Ros WS 87)

It will be remembered that 7, which occurs in (87), is a certain har-
monic mean value of ¢ taken through the star (cf. Eq. [8], vii); it is
accordingly different from #,, which occurs in (84). Equation (87)
can be re-written in the form

LRe-s 1/2 (I — Xz)l/z
(Ms.s) t'o.sy}.:s = 0.429. (88)
Comparing (84) and (88), we have
f(o; £*) = 0.0618 X 0.429 = 0.0265 ; (89)

or, interpolating among the values of f(o; £) in Table 17, we find that
* = 0.496. (90)

Now the model specifically underlying the luminosity formula (87)
is the standard model with a density distribution corresponding to
the polytrope # = 3. An examination of the Lane-Emden function
6; shows that the polytrope #» = 3 has a central condensation of
approximately 0.504. The agreement of £* = 0.496 with the “theo-
retical” central condensation of o.504 proves the consistency of the
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model for the stars of negligible radiation pressure; the consistency
here proved may be compared with the discussion of the assumption
“gn = constant” in chapter vi, § 7.

5. Central condensations of some typical normal stars: dependence
on chemical composition.—We shall now proceed to apply the theory
we have developed to derive the central condensations of some typi-
cal stars. The data on the masses, luminosities, and radii of the stars
has been supplied to the writer by Dr. Kuiper, who has undertaken
a critical re-examination and rediscussion of the relevant observa-
tional material. It is beyond the scope of the present monograph to
include Kuiper’s discussion; such discussions should, however, be
regarded as an integral part of the study of stellar structure. For
the derivation of the data used here, reference is made to Kuiper’s
investigation in the Astrophysical Journal, 88, 472, 1938. (It should
be pointed out that the absolute bolometric magnitude of the sun
which Kuiper adopts is +4.63.)

a) Capella A.—To illustrate the method of calculating the cen-
tral condensations of stars we shall first consider the case of Capel-
la A. This star presents an exceptionally “pure” case, in so far as
a preliminary examination shows that the guillotine factor Z equals
unity.? (Cf. Table 14a, chap. vii).

For the case of Capella A we have

Log L = 2.08; Log M = 0.62; LogR =1.20. (91)

Substituting the foregoing values in equations (54) and (s5) and
putting £, = 1, we find that

a = 0.0469[u(x — X2)?]/4 (92)
and
f = 0.0268(1 — X2)°-su™375, (93)

To evaluate £*, we shall have to make some assumption concerning
p and X,. To examine first the nature of the dependence of £* on
u and X,, it is sufficient to use the “first approximation” considered

3 This is, in fact, a general characteristic of the normal giants, subgiants, and M su-
pergiants.
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in § 3 of chapter vii, according to which u and X, are related by
(Eq. [26], vii)
2
H = I——_’_—S—‘X,—o . (94)

Equations (92), (93), and (94) and the tables of the function
fla; £) are sufficient to determine £* as a function of X,. Table 19
shows the result of the computations.

TABLE 19

THE CENTRAL CONDENSATION OF CAPELLA A

Xo a f &
Ot 0.056 0.001Q99 0.678
L2 .049 0114 .542
B .042 0351 441
O .035 L0757 .363
B .025 .118 .321
O .o18 L117 .325
0.95. . i, 0.012 0.098 0.347

In Figure 29 the corresponding (£*, X,) curve is drawn. The fol-
lowing two important features of the (£*, X,) curve should be noted;
they are, as we shall see, quite general for normal giants and
dwarfs: (a) The quantity £* as a function of X, has a minimum;
(b) £* (X,) intersects the line £* = o.5 at two points, one of which
corresponds to the extreme abundance of hydrogen.

An immediate consequence, then, of the theory of stellar envelopes
is the prediction for normal stars of a minimum possible value for £*.
Thus, Capella A cannot be centrally condensed to a degree greater
than that corresponding to £* = 0.32. The existence of the mini-
mum is easily understood:

If the radiation pressure is negligible, the minimum value of £*
corresponds to the maximum value of f, or, according to (53) and
(94), to the maximum of

(1 — X9°5(x + 3X,)375. (95)
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It is easily found that the maximum of (9 5) is attained for

_ \/2569 — 2
57

For Capella A, o is certainly not “vanishing”; yet the maximum
is not appreciably shifted from the value given by (96). However,
if « is sufficiently large, it can happen that the increase of a with g is
sufficient to compensate for the decrease in f so that the (¢*, X o)
curve shows only a very shallow minimum, or even no minimum at
all (cf. the case of HD 1337, the infrared component of e Aurigae,
and the M-component of VV Cephei considered in § 7).

Finally, if the values of X, and u derived by Strémgren (u = 1.04,
X, = 0.29) are adopted, it is found that £* = 0.486; this confirms
the model underlying Stromgren’s theory. We now see that the two
intersections of the (¢*, X,) curve with the line £* ~ o.5 precisely
correspond to the two solutions for the hydrogen content discussed
in § 5 of chapter vii.

b) The sun.—According to (54) and (55), we have

X, =0.8;; p=o0.561. (96)

— 2)27} 1/
@ = 0.00625[“(;?—&] ) (o7)
and
(1 — X2)os
f——‘—- 0.0618#. (98)

We see that in this case a is quite negligible for the possible range of
wand X,. To calculate £* we shall adopt Stromgren’s values of u
and X, namely, p = 0.98 and X, = 0.37 (cf. Table 14d, chap. vii).
In the case of the sun, the guillotine factor is ot entirely negligible,
and to estimate I, we proceed as follows: On the standard model at
the base of the envelope T* = 0.3T., and for the sun we find
T* = 6 X 10° degrees. From Table 13 we see that here ¢ = 2.
Since this represents the maximum value of ¢, we may choose the
mean value of £, to be about 1.5. The maximum value of Z, can be
taken to be 2. Using Stromgren’s value of u and X,, we find that for

=1, 1.5, 2.0,
* (99)
£* = 0.40, 0.42, 0.44.
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We see that the uncertainty in the guillotine factor {, does not in-
troduce any substantial uncertainty in the derived values of £*; this
arises from the circumstance that i, occurs in the square root. Tak-
ing the case i, = 1.5 as typical, we have, according to equations (66)
and (67), the following values for the density and temperature at
the base of the envelope:

T* = 7.3 X 10° degrees ; p=1.8p0 = 2.54 grams cm™. (100)

¢) ¢ Herculis A.—As we have seen in § 6 of chapter vii, { Her-
culis is considered in Stromgren’s theory to be poorer in hydrogen
than the sun. We shall see that we can confirm this conclusion inde-
pendently. According to Kuiper’s discussion of the star,

LogM = —o0.02; LogL =0.596; LogR =o0.28. (101)

Since the radius is about twice that of the sun, the guillotine factor
can be put equal to unity. Using the foregoing values for L, M, and
R, we find that

o.o152[u(x — X2/ (102)

e
L]

and
0.164(1 — X2)°5u™375 , (103)

f

Comparing (102) and (103) with (97) and (98), we infer (@) that
for equal values of u and X, the envelope of { Herculis has a larger
radiation pressure than has the solar envelope, although the two
stars have about the same mass; this arises from the circumstance
that ¢ Herculis has a much larger radius; (b) if the sun and { Her-
culis were characterized by the same values of u and X,, then { Her-
culis would have a value for £* much less than that for the sun. But
we have already seen that stars with negligible radiation pressure
should be homologous. Hence, { Herculis must be characterized by
a larger value of u, in order that its £* may be (approximate-
ly) equal to that for the sun; this confirms the conclusion based
on Stromgren’s theory. Actually, Stromgren finds for ¢ Herculis,
p = 1.45 and X, = o.11. Using these values in (102) and (103), we
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find that £* = 0.44, which makes it, in fact, approximately homol-
ogous with the sun.#

7
K
N
AL
[y
*
£ 3 Sun or
°r Sinius A
5l '7Ca4
ZHer
ADS 3475
. -
1 1 1 ) 1
2 4 6 8 Lo
Xo—>
FIG. 27

d) n Cassiopeiae A.—This star presents a case somewhat similar
to ¢ Herculis A. For n Cassiopeiae, we have, according to Kuiper,

Log M = —o0.14; Log L = —0.08; LogR = —o0.08.

+ It should perhaps be mentioned in this connection that at this stage in the develop-
ment of the theory it would be unwise to stress the slight “discrepancies”—the differ-
ence, for instance, between §* = o0.44 and £* = o.42, just noticed. It would first be
necessary to examine carefully the state of ionization in the stellar envelope. It is
clear, however, that with further refinements the theory of stellar envelopes is capable
of including finer details than are considered in this chapter.
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Using the foregoing values, we find that

— 2Yz2 ) 1/.
o« = 0‘007[;4_172@_} ‘

and

o e, XY
f=o0.131 PRET

With p = 1.25 and X, = o.20 it is found that

f,o=1; =2,

E* = o0.42; £*=0.45.

Since we should expect 5 Cassiopeiae to be homologous with the
other stars we have considered so far, we infer that this star must be
characterized by a value of the mean molecular weight somewhat
less than that of ¢ Herculis A but definitely greater than that of the
sun.

e) A star in the Hyades cluster (ADS 3475).—In chapter vii we
referred to Kuiper’s discovery of the relatively poor hydrogen con-
tent of the stars in the Hyades. We shall consider one of the stars
for which Kuiper has derived values for L, M, and R. ADS 3475
presents a case very similar to that of { Herculis. With Strémgren’s
values for u and X, for this star (u = 1.42, X, = o.15) we find that
£* = 0.42 or 0.44, according as {, is taken to be 1 or 1.3.

f) Sirius A.—As a final example of a ““typical”’ normal star we
shall consider Sirius A. We have for this star

LogL =1.59; Log M =o0.37; Log R = 0.25. (104)

With Strémgren’s values of p and X, (u = 0.95, X, = 0.36) we
find that

l,=1; le=1.5; f. = 2,
(105)

F*=o0.42; t*=o0.44; £ =0.46.

The (£*, X,) curves are shown in Figure 27 for the stars considered
in b to f above.
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6. The structure of the Trumpler stars.—So far we have considered
only normal stars, and the theory of stellar envelopes essentially
confirms the theory described in chapters vi and vii. As an extreme
on the other side, we shall consider the very massive Trumpler stars,
for which the usual theory seems to break down completely. Table
20 contains the data for the Trumpler stars as revised by Kuiper on
the basis of his temperature scale, which should be more reliable
than that originally adopted by Trumpler. These stars occur in the
region of the M-R diagram (see Fig. 2), where one would expect

TABLE 20*
THE TRUMPLER STARS
Star Log M Log L Log R
Trooviiinnnnns 1.74 5.88 0.64
Taeovninnnnnn 1.99 4.72 0.86
T3eeeeeinnns 2.14 5.60 0.78
Tgeooenanennn. 2.45 5.76 1.26
Tseoeneeannns 2.35 5.36 1.18
T6. oo 2.60 5.04 1.22
Ty 1.89 4.92 0.96
* The stars are numbered Tx, . ..., Ty in the order in which

they are contained in Trumpler’s Table TII (Pub. A.S.P., 47s 254, 1935)-

the hydrogen content to be fairly high, from an extrapolation of the
Stromgren curves of constant X, (established in the region of the
normal stars). The calculation for the central condensations of these
stars has been carried out for two values of X, (X, = o.95and 0.60).
The results are summarized in Table 21. It is at once clear that the
theory applicable to the normal stars breaks down for these objects.

In the calculations, electron scattering has been neglected; but
it is clear, from the empirical rule stated on page 272, that we can
take this into account by allowing the guillotine factor to be less
than unity. This would cause the £*’s (for X, = 0.95) given in
Table 21 to lie between the tabulated values of £* for X, = 0.95
and X, = o0.60; for the case X, = 0.6, electron scattering is seen to
be negligible.

What is, perhaps, most striking is the systematic increase of £*
with increasing mass. The conclusion, then, is that the Trumpler
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stars are more or less homogeneous gaseous configurations. This con-
clusion, it should be pointed out, is an almost immediate inference
from the observations. We encounter the “breakdown” nature of
the Trumpler stars also when we attempt to calculate their hydrogen
content by the Stromgren method. As Beer and Chandrasekhar
showed, the problem has no solution.

7. Further applications.—In the last two sections we considered,
on the one hand, the normal giants, subgiants, and dwarfs (for which
the standard model was seen to be a sufficiently good approxima-

TABLE 21

CENTRAL CONDENSATIONS FOR THE TRUMPLER STARS

Xo=o0.95 Xo=o0.60
No. Mass/©
a ! £* a J £*
Teoooovnn. 400 o.0o1 | 0.000011 | ©0.90 0.04 | 0.000008 | ©0.90
Tyoooooonn. 280 .04 000066 .83 .10 .000051 .84
Tsoooon. 220 .03 .000073 .85 .07 000057 .84
Tsooooo. .. 140 .04 .00029 .79 LIt 00023 .78
Taooroo o0 100 .02 .00028 .80 .06 00022 .79
Ty 8o .03 00071 .75 .10 000355 .73
Troooooi o 55 0.10 | 0.0047 0.59 0.29 | 0.0036 0.51

tion), and, on the other, the Trumpler stars, for which the model cer-
tainly breaks down. We shall now consider some intermediate cases.

a) VV Cephei: the B-component.—The system of VV Cephei is a
spectroscopic binary which Gaposchkin discovered to be an eclips-
ing system with a period of about twenty years. The brighter com-
ponent is an M supergiant, while the fainter is a B star. The obser-
vational data for this system are of a provisional character, the chief
uncertainty being in the mass ratio. A value of about 1.6 appears to
be the best estimate. It may, however, be as high as 2.2. We shall
first consider the B star and return to the M star later.

For the B star we have, according to Kuiper,

M = 31, R = 28; Log L = 4.22. (106)



STELLAR ENVELOPES AND STARS 315

The foregoing values correspond to an assumed value of 1.6 for the
mass ratio. If the higher value of 2.2 is adopted, we have

M = 46; R = 35; Log L = 4.40. (107)
The guillotine factor is found to be unity, and we find that for

X=0. 0.2 0.4, 0.6, 0.8, 0.9, 0.95,
g = {0.78, 0.71, 0.64, 0.60, 0.58, 0.59, 0.61, (108)
B 0.82,0.76,0.70,0.67,0.65, 0.66, 0.68.

The first set of values for £* are derived on the basis of (106), while
the second set corresponds to (107). The B star is thus seen to
be similar to the Trumpler stars. This is what we should have ex-
pected from the mass and the radius of this star as compared to the
Trumpler stars.

b) V Puppis—The two components of this system are nearly
identical, so that for the present purpose it is sufficient to consider
the average of the two components. We have M = 18.6, R = 6.8,
and Log L = 3.87. The (¢£*, X,) curve is shown in Figure 28. We
infer from this curve that V Puppis is probably somewhat more ho-
mogeneous than the less massive stars. ‘

¢) m: Scorpii—This star has been recently investigated by
Elvey and Rudnick; a rereduction of their data by Kuiper leads to
M = 12.0,R = 5.50,and Log L = 3.37. The (£*, X,) curve is shown
in Figure 28. :

d) The B-component of ¢ Aurigae—The system { Aurigae is of
the first class. The observations by Guthnick and his collaborators
and by Christie and Wilson have been rereduced by Kuiper. We
shall first consider the B-component. For this star we have, accord-
ing to Kuiper,

M=28.1; R=35.1; Log L = 3.01. (109)

This star has a mass less than that of the other massive stars we
have considered so far. The (¢*, X,) curve is shown in Figure 28.

It will be seen that the Trumpler stars, VV Cephei (B star), V
Puppis, p. Scorpii, { Aurigae (B star), Sirius A, and the sun represent
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a sequence along which the (¢*, X,) curves change continuously;
this strongly suggests that the breakdown of the standard model for

9r
L T ler
. e
IV
VV Cephei
6 L (Bstan)
v pu.PPis
M Scorpii

N>
w 'S 5}
g‘é’ £
‘g =
> g

)
T

™

A 1 L 1 -

.2 4 6 8 10
Xo—>
F1c. 28

stars on the main series sets in at about M = 10®, becoming more
and more pronounced on passing toward the larger masses.
e) The K-component of ¢ Aurigae.—For this star we have

M = 14.8; R = 200; Log L = 3.80. (110)
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The (£*, X,) curve is shown in Figure 29. We see that, though this
star has a mass about equal to that of g, Scorpii, it seems to have
a normal density distribution. Indeed, with Stromgren’s value of
wand X, (u = 1.07, X, = 0.34) we find that

o =0.24; [ =o0.0082; ¥ = 0.466 ; (111)

this confirms the standard model for the interior of this star.? The
K star here considered is, in fact, just as “pure” a case as Capella A:
it is a first-class determination, and the guillotine factor is unity.
We have here a suggestion that the massive stars in the supergiant
region of the Hertzsprung-Russell diagram are probably different
from the equally massive stars forming the extension of the main
series. Though the two cases considered below are somewhat un-
certain from the observational side, they seem to lend support to
the suggestion.

f) The infrared component of e Aurigae.—The data for ¢ Aurigae
have been derived partly by an indirect method and are less reliable
than for most of the other stars we have considered. The mass and
the radius seem to be fairly well determined according to the in-
vestigation of Kuiper, Struve, and Stromgren.® The luminosity is
only approximately known through the recent measures by Hall,
which have been discussed by Kuiper.” We have

M = 24.6; R = 2140 ; Log L = 4.46 . (112)

We find that for

X,= o, 0.2, 0.4, 0.6, 0.8, 0.9,} (113)

£* = 0.34, 0.28, 0.23, 0.22, 0.24, 0.29,

respectively. It is thus seen that the (8%, X,) curve for this star (cf.
Fig. 29) shows a very shallow minimum; further, for a wide range in
X,, £* does not differ appreciably from the value .23. We can there-
fore conclude that the infrared component of € Aurigae is probably

s Since & = 0.24, the radiation pressure is quite appreciable; as such, the envelope of

¢ Aurigae (K star) is not strictly homologous with that of a star having negligible
radiation pressure.

64p.J., 86, 570, 1037. 7 Jbid., 87, 209, 1938.
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much more centrally condensed than the normal stars. This result
is easily understood. According to our definition of a (Eq. [54]). a
large R (and/or L) implies that the radiation pressure is important;
this has the effect of forming an extended stellar envelope for the
star.

A case similar to e Aurigae is presented by the M-component of
VV Cephei.

g) The M-component of VV Cephei.—As already indicated in (a),
above, the data for this system are of a provisional character. For the
brighter component of the system (which is an M supergiant) we
have

M = 49; R = 2130 ; Log L = 5.62, (114)
or
M = 102 ; R = 2630 ; Log L = 5.80, (113)

according as the adopted mass ratio is 1.6 or 2.2. Computing £* for
different values of X,, we find that for

Xo=o0.4, 0.6, 0.8, 0.9, 0.95,
g = {0.065,o.o72,oA12,o.2o,o.2‘9, (116)
0.21, 0.20, 0.32,0.41,0.50.

The first set of values for £* are derived on the basis of (114), while
the second set correspond to (115).

We thus see that in spite of the uncertainty in the observational
material we can conclude that the M-component of VV Cephei must
be highly centrally condensed. Indeed, the possibility that go per
cent of its mass is concentrated within 5 per cent of its radius cannot
be overlooked. The system of VV Cephei is therefore of quite unusu-
al interest from the theoretical viewpoint, inasmuch as we have in-
dications that the standard model breaks down in the opposite di-
rections for the two components.

Considering, now, the stars in the sequence the sun, { Herculis,
Capella, ¢ Aurigae (K star), e Aurigae (I star), and VV Cephei
(M star), we infer the possibility of a breakdown of the standard
model also in the region of the massive supergiants (stars of high
luminosity and large radius). The breakdown is now, however, in
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the sense of becoming more centrally condensed; this differs from the
case of the massive stars which form an extension of the main series;
the latter are certainly more homogeneous than the normal stars.

ar
6D
5
AoCas
n ;/.\wu(l('star)
A € Awng(L-sto))
£* CapellaA
3t VV Cephei
(M-star)
21
AL
2 y 6 8 10
Xo—>
¥1c. 29

k) AO Cassiopeiae and 29 Canis M. ajoris.—We shall finally con-
sider “overluminous”’ stars, of which AO Cassiopeiae is an example.
In this case we have

M = 40; R=19; Log L =5.77- (117)

This star is therefore almost as luminous as the most massive of the
Trumpler stars. Because of this high luminosity with respect to its
mass, we should expect AO Cassiopeiae to be more centrally con-
densed than the massive stars in the sequence u Scorpii, V Puppis,
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VV Cephei (B star), and the Trumpler stars. The (¢*, X,) curve for
this star (see Fig. 29) confirms this expectation.

A star quite similar to AO Cassiopeiae is 29 Canis Majoris A.
For 29 Canis Majoris A we have

M = 46 ; R = 20; Log L = 5.84. (118)
Computing £* for different values of X, we find that for

X, = o, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95,
. , (119)
£* = 0.44,0.38,0.34,0.33,0.38, 0.43, 0.49.

The (£*, X,) curve for 29 Canis Majoris A is therefore quite similar
to that for AO Cassiopeiae. Both of these stars are probably some-
what more centrally condensed than even the normal stars.

i) ¥ Cygni.—A case intermediate to those considered in (%) above
is provided by the system, Y Cygni. The two components of this
system are nearly identical, and, taking their average, we have
M =17, R = 5.9, and Log L = 4.51. Thus, Y Cygni, though it has
a mass less than V Puppis, is yet very much more luminous. We can
therefore expect Y Cygni to be more centrally condensed than
V Puppis. The calculation of £* for different values of X, confirms
this conclusion. Y Cygni has probably a “normal” density distribu-
tion.

8. Concluding remarks.—The main results of the foregoing dis-
cussion can be summarized as follows:

a) The general way in which the theory of stellar envelopes sup-
ports the essential conclusions reached in chapter vii concerning the
structures and the hydrogen contents of the normal stars like the
sun, Sirius, { Herculis, and Capella;

b) The increasing homogeneity of the massive stars on the main
series, the breakdown of the standard model setting in probably at
values of the mass of about 10 ©;

¢) The centrally condensed nature of the massive supergiants

We may also infer from the examples discussed that a certain
systematic variation of the stellar model in the (M, R) plane exists.
Only more extended observations will show whether this is a legiti-
mate generalization.
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CHAPTER IX
STELLAR MODELS

In this chapter we shall consider some classes of stellar models.
The interest in some of them may be of a rather formal character,
but for the future development of the theory of gaseous stars the
properties of the models considered may afford some guidance. A
variety of stellar models has been investigated by several writers,
of which only a limited number will be included in this chapter.

1. The model ¢ = constant.—This model corresponds to a uniform
distribution of the sources of energy; as such, it represents one limit-
ing case of the possible stellar models, the other limiting case being
the “point-source model” (cf. §§ 3 and 4).

For the model ¢ = constant we have

_Ltn_ L
T M@ M- ()

€

We shall assume for the law of opacity
K = Kopl 35, (2)

The equations of equilibrium are, as usual,

d k GM
d7<,;71 ”T'*'%“T") = ‘7@97 (3)
d _ _x.,L(r) s,
} P (3aT9) = mer P s, (4)
an
d 2
B;M(r) = qmrip . (5)

From (1), (3), and (4) we have an alternative form for one of the
equations of equilibrium:

k 3d(pT) _ 4mcGM T35 . 6)
uH a d(TY) L »p ’

322




Let

or
%yT‘-il _4mcGM k3

ar kol uH a

Introduce the new variable x, defined by

qwcGM k3

— 2 T1/2
koL yHaT :

X =
We then have, instead of (9),

d
%w£=x—y@+ﬂ,

T2 — y(y + 1)
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N

(8

(9)

(10)

(11)

an equation identical with the one we have discussed in the last
chapter (Eq. [26], viii). The solution is accordingly given by (Egs.

[29] and [33], viii)

=3 +1); =43y

By (7), (10), and (11) we have

L uHa 31 (1 — B)

4veGM k35, _ 32 B (

Eliminating T between (7) and (13), we find

4mcGM <i 3\ 32 __ B
koL wH a P

Differentiating the foregoing expression, we find that

dp

31 (1 — B

Iap _ 1 B(x — B)
L [<1+a)+a+ 31+B]

(12)

(13)

(14)

(15)
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On the other hand, we have

k \4 — -1/,
F= [(m) T ﬂ] o (16)
from which we derive
P _ 1| dp_ 38 ]
P 3[4 3 B(I—B)dﬁ (1)

Eliminating dB between (15) and (17), we obtain

§f=3[4_ 4— 3B ]
P o3 6(1+B8) + 1+ 68(1 — B)(31 + B)™*

U

¢
S (18

which can be written in the form

dpP d
7=(1+i;)f, (19)

where the effective polytropic index #.q is given by

(74 681 + B) + 68(1 — B)
"t = (1 3B)(31 + B) + 28(1 — B) (20)

From (20) it follows that for the cases § = 1 and 8 = o we have
ng =3.25 (B=1); na=7 (B=o0). (21)

Since, in general, we are interested in values of (1 — ) ~ o.05 (or
less), it would be sufficient to consider the case of (1 — B8) ~ o.
Then it is a sufficiently close approximation to regard the configu-
rations as polytropes of index # = 3.25 (which is constant through-
out the configuration), and therefore is described completely by the
Lane-Emden function 6, ,5:

p = pcb33%; T =Teb;.:5 ; P = P.6}3%. (22)

We may note the form which the mass relation takes. Since there
is a relation of the form

P = Kt (23)
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where K is a constant, we have, on comparing (16) and (23) at

P = Py
(kN 3= B
e

a B

Inserting the foregoing value of K in the mass relation (Eq. [69], iv)
and putting n = 3.25, we have

_ 4.25\3 [(i>4 31— 60]1/2 1 ( , @0;.25°
41l'< 4 ) MH a ﬂ‘é (7|'G)3/2 E d£ )E—‘-Exw;.zs). (25)

This is a quartic equation for (1 — ). Comparing (25) with the
corresponding equation for the standard model, we have, in an ob-
vious notation,

M(3.25;1 — B) = M(3; 1 — B)Tm, (26)
where
.25\3/% (86} 25)e=:005.29) "
Ty = (4 25) 3 ;55 3.35)
M 4 (£20))e=ru00p (27)

From the constants of the Lane-Emden functions given in Table 4,
chapter iv (p. 96) we find that

Jyu = 1.0581. (28)

In a manner quite analogous to the standard model (chap. vi, § 4),
similar formulae for the physical characteristics may be found. We
shall consider here explicitly only the luminosity formula

_ amcGM (1 — Bo)
k_n )

L (29)

which can be written in the form (cf. chap. vi, § 7, first approxima-
tion)
= 47"CGM(I - Bc)

KcMe

- 1 (Pf«k
o= f (—) ndP . D)

L (30)

where
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Equation (30) is, of course, an exact equation. According to (2)
and (22), we have, for the model under consideration,

7= [ oo, (32)
or, as is easily found,
- _ 4.25
Ne 4 . (33)

Since (cf. Egs. [60] and [78], vi)

B.uH I GM
Tc = 7 T
¥ [—a25 Blaeoy R (34)
and
_euH B —1/2
Ke = 3 k I — Bc T (35)

we can re-write the luminosity formula as

4mcGM 1 3 ( k >‘/2 <GM>‘/’(
= = 7 11/2 - 1 — B)%. 6
KoTe [—4 25203-25]Ei€r(9‘;.25) a ﬁ"u'H R ) (3 )

On the other hand, the quartic equation (25) can be written in the
form

6 EO\&(3\?
M = 315— (4 425> (:3 uH) (i) (1 = B (E6)tr00 - (37)

Eliminating (1 — B.) between (36) and (37) and using (33), we find
that

=T () €E>”ac [£:(6; 20)1"
g (4 25) ( E ) 3k [— (56} ) emtay ]S R° + WBS . (38)

Comparing (38) with the luminosity formula on the standard model
(Eq. [142], vi), we can re-write the former as

_ w8 (GH\"S ac [£(6,)]°5 1
=5 ()T el AT TCD

where

- _ (4.25)" (?0;‘25)E=&(03.25)J4.5 £:(85) 1o
1e(3-25) (4) [(E’%)s%(a}) [Ex((’s.zs)] - (o)
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Numerically,
7c(3.25) = 1.251. (41)

But, according to the first approximation considered in § 7 of chap-
ter vi, for the model ¢ = constant, we found 7. = 1.14 (Eq. [143]).
It is thus seen that the first approximation in the perturbation theory
considered in chapter vi leads to a luminosity formula practically
identical with the one just obtained by a rigorous method. It should
be remembered in this connection that, since the quartic equations
which determine B, differ by the factor Jy (Eq. [2 7)), the B. in (39)
is somewhat larger than the 8. derived on the standard model, and as
such the difference between 7.(3) = 1.14 and 7. (3.25) = 1.25 is
almost completely compensated.
2. The models n « p*T”.—By definition we have

L(r)
e=;§((:)); "=£I(,L)' (42)
M

It is therefore clear that in the immediate neighborhood of the cen-
ter, € and 7 become identical, apart from a constant factor. More
precisely,

_L dlogn | .
€ = 173 77[1 + leg M(f)] ’ (43)

or, if € is the average rate of liberation of energy for the whole star,
(43) can be expressed in the form

- o(r) d )
€= en[r + 37 ’;—% —%ﬂ] . (44)
Thus, as r — o, we have
- d _d
e=@+0(7); S=ig+00). (43)

We thus see that in the immediate neighborhood of the center the
assumption

n o« p°T* (a 20,7 20) (46)
becomes equivalent to

e« poT” . (a7)
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But the analysis according to (46) is more elementary than that ac-
cording to (47). We shall therefore restrict ourselves to a considera-
tion of the models (46), remembering, however, that the analysis
may also be regarded as a start on the more difficult (and physically,
the more interesting) models (47).* For a law of the form (46), equa-
tion (44) takes the form

e=w|s+pEO{ate 2] (48)

For positive density gradients (i.e., do/dT > o), the terms in the
curly brackets in the foregoing expression are negative; it is, there-
fore, clear that the right-hand side of (48) will vanish for some value
of r (say r*). For r greater than 7*, equation (48) will give negative
values of e. Consequently, for the models of the type considered,
we should “break off” the solution at #* and consider a “point-
source” envelope for » > #*.

We shall now proceed to a discussion of the models (46), for which
we can write

n=npT"; = fg—o (49)
Further, for the law of opacity we shall assume
Kk = Kop"T 378 (n>0). (50)

From the equations of equilibrium (3) and (4), and (49) and (s0),
we derive

k 3d(pT) 4wcGM T3ts

I-_"_ﬁ E d(Tq) = KoTo pa+n - I. (SI)

The foregoing equation is reduced by the substitutions

P = poo ; T = Tor, (52)

to the form
d(or ite—y
d(-r4)) = gotn I (53)

* At the present time no systematic investigations of the models (47) exist. A fairly
complete analysis of the models (46) has been given by Chandrasekhar.
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provided
T3 _ KMo

Pa a. = Kol 2
3 ) ps+n 41I'CGM . (54)

T

pH
k

ow

Equation (54) can be expressed alternatively as

_ ﬁ 2 3ts—» KoTo 3 S(I_u—I”H_S_”
ohs [( = (WGM)] ’ (55)

1

_ [.l_[i a atn KoMo 3(—a—n)+s—v
r.-[(%3) ] ' (56)
Equation (53) now becomes
d(ot Tatsy
—(d—;) =47 [o“"‘” - 1] ; (s7)
or
ot dg atnt1 at 6+s—
a"ra;—I-a” + gootrrs — gt = o (58)

From this equation it follows that two critical cases arise, namely,
when » = 3 + s and when » = 6 + s. In the former case, we have

ooty ‘(_;% 4 getntr | gp3(got — 1) = 0, (59)

from which it follows that along all solutions of the equation (59)
c—1 as T ® (v =34+ s). (60)

Again, if » = 6 + s, the (a, 7) differential equation is
do
gty o 4+ gotntt 4 gottryd —~ 4 = 0. (61)

From equation (61) it follows that for a solution which has no singu-
larity at the origin, ¢ must tend to a finite limit as 7 — o:

o — 41/fa+n+1) (T — O) . (62)

3 These transformations are not possible for the case 3 + 5 —» = 3(atn).



330 STUDY OF STELLAR STRUCTURE

More generally, we find that all solutions of (58) must tend asymp-
totically to a certain singular solution whose behavior at infinity
is determined by an asymptotic series, the dominant term of which
is seen to be

3ts—»
o~ 7 otn (1——) oo) (63)

In the same way, the solution which has no singularity at the origin?
has the following behavior at that point:

— s
o~ [ 4(a + n + I) ]a+n+t Jatntr

atstrtn—> (64)

We shall now consider another form of the differential equation (58)
which isolates certain cases for which the integration can be carried
out explicitly. Let

z = or; b=74. (65)
Then, instead of (53), we have

dz I G+atnts—)

at T — I. (66)

From the foregoing equation it follows that if
v=3+a+n+s, (67)

the equation can be integrated. (The case « + # = o can also be
integrated; but this case is not of much physical interest, as we
should expect @ > o, % > o.) For the case (67) the integrated form
of (66) can be expressed in the form

dz
t=C— 3 — Eﬂ——l’ (68)

3 Such solutions exist only for » £ 6 + s.
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where C is a constant of integration. For specified values of & + #,
the integral occurring in (68) can be evaluated. The following ex-
plicit forms of the solutions may be noted:

1 =C—{z+ 22”2+ 2log |(x — 29|}, atn=3%,
(69)
v=3.5%s,
t=C—f{s+lgli—2|}, atn=1, »v=4+s, (70

I—2

t=C—{z+%log<|I+z

)}, at+n=2, V=5+57 (71)

(1 — 2)? —Ltan“2z+1 1

- Llog —~ 2 _ 2 tan—
C {z+§1°gz2+z+1 \/3 \/3 +\/3tan \/g}, (72)
at+n=3, yr=6+s,

and
I — 2

t=C—{ + 1l ( )—ltan‘x },
AR : ? (73)
a+n=4, v=17+s.

In the foregoing equations, #( = 7%) is proportional to the radiation
pressure and z( = o7) is proportional to the gas pressure (the con-
stant of proportionality in each case is the same [cf. Eq. (54)];
o/73is B : (1 — B) in the usual notation).

As would be expected from the earlier discussion, for the case
a + n = 3 the solution which has no singularity at the origin tends
to a finite limit as 7 — o; for the case under consideration, ¢ — V2
as 7 — o. The general nature of the (g, 7) relations for these
models is shown in Figure 30. From an examination of this figure
and from the earlier discussion of the (a, ») models we have the fol-
lowing theorem.

If € = p*T" and if, further, v > 6 + s, then in the tmmediate
neighborhood of the center either the densily falls off extremely rapidly
with temperature—almost a vertical drop of the density with de-
creasing temperature‘—or the density gradient is always negative, i.e.,

4 Actually, it is easy to verify that do/dr — .
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dp/dT < o. If v < 3+ s,and a 4+ n > o, then we always have (even-
tually) positive density gradients for increasing temperature.

3. The point-source model with x = constant.—In the point-source
model it is assumed that the entire source of energy is liberated at
the center of the star; analytically, the assumption is that L(r) =
constant = L. The point-source model, then, is another limiting

15 o t=1

— b ooy o

0 2 3 A 5 6 7 8 5 10 W 1z 1314 1516 17 18 19 20 21 22 23 27 25

T

F16. 30.—(0, 7) variations for the models (x=xo p» T—3—5 and p=1n, pe T*) with
v=3+a+n+s. The curves 1 and 6, 2 and 7, 3 and 8, 4 and ¢, and 5 and 10 refer to
the cases a+n=o0.5, 1, 2, 3, and 4, respectively.

case for the possible stellar models; the uniform distribution of the
sources L(r) « M(r) is another.

The point-source model with k = constant presents certain sim-
plifying features, and has been studied by Cowling and von Neu-
mann. Von Neumann'’s treatment of this problem is very powerful
and, as such, is instructive as an example of the application of meth-
ods and principles which should be of quite general value in the dis-
cussion of other stellar models.



STELLAR MODELS 333

The equations of equilibrium for this model are

d ", GM
(P;;P)____ r*(r)” (14)
and
dp. _ kL
D= Tamer® (75)

From (74) and (75) we have

@ _ 4meG _
dPr - KL M(f) 1, (76)
or
kL ﬂ)_
M(r) - 41I'CG <dPr + I) . (77)
Differentiating (77), we find
kL d*p _ , dr _ 167%
47760@3_41"‘)11?1'— xL r, (78)
or
d’p 647G
dﬁ - L2 ri. (79)
Again,
d (ry_ _Ldr_4mc
dp, <;> T Trdp kL P (80)
or
d (x) _amc k (3\
dp. (7‘) ~ «xL pH <a> PP (81)

Equations (79) and (80) are reduced by the substitutions

r=at; p =1z ; pr = M2 (82)
to the forms
dz
=k (83)
and ‘
d (1
—_— — — o—1f1/
2(3) == (84)
provided

3,2
oI = 6‘;’2’{,6 (85)
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and
s/ = 47 K <§ e
o I 5/4 «L 2 \a . (86)

Equations (85) and (86) can be expressed in the alternative forms

- «L & 3 vals —1/4
= [167260 uH (a) ] 1L (87)
and
= [ame (R3]
o= [K’L’G </.LH) a] II,. (88)

The mass relation (77) now becomes

kL .4z
M(r) = ppe [IIII,. 7 + IJ s (89)

or, according to (88),

= [ () 3] e+ [ (e o)
M) = [16#2004 ([.LH) a] dt + 4wt \ k 3 I (90)
Finally, if we introduce the new variable x, defined by (“Kelvin’s
transformation’’)

x=E7, (91)
the-fundamental differential equations are

L5 TEe e, . (92)

ax
— = g1/
i g7V
We shall refer to the foregoing equations as (I) and (II) respec-
tively.

We first notice that equations (I) and (II) admit of a constant of

homology ; if
%, 2, 8 — C'*x, Cz, Ct , (93)

the differential equations are unaltered, and consequently we can
use the foregoing transformation for normalizing purposes—for in-
stance, to make the boundary of the star correspond to x = 1.

The problem now is to solve equations (I) and (II) with appropri-
ate boundary conditions. Before we formulate these conditions, how-
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ever, we shall first consider, following von Neumann, the general be-
havior of the solutions of the foregoing system. For this purpose we
shall consider only such solutions as have a physical meaning—i.e.,

as long as
o< x,2t< © ;3 # o, (94)

where the prime denotes differentiation with respect to the independ-
ent variable ¢. Let S : x = x(f), z = 3(¢) be a solution of (I) and
(II), and let the maximum f-interval in which (94) holds be denoted
by I(S). We shall refer to I (S) as the regularity interval of S. Let
the interval be specified by

0a<t<bs +. (95)

By definition, at each of the ends a or b, x, z, or ¢t must become
oor ® or z = «. We shall first examine the conditions at a.

@) Behavior of the solutions at a.—At @, 2, 3, or § becomes o or ©
orz = o. By definition,  has here the finite limit ¢ > o. We shall
first prove the following lemma.

LEMMA 1.—At a the only possibilities are X, = 0,2 = 0, 0r a = O;
further, z, is finite if X, # o.

Proof: 1t is clear that as /—a, ¥ tends to a finite limit x. 2 o,
for, according to (I), x increases with ¢ and hence decreases as
{— a. On the other hand, according to (II), 2’ decreases with ¢ and
hence increases as { — a; hence, as t—a, 2/ must tend to a limit
which may be finite or infinite. But if . # o, then, according to
(I1), 2z’ is bounded, and hence 2 must tend to a finite limit z as
t — a; this, in turn, implies a finite limit, z,, for zas t —a. If,
however, z, = «, then, since z is increasing, it must decrease as
{— a and z must again tend to a finite limit, z.. This proves the
lemma.

We have now to consider the two cases a # o and a = o, sepa-
rately.

Let @ # o. Then by lemma 1, either s = o and/or z, = o. If
2. % 0, then x, = o, and hence,

x ~ constant (¢ — a) (t—a), (96)°

s We shall adopt the convention that the term “constant” refers to an absolute
positive constant the actual value of which may change from one equation to another.
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or, according to (II),
#'’ ~ — constant (¢ — @)™ t—a); (97)

or, integrating twice,
z ~ — constant (¢ — a)™ (t—a). (¢8)

Thus, z — — o which is impossible.

If, on the other hand, x, # o, then (according to the lemma)
2. = o. But if x, # o, then g is finite. As z, = o, 2"’ < o, and,
since z > o (for ¢ > a), we should have 3z, > o. Hence, we can
write

z ~ constant (¢ — a) t—a), (99)
or, according to (I),
&' ~ constant (¢ — a)~* (t—a), (100)
or
x ~ constant log (! — a) (t—a), (101)

which is again impossible, as x would then tend to — «.

Hence, at a 5 o the only possibility is that x, = o, z, = o, and
% = . We shall now examine the behavior of such solutions at
a # o. Put

x~AE ~ a)™; z2 =Bt — a). (102)

Simce z; = @, itis clear thato < # < 1. Also, m > o. Substituting
(102) in (I) and (II), we obtain

mA( — o)™ = aAB7H(t — a)™ (103)
and
n(n — 1)B(t — )" = — A4t — g)~m . (104)
Equating the coefficients and the exponents of (1 — a), we have
m—1= —n; n— 2= —4m, (103)

mA = a'/4B~r ; n(n — 1)B = —A4, (106)

Solving (105) and (106), we finc that

Qo

m=3%; a=%; 4=(3)", B= (s
- 3 = 3 = 3 = (1«)3. (107)

2q/4
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Hence,
3 1/3 '
x~ (;1—1/—4> @t — a)3 (108)

and
z ~ (18a)3(t — a)*/3. (109)

From (108) and (10g) it follows that

pox (t—a)/’t « a? % (110)

Hence, the models for which T tends to a finite limit as the boundary
is approached extend to infinity, and the law of variation of density
as 7 — o is the same as for an isothermal gas sphere (cf. Eq. [439],
iv).

Let ¢ = o. We shall show that x, # o. To prove this, consider
the cases z, = o and z, = o.

First, assume that z, = o. If . = o, then (I) implies that

x ~ constant #5/4 (t—a=o0), (111)

or, according to (II),

d*z
T constant {5 (f—a

o), (112)

or
2~ — constant {3 (t—a =o0). (113)

Hence, z — — o, which is impossible. Therefore, at f = a = o, %a
is finite and z, > o; these solutions correspond to the density tend-
ing to infinity as the boundary is approached—the temperature,
however, tends to zero.

Let us next assume that z, = o. By an argument which we have
already employed (Lemma 1) under these circumstances Z4 > O.
According to (II), 2’ decreases, and hence, if ¢ < 7,

g > tz' > tar . t <t) (114)
Hence, by (I),

a £ (@), (¢t £ t) (13)
or

x < 4 (20)70, (¢ <t) (116)
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if we now assume that x, = o and @ = o. If in (116) we put ¢ = ¢,
and take ¢ for ¢,, we have

x < 4 ()7l (117)

Using the foregoing inequality in (II), we obtain

dz\74d’z 11
— — = > .
(dt) a4ttt 7 5 (118)
or, integrating, we have

1 (dz\73 | 1
_é_(a_t> +;logt20, (119)

which is impossible, since z’ tends to a finite limit. Hence, x, can-
not vanish for £ = o. Along such a solution p — 0, T' — 0, as r — R.
We can collect the results so far obtained in the following theorem.
Ifo < a <b < « is the regularity interval of a solution of the dif-
ferential equations (I) and (II), then at the end a there are three possi-
bilities:
L) o<a< o Thenx, =o0,z, =o0,2z, = o and the asymptotic
Jorms of the solution are

1/3
x ~ (221/4> (t — a)s; z ~ (18a)/3(t — a)*/s .

2.) a = o. If z, is finite, then X, is also finite and z, < «:
0 < %q, %y < @, 0< 7 < ®
3a) a=o0. If z, = o, then x, is finite and z, < o :
0< 2, < @, %, = 0, o< 2, < .

b) Behavior of the solutions at b.—At b, by definition, x or z or ¢
becomes o or «, or 7’ becomes infinite. Here ¢ has a positive limit
o <b £ + «. Since « increases with ¢, it also has a positive limit,
o <xp £ + . 2’ decreases with ¢, and we therefore distinguish the
two cases: A, 2z’ < o does occur and B, 2’ > o.
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In case A, z decreases if # is sufficiently large; thus 5’ is negative
when ¢ — b. In case B, z always increases. Hence, as { — b, z has
a limit z,, which is necessarily finite in case A and necessarily posi-
tive in case B.

Case A—Att = b,z < o,and hence 2’ is negative for some value
oft. If s’ = — ¢ < ofort =t < b, then, since 2’ always decreases,
5’ € — ¢ for t > {,. Hence, z can at best tend only to — = if
{— . Therefore, for this case b = «; hence, b is finite (and
positive) and, as we have already seen, % has to be finite as well.
Thus at ¢ = b, 5 = oo0or & = ®.

Now, since x, > 0, 2 is bounded; and as ¢ — b, z’ tends to a finite
limit, zj. It is clear that z; < —¢ <o. If 2z # o, then according
to (I), #' is bounded and x would tend to a finite limit as ¢ — b;
this is impossible since, if 2 is finite, 4, must be infinite. Hence, as
t—bz—on=candx—x = ®.

Let us now examine more closely the behavior of the solutions as

s—oandx — . Letz = — ¢, (0 < ¢ < ). Then,
z~c(b—1t) t—0b), (120)
or, according to (I),
bi/a
x’NT(b — ), (121)
or, again,
1/
x~—b74log ®-19, (122)

which shows that x — © as# — b. Equations (120) and (122) cor-
respond to the following behavior of p and T as the center is ap-
proached:

pT & cem (/P NE (—o0) (123)
and
Ti — T4 o e (e/W/OE" (£—0). (124)

From (123) and (124) it is clear that this asymptotic behavior cor-
responds to the case of the density falling off exponentially as £ — o,
while the temperature very slowly attains its maximum; the central
regions will be practically isothermal.
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A second approximation to z can be obtained by a process of itera-
tion. According to (IT) and (122), we have

dz
e~ =g 0 -0, (x25)
or
dz ct -
EN—C-}-E(b—t)“og(b—l)]“-I—.... (126)

if terms of higher order are omitted; in (126) the constant of integra-
tion has been chosen in a manner such that 2’ — —¢ as {-—b.
From (126) we have

z~c(b—t)—2%(b—t)’]log(b—t)[“4+...., (127)

the integration constant again having been chosen in a manner such
that £, = o. Finally, from (I),

dx bi/4 11/4 br/4
&=z b=p (128)
The right-hand side of (128) is seen to approach zero as { — b (cf.
Eq. [127]). Hence,

x/
lim [x + ? log (b — !)] =c (129)

t=>b

exists. We can therefore write
13Z
x=—710g(b—t)+co—|-..... (130)

Case B.—As 2’ > o and decreases, a finite b implies a finite z,;
this, according to (I), would in turn imply a finite x,, and this is im-
possible. Hence, & has necessarily to be infinite.

It is clear that as { —> b = =, 3 tends to a limit z,, which may
be finite or infinite. Suppose z,, were finite. Then, ast— o, we
should have

x' ~ gt/ or x~ 5:
@

54 (131)
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By (I1), then,

4
g~ ——<——Sz°°) s 132
2 (132)
or, integrating twice (remembering that s —oast— «), we have
oy (5%
2= e 12<4)t + ... (133)

By (I) and (133) we have

dx /e 1 1
e == = = 1/4 = —11/.
o Lo (- L) em= 0. (134)
Hence,
lim (x — A t5/4> = 7 (135)
t=>0 5%

exists and is finite. We can therefore write

x=5—:;t5/4+'yo+..... (136)
Equations (133) and (136) correspond to the following behavior of
p and T as the center of the configuration is approached.

1/5
oT — constant ; T~ (é) ; (137)

in other words, along such solutions 7' — « and p « T*—o0f
We have finally to examine the case z, = <. If x,, were finite,
then, according to (II),

= —at € —(x) " < 0, (138)

or ¢’ — — o, which contradicts the hypothesis (case B). Hence,
x— wasg— o andi— b = =. Letusnext examine the way in
which # and z tend to infinity. Various trials indicate that s

¢ Tt may be recalled that in the discussion of the (a, ») models we have already en-
countered the behavior p « T7%, T— in the models » = 3+ a4z +s and
a + 7 # o. Along any solution (68),2 = gr > 1ast = 74— ©.
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increases at a rate very near to the order of increase of . We shall
therefore try the following behavior:

z~Ct(logf)» (C = constant) . (139)

By (139) ; c
2z n —
2~ Glog (140)
or, according to (II),
x4~ —nTC (log £)»=*. (141)

Hence, # < o, and we have

x ~ ( —nC)~/44/4 (log £)—/4 (141")
Substituting in (I), we have

dx
—t—i—t- = z_‘tl/‘% ~ %(——nc)—l/4t_3/4 (log l)(x‘")/4 , (142)
or

z ~ 4(—nC)*/+¢ (log £)m=0/4 (143)

Comparing this with (139), we have

gn=n—1; 4(—nC)/1=C. (144)
Solving (144), we find
n=—1; c=4% (145)
b 31 3 .
Hence, finally,
1/
g »
and
44/3
z~ o t (log t)~*/3. (147)

Equations (146) and (147) correspond to the following behavior of
p and T as the center of the configuration is approached:

T (log T)V/3 o é (E—0), (148)

and
p = T3 (log T)™*/s (E—0). (149)

Hence, along these solutions both pand T'— .
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This completes the discussion of the behavior of the solutions at
the end b of the regularity. We can collect together the results in
the following theorem.

If o < a<b < « is the regularity interval of a solution’ of the
differential equations (I) and (II), then at the end b there are three
possibilities:

) o <b < o. Then x, — ©, 2 = o, and z finite and negalive.
More precisely,

br/a
x~—c—llog(b—t)[ +e+ ...
and

z~c(b—t)—ig(b—t)’llog(b—t)l""-{-.....

2p) b = + o and z > z,, which is finite. Then z!, = o. More pre-
cisely,
x~——‘1'—t5/4+'yo+
5%
and

4
z~zm—i<sz—°°> I SN
12 \ 4

3) b=+ and z— . Then x > . More precisely,

X~ 3 /4 (log £)*/3
41/3 g

and
44/3 /s
z~ 37 ¢t (log ¢)™/3.

¢) The number of arbitrary parameters.—We have now to deter-
mine the number of arbitrary parameters corresponding to each of
the different types 1., 2a, 3a and Ip, 2, 3b.

Solutions I., 2., and 3.—Solutions of the type 2. and 3. satisfy
regular initial conditions and are characterized by three (namely,
Xo, %o, and z) and two (namely, x, and z;) parameters, respectively.
However, in the case 1, the dominant terms have been uniquely
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determined without any arbitrary constants, and the number of
arbitrary parameters must be determined by a perturbation method.

Let
x=%+4+¢ (¢ €%) (150)

z=z+¢ ¥ K32), (151)

and

where Z and z are solutions of (I) and (II) such that, as ¢ — q, their
behavior is governed by equations (108) and (109). Substituting
(150) and (151) in (I) and (II) and retaining only the terms of the
first order of smallness, we obtain

‘P 1/4 dz’p

d -
B—f = —o o5 = 4. (152)

As ¢ — a, we have, according to (108) and (10g),

d_go 1

i~ Tl (t = a)~3y (153)

and
T~ sy, (150)

Put
p~AG—am;  Y~Bt—a)r. (155)

Substituting the foregoing in (153) and (154), we find

1
T 2*sg4lags/n

Am@E — a)m* = B(t — a)r+/3 (156)

and
211/3g5/12

35/3

n(n — 1)B(t — a)» 2 = A@ — a)yms/s, (157)
Equating the coefficients and the exponents of (¢ — a) in the fore-
going equations, we find

m—n=—3 (158)
and
_ 1 _n(n — 1)35/3
- _22/334/3a5/nm - 211/3gs/12 . (159)

Sl
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From equations (158) and (159) we derive that
3n(zn — 1)(3n — 3) = —8, (160)

or (as can be verified)

(3n+ 1)(9n* — 152+ 8) = o. (161)
Hence,
n=—% or S—i—g/;'] . (162)

On the other hand, ¢ < % and ¥ < # implies, according to (108),

(109), and (155), that m > % and » > %. Since m — n = —3,
n > 2 would imply that m > . This excludes the case n = —3
in (162). Thus, the only possibilities are
. vV —y
n=————sig/ 7, m=3———-——i6 7, (163)

Thus, there are two linearly independent solutions of the type 1.
for any specified @ > o; these solutions, therefore, are characterized
by three parameters. We have thus proved: Solutions of the type
Ia, 24, and 3, are characterized by three, three, and two parameters,
respectively.

Now the differential equations (I) and (II) are equivalent to a
single differential equation of the third order, and hence the solu-
tions must form a three-parametric family. (In the language of the
theory of sets of points, solutions of the type 1. and 2, form open
domains in the manifold of all solutions. Solutions of the type 3.
form, however, only a two-parametric manifold and hence can con-
tain no “interior points.” The boundary of 14and 2, must, therefore,
be 3..)

Solutions 1, 2», and 3,,—Solutions of the types 1, and 2 satisfy
regular boundary conditions and are therefore characterized by three
(namely, b, ¢, and ¢,) and two (namely, z, and v,) parameters,
respectively. The dominant terms of the solutions of the type 3,
have been uniquely determined, and the number of linearly inde-
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pendent solutions belonging to this class must be determined by the
perturbation method, as in case 1,, above. Write

x=%x4+¢ (pKx) (164)
and
z=z4+ Y W <K%, (165)

where Z and z are now solutions whose behavior at infinity is
governed by the equations (146) and (147). The differential equa-
tions for ¢ and ¢ are the same as before (Eq. [152]); substituting
for % and % the expressions (146) and (147), we obtain

2/
3—‘; ~ —i’s—/z 7174 (log 1)V (166)
and
d? 8/3
dt‘f ~ ‘3‘5—/3 15/ (log £)~5/¢ . (167)
Put
o = At (log )" ; ¥ = Bt" (log 1)* . (168)

If m, n, 7, and s are not all zero, then the leading terms in equations
(166) and (167) are proportional respectively to

mim (log t)" « 777/4 (log £)*+%/3 (169)
and
n(n — 1)87 (log t)* = i"=5/4 (log £)™5/3 , (170)
Equations (169) and (170) imply
met=n=1; w—z=m-3, (1)

r=s+3%; s=r—3%. (172)

Equations (172) are inconsistent; hence, according to (169) and
(170), either m = o or n(n — 1) = o. Thus, we have the possibili-
ties:

o= A (log t); ¥ = Bi* (log #)*, (173)
o= At~ (logt)"; ¢ =B (logt), (174)

¢=Aim(log#)"; ¥ = Bt (log1)*. (175)
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Substituting (173), (174), and (175) successively in (166) and (167)
and equating the coefficients and the exponents of the leading
terms, we find:

8/3

m=o; m=4; r=38; s=h; A:B=-%5, (1)
I

m=—%; n=o0; r=3%; s=-4; A:B="5p, (174)

1. 2 1 32/3 !

m= g, "=I;'=_?;3=_3’A:B=—45/3' (175

With m, n, 7, and s defined as in the foregoing equations, ¢ and ¥
(Eq. [168)) satisfy the requirements ¢ K ¥ and ¥ < %, where % and 2
are defined according to (146) and (147) ; thus there are three linearly
independent solutions of type 3b. We have thus proved: Solutions
of the type 1, 21, and 3y are characterized by three, two, and three param-
eters, respectively. (In the language of the theory of sets of points,
the solutions of the type 1, and 3;, correspond to open domains in the
manifold of all solutions, and the solutions of the type 2y form a
closed set containing no interior points. The “border line”” of 13, and
3, must therefore correspond to 2b.)

d) Conditions at the boundary of the configuration.—So far we have
considered only the behavior of the general solutions of the differ-
ential equations (I) and (I1) at the ends “a’”’ and “b” of the regular-
ity interval. It now remains to select such solutions as can describe
a stellar configuration. At the boundary R of the configuration we
require both p and T to vanish.? In other words, the requirement is
that, when ¢ = o, z = o. From the earlier discussion (case 3.),
t = o, 2 = o necessarily imply the existence of the limit x(t — o) > o.

7If we require that at the boundary of the configuration, T tends to a finite limit T
while at the same time p — o, then the solution must be such that for a finite £ = fa, 2
— o. Hence, the solution must be of type 1a. This solution, as we have shown, corre-
sponds to the case where the configuration extends to infinity with p falling off as 72—
ie., in the same way as in the isothermal gas sphere. Further, according to (89),
M — . These are, really, only formal difficulties (cf. Cowling’s paper referred to in
the Bibliographical Notes at the end of the chapter), and it is safe to use the initial
conditions (176), since the ratio of T3 to the values of T+ occurring in the far interior
is of the order of (101/10%)4+ ~ 107%; we can, therefore, certainly put t« = o.
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Further, from the homology argument (Eq. [93]), we can normalize
the units in such a way that x = 1 corresponds to the boundary

t=o0, x=1, z=o0. (176)

To make the solution definite, another boundary condition is
needed. Assume that

2 =8 >0 t=0). (177)

A solution satisfying the initial conditions (176) and (177) must be-
long to a solution of type 3,. The problem presented is twofold: (1)
How does the regularity interval (o, b) depend on 8,7 (2) For a
specified d8;, what is the type of the solution which we are led to at
the end b of the regularity interval? To answer these questions
we proceed as follows:

Begin a solution of type 2, at £ = « and continue it backward for
decreasing ¢. It is easily verified that as vy, » 4+« (cf. Eq.
[136]), the solution is of type 2, as ¢ —o. On the other hand, if
Yo — — =, the solution we are led to is of type 1,. Hence, an inter-
mediate value of v, which leads to a solution of class 3, must exist.
On the other hand, it is easy to see that as 8, — « we should eventu-
ally have solutions of type 1,. We can therefore conclude that tkere
exists a value of 8, = 8, such that a solution satisfying the boundary
conditions (176) and (177) with 6: = 8, 1is of bype 2, ast — . If 5,
> 8o, then the solutions are of type 1,; and if 6; < 8., they are of type
3b-

e) Boundary conditions at the center: discussion of the point-source
model—We must next consider the boundary conditions at the
center. This is a more difficult problem, since we cannot expect that
in the point-source model the equations of radiative equilibrium
will be valid right up to the center of the configuration; the condition
for the stability of the radiative gradient (Eq. [45], vi] will certainly
become invalidated as we approach the center. As has already been
explained (see p. 228), it is a rather delicate matter to continue the
solution beyond the point where the instability of the radiative
gradient sets in. For the present, however, we shall continue to dis-
cuss the point-source model as though the equations of radiative
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equilibrium were universally valid, in an attempt toward the enu-
meration of the possible configurations.

i) The complete point-source model.—We require that at the center
of the configuration

M(r) =o (r=0). (178)
By (go) this means that

dz _ [eLG (uH\* a]¥s _ _
(dt>,=,°_ —[41rc’ <k> 3] = —b. (179)

From (179) it is clear that . is finite. Thus, a configuration which

satisfies the boundary conditions (176), (177), and (178) must be

described by a solution which is of type 3, as £ — o and is of type 1,

as ! — t,. By the theorem proved in section d it follows that &: > .
We can re-write (179) as

_(ram\ (kN o
L—K(a(;) <#H> s, (180)

or, numerically,
L
Is = kIu203/7 X 1.471 X 104. (181)

The mass relation (go) can now be written as

L k \4 1/3
M = [———‘16:2664 (;ﬁ) ?’;] (61 + 62) 5 (182)
or, eliminating L from (182), we have
/2 1 k\2
w=(2) ga () weror, a8y

or, numerically,
M=1.1170 8% (8: + &)u2. (184)

The luminosity formula takes the form

47cGM 6,
el S (185)

L
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It is, of course, clear that a specified 8,(> 8,) will lead to a unique
value for 8,. Thus, for the complete point-source model with x =
constant, we have an (L, M, «, p) relation quite analogous to those
for the other models which have been considered.

An important point to note concerning this complete point-source
model is that, as r — o, p > o0and T'— T\, (cf. Egs. [123] and [124]).
This clearly shows that the radiative gradient becomes unstable be-
fore the center is reached.

P. C. Keenan has integrated the differential equations I and 11
and has obtained by numerical methods several solutions cor-
responding to the model just considered. Table 22 summarizes the
results of Keenan’s computations.

TABLE 22

SOLUTIONS FOR THE COMPLETE POINT-SOURCE
MODEL WITH k= CONSTANT

M _L 2, 82
81 82 6 u? LO”K Foars
5.15 56.0 1.72X10% 0.234
14.4 184 8.00X 108 0.331
25.4 383 1.88X 106 0.374
35.6 600 3.12X108 0.396
52.7 1020 5.63X10° 0.419
107.3.... 84.9 1954 1.11 X107 0.442
625.0.... 566.0 31500 1.97X108 0.475

i) The point-source model with point mass at the center—If we
use the other types of solutions (i.e., solutions which begin as those
of type 3, but are types 2, or 3, as { — =), then it is clear that
T — « as r — o. Further, for solutions of type 2y or 3y, dz/dt — o
as t — «. Hence, by the mass relation (89) it follows that

lim M(y) = L (x86)

r=>o0 4mcG

This point mass at the center does not necessarily imply that
p— @ as r—o. Indeed, along solutions of type 2, p—o as
r — o, though along solutions of type 3, p — = as well. It is, how-
ever, difficult to interpret these solutions without an adequate
examination of the way in which the physical situation alters when
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new equations of equilibrium are introduced as the instability of the
radiative gradient sets in.

4. The point-source model with negligible radiation pressure and
with x = kopT~3-5.—The structure of stellar envelopes with negli-
gible radiation pressure has already been investigated in chapter
viii. In particular, the temperature and the density distributions in
the outer parts are governed by (Egs. [66], [67] and [53], viii).

rosHIGU(R_), 5%1)

and
_ 31 _4_3_,G_]l_4 3.28 ’_"E‘l 3.75 <41rcGM 0.5 <IS B 3.28
Y (17 ¢ R ) ( k 3) Wl ; 1 . (188)

For a star of prescribed M, R, u, and L, equations (187) and
(188) give the initial variations of density and temperature. These
equations, however, cease to be good approximations after we have
traversed the outer 10 per cent of the mass of the star. On the other
hand, we can continue these solutions inward, allowing for the varia-
tion of M(r). Since we are considering a point-source model with
negligible radiation pressure, the equations of equilibrium which
should be used to continue the solutions (187) and (188) are:

Ed g _GHO)
I dr (oT) = P (189)
dM(r) _ .
5, =4, (190)
and
a d _ KoL N
3 dr () = gmer® T35° (x91)

As we have seen, when the variations in M (r) are neglected, we have
pT 3% = constant . (192)

When the solutions which describe the stellar envelope are con-
tinued inward by means of (189), (190), and (191), the effective
polytropic index, #.s, will begin to decrease from its boundary value
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3.25. For some definite value of 7 = 7; (say), #.s will become 1.5.
For r < r;, neg would be less than 1.5, and according to the discus-
sion in § 3, chapter vi, these regions will be in convective equilib-
rium. The density distribution for » < 7; should, therefore, be
governed by the Lane-Emden function 8;/,. For prescribed values of
M, R, and p and an arbitrarily assigned value of L, we cannot, in
general, fit the outer envelope on to a polytropic core of index # = 3.
For, an assigned value of «,L will lead to definite values for p, P,
and M(r) at the interface r = 7;. Let these quantities have the
values p;, P;, and M(r;) at r = r;. Now, if the convective core is to
be described by the Lane-Emden function 6,,,, then the quantities
—§6°/*/0" and —£6'/6 should have the following values at the inter-

face:
gs/2 mp;1}
U, = —<£01 >r=r~ = ]414(”) ] (193)
_ (& _2GM(r:)p:
V= <7>'=n - 5 riPi . (194)

(The foregoing equations follow from equations [8], [10], and [68]
of chapter iv.) In order that a solution be possible, the values of
u; and v; thus computed should lie on the E-curve in the (x, v) plane
(cf. the discussion in § 28, iv). This will not in general be the case.
If the values of M, R, and p are prescribed, we must, therefore, ad-
just the value of «,L until the quantities #; and »; computed accord-
ing to the right-hand sides of the equations (193) and (194) lead to
a point on the E-curve in the (u, v) plane. This condition will deter-
mine a («k,.L, M, R, p) relation of the same general form as the cor-
responding relation for the standard model (cf. § 6, vi).

The situation described in the last paragraph can be considered
in the following alternative way.

Equations (189) and (190) can be reduced to the forms

d
-5 H-ow (195)

d
d—g (00’) =

by the substitutions

p = po, T=T.0, r = af, M=My, (196)
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if po, T, a, and M, satisfy the relations

= E ”'__H . 3,5 = M,
ol = P GM, ; alp = - (197)
In the convective core we should have
o = 0/, (198)

Equation (198) will reduce the equations (195) to the Lane-Emden
equation of index n = §. If pc and T, correspond to the central
values, then the appropriate solution for the convective core is
g = 0,,,. Outside the convective core the temperature gradient will
be governed by equation (191). In terms of the £, 8, and i variables,
equation (191) takes the form

dt = _QE’%—S’ (199)

where

koL o;
0= 3

~ 167 ac oI5 (200)

Q is thus a numerical constant.

Suppose we assume that the convective core extends to £ = &i.
At this point the Lane-Emden function will be characterized by
definite values for 8, o, and ¢'. Equation (199) will then determine
Q. We bave

With this value of Q we can numerically integrate the equations
(195) and (199) for £ 2 &. Now for a solution to be physically
significant o and 6 should tend to zero simultaneously. For an arbi-
trarily assigned initial value of &, this will not, in general, be the
case. We can, however, adjust £ until ¢ and 6 tend to zero simul-
taneously. This is the method which Cowling has adopted in his
treatment of the equations (19s5) and (199). The value of & which
Jeads to the physically significant solution is

£ = 1.188. (202)
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Further, at £ = ¢; we have
6; = 0.7878; 0; = — 0.3212; ¥i=0.4534. (203)

Equation (201) now gives
Q =o0.1968. (204)

Cowling’s integration shows that the boundary of the configuration
is reached at

£=£& = 7.027. (205)
At £ = £, we have
Y=y =3.1237. (206)
Hence,
E_l"=o,169; z—:=o.145. (207)

In other words, the convective core occupies 16.9 per cent of radius
of the star and incloses 14.5 per cent of the mass.
Equation (197) can now be re-written as

TC=E'P—ITT, (208)
T M
Pec = 471'!#1 1?~ (209)

From (208) and (209) we derive that

k & GM:

PC:,TI—IP’T”=IOW¢§T4-’

(210)

3

pc:g,\li,‘_)' (211)

Numerically, equations (208), (210), and (211) are found to be

wH GM
0.900 == ——,
GM?
P, = 7954 “pr > (212)

o3
[

p. =37.0p.
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Comparing the foregoing equations with the corresponding equa-
tions for the standard model (Egs. [61], [57], and [56], vi), we
notice that, though this model is less centrally condensed than a
polytrope of index 3, it is yet characterized by a higher value for
the central temperature.

Equations (200), (204), (208), and (209) lead to the following
mass-luminosity-radius relation:

1075 YiS ko 3\

wspsQ £S5 1 ac(GH\7S M5
SO g

If we write (213) in the form (cf. Eq. [39])

_m [£:(8)1°-5 1 ac [GH\"-S M>5S
L= Lo o3 V&) ®M (19

then we should have

07 [6(0)]°5 ¥i
Ne = 4ISQ [T] [003]4‘5 ) (215)

or, introducing the numerical values, it is found that
N = 3.30. (216)

The value of 7. for this model is thus seen to be somewhat larger than
the value 2.5 adopted in chapter vi. It should, however, be re-
marked that if we use (213) to determine the hydrogen contents of
stars, the appropriate guillotine factors will be less than for the
standard model (on account of the higher temperatures and lower
densities in the central regions of the model considered as compared
to the polytrope of index n = 3).

One important characteristic of the model considered in this
section must be noticed. The luminosity formula (213) derived
for this model will be valid for any stellar configuration (with
negligible radiation pressure) in which the energy-generating regions
do not occupy more than a fraction o.17 of the radius of the star.
The same is true for the distributions of density and temperature de-
rived for this model. The analysis of this model confirms, therefore,
the generality of the conclusions drawn on the basis of the luminos-
ity formula used in the discussion of chapter vii.
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CHAPTER X
THE QUANTUM STATISTICS

In this chapter we shall consider the quantum theory of an ideal
gas, with a view toward the applications contained in the next chap-
ter. It was originally intended to make the presentation of sta-
tistical mechanics as logically satisfactory as that given (following
Carathéodory) of the foundations of thermodynamics in chapter i.
This intention, however, had, in part, to be abandoned, owing to the
space which such an exposition would require; such a discussion
would, also, lead us too far from the main thesis of the present mono-
graph. The most important formula to be established is the relation
between the electron pressure, P, and the electron concentration, #,
for a completely degenerate electron gas. This formula can be de-
rived in an entirely elementary way, but to appreciate fully the
physical meaning of the (P, n) relation and the physical circum-
stances under which it is applicable a more elaborate treatment is
required, which follows the elementary derivation contained in §1,
below. Applications of the physical theory presented here are con-
tained in chapter xi.

1. A completely degenerate electron gas: elementary treatment.—A
given number N of electrons can be confined in a given volume V by
one of two methods: either by means of “potential walls” such that
electrons inside the “potential hole” cannot escape, or by means of
imposing a certain periodicity condition. We shall consider these
restrictions in greater detail in § 2, but the essential result is that we
can label the possible energy states for an electron inside a given
volume V by means of quantum numbers in somewhat the same
manner as the quantum states of an electron in an atom. If we as-
sume that the volume V is large, then it follows from the general

357
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theory that the number of quantum states with momenta between
f and p + dp is given by

grpd
v 2rEer, (1)

The meaning of (1) is that the accessible six-dimensional phase-
space can be divided into “cells” of volume %® and that in each cell
there are two possible states. Now the Pauli principle states that #o
two electrons can occupy the same quantum state. This implies that,
if N(p)dp denotes the number of electrons in the assembly with
momenta between p and p + dp, then

Npap < v LD (2)

Now a completely degenerate electron gas is one in which all the lowest
quantum states are occupied. In other words, we should have

Ny = v I 3)

It is clear that if there is only a finite number, NV, of electrons in the
specified volume, then all the electrons must have momenta less
than a certain maximum value, p,, such that

8 ?o:
N=Vh7017d1’, (4)
or
L
N_Vshsﬁo‘ (5)

The “threshold value,” p,, of # is related to the electron concentra-
tion, #, by
N _ s

=I_/=3h3pta)‘ (6)

n

To calculate the pressure, we recall that by definition the pressure,
P, exerted by a gas is simply the mean rate of transfer of momentum
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across an ideal surface of unit area in the gas. From this definition
it follows quite generally that

PV = % f N(p)pvydp Q)

where v, is the velocity associated with the momentum p. According
to (3), we have for the case under consideration:

P=8—“f°1>s?fdp, )

where E is the kinetic energy of the electron which has a momentum
p. Finally, if Uyin is the internal energy of the gas which is due to
the translational energy of the motions of the individual electrons,
we have (quite generally)

Uin = [ NO)ED, ()
or for the completely degenerate case,
Ukin = V %LpoEpzdp . (10)
From (8) and (10) we find
P =2 B0 - 3" (x1)
So far the results are quite general, in the sense that we have not

introduced any relation between E and p. According to the special
theory of relativity, we have

E = mc’{(r + 73;26,)1/2 - 1}, (12)

2 \ —1/2
%=i<1+i—) . (13)

which gives

m2c?
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Substituting (13) in (8), we have

o

8 prdp
P = . (14)
3mh3 P: 1/2
()
Introduce the variable, 8, defined by
R 2 ; .y
sinh § = poell sinh 6, ot (15)
Equation (14) now reduces to
8wmacs (O,
P = 7l3—£ sinh4 6 df . (16)
On integration, we have
_ 8mwmcs [sinh®  cosh 8 3 sinh 26 Q]
P = 3}13 [ 4 16 + 8 0=00' (17)
Finally, writing
21
v=-, (18)
we have
S
P = %f(x) = 6.01 X 102 f(x) , (19)
where
fl®) = x(22? — 3)(2* 4 1)¥* + 3 sinh~* % . (20)
Again from (6), we have
=§1;’Z—3363x3= 5.87 X 109 a3, (21)

Equations (19), (20), and (21) represent parametrically the equa-
tion of state of a completely degenerate electron gas. From (r 1) it
now follows that
TmAcs
Ukin = Sk Vg(x) , (22)
where

g(®) = 8u(a* + 1)2 — 1] — f(x) . (3)
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Equation (22) for the internal energy of an electron gas was first de-
rived by E. C. Stoner. In Table 23 the functions f(x) and g(x) are
tabulated. The table is more accurate and more extensive than any
that has been published so far.

TABLE 23

THE PRESSURE AND THE INTERNAL ENERGY OF
A COMPLETELY DEGENERATE GAS

s | osw | B - @ 8 e
O..... o. o. 1.5 2.7. 95.17935 200.7327 |2.1090
0.1...| 0.000016[ ©.0000241.5 2.8.. 110.8207 235.7072 |2.1269
0.2...| 0.000505| ©.000762|1.509 2.9.. 128.3012 275.1070.|2.1442
0.3...| 0.003769| ©.005742|1.5233 3.0.. 147.7578 319.2942 |2.1609
0.4...| 0.015527| ©.023914|I.5402 3.5.. 279.8113 625.728 |2.2363
0.5...| ©0.046093| ©.071941 1.5608|| 4.0.. 484.5044 1114.466 |2.2000
0.6...| o.111126] 0.17604 |1.5841 4.5.. 784.5271 1846.997 [2.3543
0.7...| ©.231992| ©.27348 [1.6099 5.0.. 1205.2069 2893.813 |2.401I
0.8...| 0.435865| o©.71358 {1.6372 5.5.. 1775. 1004 4334.407 |2.4418
0.9...| 0.755661| 1.25849 |1.6054 6.0.. 2525.7390 6257.275 |2.4774
1.0...| 1.220007| 2.0838 |1.6043]| 6.5.. 3491.599 8759.913 |2.5089
1.1...| 1.902586] 3.2788 |(1.7233 7.0.. 4710.192 11948.818 |[2.5368
1.2...] 2.82208 | 4.0468 |1.7523 7.5.. 6222.021 15939.488 |2.5618
1.3...| 4.04557 7.2052 |1.7810f| 8.0.. 8070.587 20856.421 |2.5842
1.4...| 5.62901 | 10.1857 |1.8002 8.5. 10302.39 26833 .12 2.6045
1.5...] 7.64053 | 14.0344 1.8368|| ¢.0.. 1.206694 X 10% |3.401207 X 10%|2.6230
1.6...|10.14606 | 18.9115 |1.8638| 9.5.. 1.611672X10%|4.254479X10%|2.6398
1.7...|13.22350 | 24.9920 1.8g00|| 10.0.. 1.980725X10%|5.2591  X10* 2.6552
1.8...]16.04960 | 32.4649 |1.9154}i 20.0.. 3.192093X105(8.9839 X 10 2.8144
1.9...|21.40037 | 41.5338 |1.9400(| 30.0.. 1.618212X 10 |4.6404 X10°|2.8732
2.0...[26.60150 | 52.4168 |1.0638}| 40.0.. 5.116812X10°|1.48596 X107|2.0041
2.1...|32.89010 | 65.3462 |1.9868|| 50.0.. 1.249501X107|3.6515 X107|2.9224
2.2...140.10347 | 80.5689 |2.0000ll 60.0.. 2.591280X 107 [7.6053 X107|2.9349
2.3...148.43500 | 08.3463 |2.0305)| 70.0.. 4.801018 X107 |1.41346 X10%12.9441
2.4...]57.99311 [118.9541 |2.0512 80.0..| 8.190727X107|2.41703 X 10%12.9500
2.5...|68.80053 |142.6823 |2.0711|| 90.0..|13.12039 X107 |3.87876 X10%|2.9563
2.6...|81.24509 {169.8355 [2.0904(| 100.0. . 19.9980- X107 |5.9206 X108 |2.9606

The function f(x) has the following asymptotic forms:

f(x) ~ a5 — a7 + Ja° — Fpa .. - (x—0) (24)
and
flx) ~2x4 — 302 + .. .. (x— ). (25)
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Finally, we see that

/) <1 for all finite x . (26)
2x4
The inequality (26) is a strict one. If only the first terms in the
expansions (24) and (25) are retained, we can eliminate x between
(19) and (21) and obtain the following cxplicit forms of the equations
of state for the two limiting cases:

I (3\"Fk s/
P=L (3" L (r=0) ()
and
p=1= <.3_ 1/3;% n4/3 (v —> o). (28)
8\« ’ ’

We may note that g(x) has the following asymptotic forms:

gx) ~ et — JaT 4 0 — AR+ . ... (v —>o0) (29)
and
g(x) ~ 6x4 — 8x3 + 742 — . . .. (x— »). (30)

From (24), (25), (29), and (30) we infer that

Uin = $ PV (x—>0) (31)
and
Uin = 3 PV (x> ®). (32)

The elementary derivation of the equation of state of a completely
degenerate electron gas should be supplemented in two ways: first,
by the enumeration of the states which leads to (1); and second, by
the investigation of the physical circumstances under which the
equation of state given by (19) and (21) can be considered to be
valid. These require a rather elaborate treatment of statistical
mechanics, which will now be given. For a more general discussion
than that undertaken here, reference may be made to Jordan’s book
which is referred to in the bibliographical note at the end of the
chapter.
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2. The enumeration of the quantum states—The wave equation of
the electron in free space is, according to Dirac,

(azpz + aypy + ap. + anmc + 'I/CZ> Y=o, (33)

where a., a,, a,, and a, are anticommuting variables whose squares
are unity, i.e.,

a,0, + a,a, = 26;4v (l"r v=0%, %, m) ) (34)

where 8, is the Kronecker symbol:

| dw = © (b= 9),
‘ (35)
=1 (w=w).
Further,
.9 L9 Y}
?1‘ = —ih 5} ’ Pu = —ih @ ’ Pz - ih 9z (36)
and
w=inl (37)
=1 at} 37

where # is the Planck constant divided by 27. The wave equation
can therefore be written as
L [1d a J a
zh{Zb—t—a,%—ay@—aza—z-i-ammc}‘[/—o. (38)
As is well known, the a’s can be represented as matrices with four
rows and columns and ¢ is to be regarded as a (complex) vector

with four components. Choosing a particular representation for the
a’s we may write equation (33) as

o 0o 0 1 o o o —t
w o o 1 o o o 1 o
¢ + 2 o1 o o Tt o —i o o
I o o o i o o o
(39)
o o 1 I o o o I
o o o —1 o I o0 © Y2
mc =0
+ 7 I o o o + o o -1 O ¥ ’
o—1 o o o o o0 —I ¥,
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where Y., ¥, ¥3, and ¢, are the four components of the wave func-
tion. In (39) the matrix representing the a’s should be multiplied
by the matrix |¢,\|—of just one column—according to the law of
matrix multiplication. Explicitly, (39) takes the form

'l’x '/’4 _i‘h
E 12 ¥s W
c | ¥ t 2 ¥, T —iY,
s s S  (40)
[2 12
_‘h ‘/’z
=+ 9. o +mec| wl = o.
—¥ —¥,

According to (36) and (37), the foregoing equation is equivalent
to the following four ordinary partial differential equations:

% 9 . (8 . 8 .. 0
(t?a—tﬁ'mc)th—zﬁ(&— 5)'#4—171"6%3:0, (41)

ik o . [0 .9 ., O
(atm)p-a(Grig)nrntiae W
i 0 . i) . 9 Jy
(Ei-r-n(d-id)o-atho,
) a3 .. O,
(%51 mc)lllq 1ﬁ<a +23&>¢x+2ﬁ—a¢;=0- (44)

To solve the foregoing equations, put

% @xt+pyyt+p2—EY)

U\ = ape = 1, 2,3, 4) ’ (45)

where p., p,, and p, are now ordinary real numbers and the a,’s are,
for the present, arbitrary numbers. On substituting (45) in equa-
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tions (41), (42), (43), and (44) we find that the a,’s must satisfy
the following set of homogeneous linear equations:

(% + mc) @ + paay + (pe — ip)as =0, }
<I—2+mc> a + (p= +ipy) 0 — p.a, =0,
[
E - (46)
Pial + (Pz - iP,,) a2 + (E' - mc) a; =0,
(p: + ipy)ox — p:02 + (g - mc>a4 =o0.

In order that the ay’s shall not be identically zero it is necessary
that the determinant formed by the coefficients of the a\’s in (46)
be zero. The determinant is found to reduce to

E 2 (E 2
(;+mﬁ(;—m)—@p+ﬂ+ﬁy. a7

Hence, the condition that the ay’s do not vanish identically is

E\?
(B) = 2+ pi+ 2+ e (49

In other words, the relativistic expression which connects the total
energy, E, and the components of the momentum must be valid in
order that (45) may be a solution of Dirac’s equation.

Further, we find from the first two equations in (46) that

_ _ %P + ay(ps — ipu)
mec + %

(49)

i

and
_as(Pz + ipy) — @up: .
mc + %

a, =

(50)
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The foregoing values of a, and 4., in terms of a; and q,, also satisfy
the last two equations in (46). Hence, of the four a,’s only two can
be arbitrarily specified for a given set of values of (f., p,, p.). Hence,
there are two linearly independent solutions for a given set of values
for the components of the momentum which satisfy (48).

We must now obtain some restriction on the possible eigenfunc-
tions due to the presence of the boundary walls. To obtain these
restrictions quite generally, we shall follow Dirac in his approach to
the problem.

According to the general principles of quantum mechanics, there
must be just exactly as many eigenfunctions as should enable one to
represent by a matrix any function of the co-ordinates which has a
physical meaning. Let us suppose, for definiteness, that each elec-
tron is confined between two boundaries at x = o and x = I,. Then
only those functions of x which are defined for o < x < I, have a
physical meaning and must be capable of being expanded in terms
of a complete set of eigenfunctions. It is, of course, obvious that this
will require fewer eigenfunctions than would be required for the
representation of an arbitrary function. A function F\(x), defined
in the range o < x < I, can always be expanded in a Fourier series
of the form

@

B@) = D af) emitale (51)

ky=—x
where the af)’s are constants and the &.’s are integers. It is clear,
then, that if we choose from the eigenfunctions,

i
(Pt yt+0,5—EY)
'P)\ = a)\eﬁ v ) (52 )

those for which

2k,

Iz

(be=®1,+2,....4 o), (s53)

>

then, F\(x) times any of the eigenfunctions so selected can be ex-
panded in a series in terms of the selected eigenfunctions. Thus, the
selected eigenfunctions are sufficient and are easily seen to be only
just sufficient for the expansion of functions of the form ( 51).
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Similarly, if the y and the z co-ordinates are also bounded, so that
o<y<l; o<zl (54)

then we should have

2wk

a2k
by _ 2Ty =T (55)

T

>

where k, and k. are positive or negative integers. The conditions
(53) and (55) can also be written as

k.h
; p:= 775 (56)

k:h k,h
Plz la:, Pv='l_1;‘

where / is now the usual Planck constant.

We have derived (56) from very gencral considerations. The fol-
lowing special method of imposing the boundary conditions is
illustrative.

We impose the periodicity condition

R CE SRR E S SR AR NCIETER (57)

From (52) and (57) it immediately follows that the conditions (56)
should be satisfied. We thus see that the state of an electron con-
fined in the volume I, I, I. can be specified by the quantum num-
bers ks, ky, and k., and that to the quantum state (ks, ky, k) there
corresponds the following value for the energy, E:

- () () e o
From (56) it follows that by making L, I, and I. sufficiently large we
can make the discrete eigenvalues of the momenta p, Py, and p.
lie as closely together as we may choose. We can therefore ask as
to the number of quantum states for the electron corresponding to a
specified energy interval, E, E - AE, where AE is large compared
to the separation between the consecutive eigenvalues for E.
Let Z(E)AE be the number of quantum states in the specified
energy interval, E, E + AE. To find Z(E)AE, we first consider the
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total number J(E) of the quantum states for E less than the specified
amount:

Jwriwima (50)

If we remember that for a given set of values of p., p,, and p. (which
satisfy the relation [48]) there are two linearly independent solutions
of the Dirac equation, it is clear that J(E) is simply twice the num-
ber of points with integral co-ordinates inside the ellipsoid (58). The
equation of the ellipsoid (58) can be re-written in the form

2

z+d,,+_§=1’ (60)
where
L(E .\ I, (E* Z
az=z<c—z—mc> 5 a”=Z<F_m2‘;Z> ; o0
1
oot (B = )" (
h\c?

If a., a,, and a. are large compared to unity, the number of points
with integral co-ordinates inside the ellipsoid (60) is simply the
volume of the ellipsoid, which is

‘;—” a:0,a . (62)
Hence,
— 47r lfl” = 2,2 3/2
T = 2 4 e (T )" (63)

By (59) it now follows that the number of independent eigenfunc-
tions (which is equal to the number of quantum states) belonging
to the eigenvalues of E in the range E. E 4+ AE is obtained by
differentiating (63) with respect to E:

2 1/2
Z(E)aE = 2 Y (? - m’cz) gAE, (64)

where V = L1,l.. If we denote the kinetic energy by E, we have
E =E+ me. (65)
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Equation (64) can now be written alternatively in the form

1/2
Z(E) = 2 4;;[/ (CE + m> (sz + ?—2) ) (66)

On the other hand, if p denotes the absolute magnitude of the
momentum, defined by

P = pi+ p; + b, (67)
then, according to (48) and (6s),

§+2Em=p’; pdp = (%'l‘m) dE . (68)

Equation (66) can therefore be written in the form

vV ..
Z(pyip = 2 pp, (69)

which is the result quoted in § 1 (Eq. [1]).

We have derived the result (69) on the assumption that the elec-
trons are confined in a rectangular box, but it is clear that the result
should be quite generally true independent of the shape of the
vessel. The most general proof of (66) and (69) is due to Peierls,”
to whose derivation reference may be made.

3. The Gibbs canonical ensemble and its properties.—In the last
section we saw that the number of quantum states with energy
between E and E + dE is given by

2\ 1/2
Z(E)E = 2 ‘“}:——f’ (i—i + m> (sz + 'CE) dE.  (70)

The foregoing density of the quantum states in the scale of the
kinetic energy is, in fact, a very general characteristic for a gas of
material “particles.”” Let the discrete eigenvalues of the energy £
be denoted by e, €, €5, . . . ., €, . ... .

1 R. Peierls, M.N., 96, 780, 1936. The same result is also obtained by E. K. Broch

(Phys. Rev., 51, 586, 1937), who has explicitly solved the Dirac equation in a spherical
potential hole and enumerated the states.

2 We shall use the word “particle” to denote an electron, molecule, or atom. The
theory presented in this section deals with a general assembly of similar particles.
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Let us consider an assembly of N similar particles in a given
volume V and with an internal energy U due to the kinetic energies
of the individual particles. Now, since the particles are assumed to
be similar, they cannot be distinguished from one another, and a
microscopic state of the gas will be completely described by the
specification of the number of particles, #,, belonging to the eigen-
value ¢, for the energy E. We should then have

N=>n (71)
Z"*’e‘ . (72)

A possible sequence of numbers #,, #,, . . . ., #,, . ..., must satisfy
the restrictions (71) and (72). We shall write the different sequences
of values for the #,’s which satisfy (71) and (72) in the form

and
U

1 1
n®, w?, o, w®,
.................... ,
1 L) ) S (73)
................... ,

w) W w
n( )’ ni ) 2 n; )7 ’

where W is the number of different solutions in integers for the
equations (71) and (72).
The entropy, S, is now defined by

S=klogW, (74)
where £ is the Boltzmann constant. Instead of (74), we can write
=W, (75)

The actual justification of (74) and (75) will take us too far into
the foundations of statistical mechanics in its relation to thermo-
dynamics and for this reason we shall simply assume the validity of
(74) and (75)—reference may be made, however, to the literature
quoted in the bibliographical note.

Now the restrictions (71) and (72) can be dropped by the passage
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from the microcanonical state specified by (71) and (72) (accord-
ing to which both N and U are defined exactly), to a canonical
state in which both the energy U and the number of particles N
are distributed canonically, i.e., in such a way that U and N have
sharp maxima at certain prescribed values—say U and N. This
process, due to Gibbs, will become clear from the following discus-
sion where the method of actually carrying out this passage to the
canonical distribution is described. Our presentation closely follows
a treatment originally due to Pauli.

First, let us try to replace condition (72) by one whereby U must
have a sharp maximum at a certain specified value of U = U (say),
while retaining the condition (71). This means that we make
the passage from the microcanonical state in which both N and
U are exactly specified to one in which N has the specified value
(exactly), while U has an extremely sharp maximum at U in such a
way that, as we shall see presently, U is appreciably different from
zero for

U=U=zAU, (76)
where
AU 1 (17)
T VN’
According to (72) and (75), we can write, for the microcanonical
state,
S_ -3 ns(i)es
¢l = we 2 , (78)

where ¢ is, for the present, an arbitrary constant. It is clear that in
the summation occurring in the exponent in the right-hand side of
(78) we can choose ¢ to be any number from 1, 2, . . . . , W (cf. the
scheme [73]); and, since for each value of i and j

SMoale = Donlle  Gi=12...- W), (79
s 5
we can write (78) more ‘“symmetrically’ as

K W (i)
YU -9 ) ng'e
e = Ze Z tr. (80)

i=1
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We shall now drop the restriction (72) and write, instead of (80),
§— -3 a(Q)ea
=S 2 , (81)
q

where the index “¢”’ means that we should now have

D AP =N forallg, (82)

s

without, however, the restriction (72). Further, the summation with
respect to ¢ in (81) is to be carried over all the different solutions in
integers of equation (82). The quantity ¢ is now so chosen, that
the expression {(81), when differentiated with respect to U for fixed
d and fixed ¢’s (i.e., for a fixed V), vanishes. Hence.

%(gg)v—z?:o. (83)

Now according to the first and the second laws of thermodynamics.

dQ = TdS = dU + PdV (84)
so that

(g—fj)v =% (85)

Hence, according to (83) and (85),

3 = k—‘T (86)

Since the free energy, F, is defined by (cf. § 11, 1)
F=U-TS, (87)

we can now write (81) in the form

F

_F _I3 @,
e = E22 . (88)
q
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We shall now show that according to (83) and (88), U has, in fact,
an extremely sharp maximum at a certain U = U (say) and that U
is appreciably different from zero only in a range of AU such that
AU/U ~ 1/ V/N. Further, we shall show that the entropy, de-
fined according to (83) and (88), differs from that defined by (75)
only by a quantity of the order of log N/N. To prove these, we
first remark that (81) is now interpreted by the statement that the
probability of a microscopic state defined by a sequence of numbers

n@,....,n?, ....)and anenergy U = Znﬁq)e,, is proportional
5

to @
-8 nDe,
e ; . (89)
In order to obtain the probability of a microscopic state with a
definite total energy U corresponding to the canonical distribution
(89), we have to sum over all sequences {#{®} which lead to the
energy U.

Let S;(U, V) be the entropy defined according to (75), and
S1(U, V) that defined according to (83) and (88). By our defini-
tion of Sy(U, V), according to (89g), the rule stated above for de-
termining the probability of a microscopic state with a definite
energy U, and (80) we find that

L
W(U) = constant e* . (g0)

If we now regard the right-hand side of (20) as a function of U, we
see that W(U) has a maximum at U = U (say), where

We therefore expand the exponent occurring in (go) in the neigh-
borhood of U = U by a Taylor series in AU = U — U and retain
terms up to the second order in AU:

Ny
[—k (W)V v=U 0] AU
1 [0S .
+X (W>V L) R

= Sl(ﬁv V) _

Si 77
% dU 7 U

+

(92)
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By (90), (91), and (92) we now have

I

CEN) ¢
5 |(

ﬁ/_’) v,u=0

, an)?

W(AU) = constant e (93)

In writing (93) we have used the circumstance that (82S;/9U%) is
negative, for, according to (8s),

(5, - -+ o
U )y~ T:\aU)y" 94

Hence, if we denote by (AU)? the “mean square error,” we have

SR S
e -

or
(ég) - b . (96)

G, el T
KGU’ v, u=0 v

The right-hand side is easily seen to be of order N7*; and hence,

A—UU =0 (\%N> . (97)

In order to prove our second statement concerning the entropy, we
write (81) in the form

vir —d "s(‘I)‘c
eF 7 Zc Zs: . (98)

q

To carry out the summation in (98) we first fix a certain value for U
and select from the sequences {#{®} those which correspond to a
specified U. We then sum over all the possible U’s. Equation (g8)
can then be written as
S
eT—(’U

= Z W(U)e?V (99)
U
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where W(U) has the same meaning as in equations (73) and (75).
Hence,
m—av .S_‘LU)_"U

by = Ze 3 . (100)

U

Expanding the exponent occurring on the right-hand side of (100)
in a Taylor series about U = U, we have, according to (91) and

(92),

Sir Sy 1 /9%ST
——o0 ——— 80+ = (7 (av)y
ok = Ze % 2 (auz) v.u=0 , (101)
AU
or
Si—S1 T | (SI
e * = e * I (W) v, U=0 l wor (102)
av
Replacing the sum by an integral, we have
Si—S1 too 1| (¥SI
Ll . AU
¢ & Nf ¢ akl(auz)yu yl( " dav) , (103)

or, finally,

Si—S1
— N 2wk
P o= | 2"k
¢ i / |<a=sz> : (104)
aU? Jv,u=7T

Equation (104) is equivalent to

S — Sr_ k 2k log N
s og \/‘ 5, =0 (———N > . (105)

3U’ v, u=0

Further the maximum error in determining & according to (83)
(instead of according to [91] with S; instead of Sy in [83]), will also
be of the order (105).

Second, we now try to replace the condition (71) or (82) by the
one that N is to have a sharp maximum at a certain specified
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N = N (say), in such a way that, as we shall see, N is appreciably
different from zero for

N =N + AN, (106)
where
AN 1
—]\7' ~ \/—].V . (IO7)

This corresponds to the passage to a canonical distribution, not only
for the energy U but also for the number N of the particles con-
cerned.?* To do this we proceed as follows:
According to (82) and (88), we have
F SIS, 3 )
i _ Ze kTsZ ; , (108)

q

where a is, for the present, an arbitrary constant. To make the
passage to a canonical distribution, we write, instead of (108),

e—-F——aV \*\ _Z(‘"’“" )

"

, (109)

£

where we no longer have the restriction (82) but a is now so chosen
that the expression (109), when differentiated with respect to N for
fixed temperature T" and volume V vanishes. Hence,

1 [dF
ﬁ(m)nv—%a— o. (110)

We shall now show (following Pauli) that N defined according to
(109) and (110) has, in fact, an extremely sharp maximum at a cer-
tain N = N (say), and that N is appreciably different from zero only
in the range AN/N ~ 1/V/'N. Again, we shall show that the free
energy defined according to (109) and (110) differs from that defined
by (88) only by a quantity of the order log N/N.

3 This is the essential difference between Gibbs’s classical treatment and the quan-
tum mechanical version of Gibbs due to Pauli.
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To prove these statements we remark that (1o9) is now inter-
preted by the statement that the probability of a microscopic state
defined by a definite sequence of numbers (%, . ..., 7, . . . ) is
proportional to

_ i
e ;(anﬁ”)‘ (111)

In order, then, to obtain the probability of a definite total number

N = Z"“ of particles corresponding to the canonical distribution

(111), we should sum over all such #,-sequences which belong to the
number N.

Let Fy(N, T, V) be the free cnergy defined according to (88) and
Fu(N, T, V) that defined according to (109) and (rr0). By the
definition of F;(N, T, V), and according to (r11) and the rule stated
above, the probability W(N) for a definite total number N, is seen
to be

Fy(V, T, V)]

W(N) = constant e [2N+ T (112)

For a fixed a, W(N) has a maximum where

1 [dF; _
a+—k—T(Fﬁ)T,V_O. (113)

Let (113) be satisfied at N = N (say). We now expand the expo-
nent occurring in (112) by a Taylor series in the neighborhood
N = N in terms of AN = N — N and obtain

a.N+FI(N’ T: V) - aﬁ-i—FI(N’ T, V)
kT kT (114)
1 (0Fr 1 o2 Fy R
+ [a + ﬁ (W)N:]V:I AN + 2kT <6N2>N=IV(AN) + P
By (112), (113), and (114) we now have
1 (O°Fr
——== |77 _(AN)Z
W(AN) = constant e 2T ("N )N=N (115)
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Hence, the “mean square error,” (AV)? is given by

oy
(AN)? = <8’F1> , (116)
ON? /1, v, N=F
or
AN\? kT I
(%) - T (7).
ON? /7, v, n=F

which proves (107).
In order to prove the second statement concerning the free energy,
we write (109) in the form

(118)

To carry out the summation in (1 18), we first fix a certain value for
N and select from all the sequences {#,} those which correspond to a
specified N. We then sum over all the possible N’s. Equation (118)
can then be written as (cf. Eq. [88])

s [+

Expanding the exponent occurring on the right-hand side of (119)
as a Taylor series about N = N, we have, according to (r13) and

(114),

FI(N T, V)]

(119)

Frr _ FiN, T,V)

¥ oF (a——zp’) (aNy
o —aN— -
e FT °V _ 2: T & %I \aN7)y_§ , (120)
or
Fri—Fr 1 (B’FI)
- - (55) Ny
e T — Z:e #T\oN7 )y -5 . (121)
AN

Replacing the sum by an integral, we have
¢ Gkl QEPOTRSSS Sl |
e M~ e T (aNz

-0

Ju-v “3any, (122)
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or
Fri—Fr Y
——w _ | 2wkl
: \/ EI (123)
ON? [N=F
Equation (123) is equivalent to
Fyy— Fr kT 2wkT _ log N
—F =T F log \/_—<6’F1> = 0( N > (124)
aN? Jv, T, N=F

Further, the maximum error in determining a according to (r10) in-
stead of (113) with F; (instead of Fy; in [110]) will also be of the
order (124).

We shall now return to (1o09). Since there is now no restriction
with regard either to Y %, or to )_m,e,, we can re-write (1o9) in the

form
~ (i) _ HEC—"‘ («+z7) . (125)

Now equation (110) is to serve the purpose of determining a. We
can transform this into a more convenient form as follows: Dif-
ferentiate (125) logarithmically with respect to N keeping V and T

constant. Then,
S

(W)t 2 (35)..0- <—>Eg—ﬁ

Ay

Hence, according to (110), we have, since (da/dN) is not in general

Zero,
Z nae—ns (a+;—;,)

N = ”—"————;’—— . (127)
Z ze—n, («+7)

g

(126)
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The thermodynamical significance of a can be found as follows:
As we shall see presently, (F/N) depends, apart from temperature,
only on the concentration of the particles N/V. Consequently, we

can write
F=Nf (JX, T) . (128)
V
Hence,
aF\ _ (N N
(m)r, » =7 <1 T) T sy (129)
But by (128)
oF - _N_of
(a_V)N,T T TV ey (130)
From (129) and (130) we derive
or oF
N (a—ﬁ)T’V =F -V <W>N,T' (131)
Since, however, we have the thermodynamical relation (chap. i,
Eq. 110),
oF
P = —(W)T, (132)
we have
aF
N(W)”_F+PV_G, (133)

where G is the thermodynamic potential at constant pressure (cf.
§ 12, i). Hence, by (110) and (133),

.G _ _F+PV (134)
NET — T NET 134

a =

which then gives the thermodynamical meaning of the parameter a.
For the calculation of the statistical mean value of any physical
quantity it is important to note that the quantity

e-—;ns (“+k—T) _ He—ns (u+ﬁ,) , (135)

s
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which occurs in (123), is, apart from a constant, the probability of a
definite microscopic state:

W(ns, sy . ..., %, ....) = constant He—"‘ (a+ﬁ) . (136)

s
If we compare two microscopic states (%, ...., %, ....) and
(#nl,....,ns ....) for which the total number of particles (71)

and the total energy (72) are equal (or nearly equal), then, accord-
ing to (136), the two states are equally probable; this is, in fact, an as-
sumption implicit in equation (74).

For the internal energy U we have, immediately,

S e (50)
"8
' z e " (a+’-:iT )

g

(137)

Equation (137) follows also from the thermodynamical relation
(chap. i, Eq. [110])

oF L9 (F
U=F—-T (b—T)V,N = —T 3T (T>V’V (138)

On the other hand, differentiating (125) logarithmically with respect
to T and keeping N fixed, we have

1 9 (F da 3
za‘r(T>V.N+N(5T)v,N

Z n,e—“' (a+;—;.) Z n‘eae-— By <a+’-:%.)
s g

(139)

= (3., 2 -5

> ) = )

7y #g

By (127) the terms proportional to (9a/dT) cancel, and (138) and
(139) together imply precisely the expression (137) for U.



382 STUDY OF STELLAR STRUCTURE

Finally we shall obtain some formulae which are of practical im-
portance in the application of the theory.

By (134)
PV = —kT <£ + aN) . (140)

Hence, according to (125), we can write

PV = sz log o, , (141)
s

where

o, = Ee‘”s(““""s) . (142)

g

Equations (127) and (137) can now be written in the form

a
N=- Ex :3—;108 Ts (143)
and

a
U=—25—510g03 (0=kiT>. (144)

Equations (141), (143), and (144) are extremely general and give
the physical variables for a system in statistical equilibrium which
is also a thermodynamical system.

4. The symmetrical and the antisymmetrical states; the Einstein-
Bose and the Fermi-Dirac distributions.—If we consider a system con-
taining a number of similar particles, then no observable change is
made when two of them are interchanged. A satisfactory theory,
then, should consider two such observationally indistinguishable
states as really the same state.

Suppose we have a system of N similar particles. Let ¢;,¢,, . . . .,

gw, be the variables describing the first, the second, . . . ., the Nth
particle in the system. Then the Hamiltonian, H, of the system
will be a function of the variables ¢i, ¢,, . . . ., gy:

H=H(g;q;5....54qn) . (145)
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Since the particles are indistinguishable from one another it is clear
that H should be symmetrical in all the particles, i.e., symmetrical
in the variables q,, . . . ., gy. If ¥ is a wave function describing the
system, then we should have

., 0
(H — ik —&> =o0. (146)
From the foregoing it follows that if ¥(g, . . . ., gv) is a solution of
(146), then so is P¥(q,, ¢s, . .- ., gy), where P¥ stands for the

function obtained by applying the permutation P to the variables

Qx, ce ooy gN.
Suppose that at any given time,

P¥ =o0 (t=t); (1a7)
then, since H is an operation in the space variables only, we have
HPY = [H]o = o, (148)

so that by (146) a(P¥)/dt = o at ¢ = t. If, now, H and P¥ are
analytic functions of # for all real values of ¢, it follows that we can
prove by repeated applications of the argument that

% (PY) =o (t=1t), (149)

for all #, and that thercfore P¥ = o for all time. From this it follows
that if W is of a given “symmetry character” at a given instant of
time, it retains its “‘symmetry character” for all time. In partic-
ular, if the wave function is initially symmetrical (ie., is unal-
tered by any permutation of the variables ¢, . ..., gy), then it
is symmetrical for all time. In the same way, if the wave function
is initially antisymmetrical (i.e., is unaltered or changes sign accord-
ing as an even or an odd permutation® is applied to the variables),
then it is antisymmetrical for all time.

4+ A simple interchange is an odd permutation, while two interchanges will be an
even permutation.
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The permanency of the symmetry properties of the state means
that for some kind of particles only the symmetrical or the anti-
symmetrical states occur. It is found that light quanta should be
described by symmetrical wave functions (as we shall see, it is only
then that we have Planck’s law for radiation). On the other hand,
the electrons should be described by antisymmetrical wave functions,
only then can we obtain Pauli’s exclusion principle, which states
that no two electrons can be described by ‘the same set of quantum
numbers. For if two electrons were described by the same set of
quantum numbers, then an interchange of the variables correspond-
ing to these two electrons must leave the wave function unaltered;
the wave function under these circumstances can vanish identically
only if it is antisymmetrical in the variables of the two electrons.
Since the “two electrons” can be any two, the wave function must
be antisymmetrical in all the variables describing the different
electrons.

For our purposes it is only necessary to remark that in the sym-
metrical case there can be o, 1, 2,...., «, particles in the same
quantum state, while in the antisymmetrical case there can only be
oor 1 particle in a specified quantum state. The former case leads to
the Einstein-Bose statistics while the latter case leads to the Fermi-
Dirac statistics.5 Hence, according to equation (142) of the last sec-
tion, we have for these two cases,

<o
°< I
—_ —nglatdeg) —
oo = D erletis PP

ng=0

(symmetrical case) (150)

and

0y = 1 + e letde) (antisymmetrical case) . (151)

s It is somewhat misleading to use the word “‘statistics” in ““Einstein-Bose statistics’
and “‘Fermi-Dirac statistics.” There-is only one statistics, namely, the Gibbs statistics
described in § 3. The symmetrical and the antisymmetrical cases simply correspond to
two different assumptions for the evaluation of o5 (Eq. [142]); the explicit forms for
N, U, and PV naturally differ, but nevertheless we have the same statistical theory
(Gibbs) underlying both the cases. It would be more logical to refer to ““Einstein-Bose
formulae” and “Fermi-Dirac formulae.”
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From (150) and (151) we have, respectively,

e—(a+053)
P I — e—(atoe)
—_ 10 = = — 152
da B o—(atde) estds T 1 (152)

1 + e—(u-h’e‘)

and
d € _ I
—33 log o, = prET (1’ = kT) (153)

In (152) and (153) the minus sign corresponds to the symmetrical
(Einstein-Bose) case and the plus sign to the antisymmetrical
(Fermi-Dirac) case. Finally, according to (141), (143), and (144),
we have

PV

A T p—(atdeg)

T +Zlog(x+e ), (x54)
I

N = zm ) (155)

and

€3

U= zg——w‘a = - (156)

5. The electron gas: general formulae—For an electron assembly
we should use the results for the antisymmetrical case considered in
§ 4. The summation over “s” occurring in equations (154), (155),
and (156) can be transformed into integrals if we remember that the
density of the quantum states is given by Z(E) (the explicit expres-
sion for which is derived in § 2):

N = f _Z(E)IE U=f° Z(E)EIE (157)

en—h’h + I eotoE + 1

PV = —3 f log [1 + e~ ©+B)Z(E)dE . (158)



386 STUDY OF STELLAR STRUCTURE

The expressions take their simplest forms when, instead of the
kinetic energy E we choose the momentum p as the variable for
the integration. Then, according to (69) and (68),

8wV

2(p)ap = 5L pp, (r50)
where
Ez
= + 2Em = p2. (160)

Equations (157) and (158) can now be written in the forms

_ 8V (™ pdp 81rV © _Epdp
N = B3 l o tOE 4 1 e“"‘"E—I- , (161)
8nrV
—(a+9E)] p2
PV hwf log[1 + ¢ 1p%dp . (162)

Equation (162) can be transformed by an integration by parts so that

8rV (®_ p  OE
PV = 3h3_£ T ap (163)

The equations for U and P can be derived in an elementary way on
the basis of the distribution function,

8V 2d
N(p)dp = T; éﬁ.%‘l, (164)

which gives the number of particles in the assembly which have
momenta between p and p 4 dp. In particular, equation (163) is
consistent with our definition of pressure used in § 1, above.

We can obtain (164), or more generally, an expression for the
number of electrons in the assembly with the components of the
momentum in the range (p., py, pss P + dpz, Py + dpy, p. + dp.),
as follows:

From equations (56) it follows that the number of quantum states
in the specified range is given by

l Lyl
h3 szdPusz =2 h3 dﬁxdplldpz . (165)
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The factor 2 in (165) arises from the circumstance that for a given
set of values for p., p,, and p, the Dirac equation has two (or no)
linearly independent solutions according as (48) is satisfied (or not).
The number of electrons in the range specified is obtained by sum-
ming (155), not over all the quantum states but only over those in
the range specified. We thus have

dN = V dpxdpﬂdpz

= 235 ok | 1 (166)

which expresses the Fermi distribution for the momentum com-
ponents. If a is very large, then we can neglect the term unity oc-
curring in the denominator in (166) and obtain

dN = 2 ;I,_/s e~ 9Edp dp,dp. , (167)

which expresses Maxwell’s law of the distribution of momenta. The
case a > 1 is called the nondegenerate case. On the other hand, if a
is large and negative the Fermi distribution becomes markedly
different from the Maxwell distribution and the gas is then said to
be degenerate. We shall consider these questions in greater detail
in the following sections, but we shall now obtain a very convenient
form of the equations (161) and (163). The transformations to be
introduced are due to Juttner. Let

2
e sinh 8, (168)

E = mc? (cosh § — 1) . (169)

Then we easily derive

8 Vmics f “ sinh® 0 cosh 6 6
N = . ; (170)
h i edme cosh 6 + 1
J o A
4c5 & 2 h 6 — 2]
U= 81!'1;1:}‘1«6 (’ sinh Oi:osh 6 (cosh 8§ — 1)d ’ (171)
K eomc’ cosh @ + 1

Jo
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and

8mrmAcs ” sinh4 8 d6
P = v - ) (172)
X eamc! cosh 0+ 1

where we have used
% = e=mIme, (173)
6. The degenerate case.—As we have already pointed out, the de-
generate case corresponds to the case where a is large and negative.
A condition equivalent to this is that A (as defined in [173]) is very
large compared to unity.
It is clear that as A — « the term

i eIme? cosh ¢ (I 74)

occurring in the denominator in (170), (171), and (172) is negligible
compared to unity for all 8 < 8, where 6, is defined by

log A = ¥mc? cosh 0, . (175)

We can therefore write as a first approximation (a rigorous justi-
fication is given later in this section)

303 23
N = 8"‘;:" ¢ f sinh? 6 cosh 6 d@, (176)
23
U= 8,,1;:;465} sinh? § cosh 0 (cosh 6 — 1)df, (x77)
and
8wmics (P .
P = f sinh 6 d . (178)

The foregoing expressions are precisely those considered in § 1 (egs.
[6], [10], and especially [16]). In order, however, to consider more
explicitly the circumstances under which the foregoing approxima-
tion becomes valid, we shall have to evaluate the integrals (170),
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(171), and (172) to a higher degree of approximation than above. To
do this we shall first prove the following lemma (due to Sommerfeld).
SOMMERFELD'S LEMMA.—If ¢(u) is a sufficiently regular function

| which vanishes for u = o, then we have the asymptotic formula

B 26 _ ) + e (0) + ) + ], (179)

i e +1 d
(=]
where u, = log A and c,, ¢y, - . . . , are numerical coefficients defined by

I I I
G=1——+———=4..... 8o
A (180)

The asymptotic formula (179) is valid if we neglect quantities of
the order e™* = A™%.
Proof: Split the range of integration at #, = log A. We then have

du de(u) _ f “ de(ut) du

R du du
° o w (181)
+ 1 — de(u) du + du  do(u) ’
RSP du 1. . du
VS , A
or

Y du de(u) f du  de(u)
— " = () —

L AP du o 1+ Ae™ du
° o (182)
du  de(u)
+ | — )
l u + 1 d’ll
3¢

In the first integral occurring on the right-hand side of (182) put

u=u(x —1t), (183)
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and in the second integral occurring on the right-hand side put
u=u(x+1¢). (184)

We now have (remembering that %, = log A)

T du dew) _ .\ (Flu( = )]
T, e wf E
A¢ t (185)

® ¢'lus(1 + 9]
+ uoﬁ _IW dt .

In the first integral occurring on the right-hand side of (185) we
can extend the range of integration to «; this will introduce an
error of the order e7*, which is beyond the range of accuracy of the
asymptotic formula we are establishing. Hence, we have

L

du  do(u)

I, du
Xe +1

=~ o(uo) + uuj:n ¢l + ?]_; e,f,:[u"(l =0l g

4 ) o © g1
= o(ue) + 2 2: ?f;%?°1+ww”'(w®

p=2,4,6,....

On the other hand, we have

®©  p1 ©
f m = f t""(e""o' — g%t 4 g%t — )dt
o o

=(_”%I)!<I_l+l—....).

u, 2v Sv

(187)

Since the constants ¢, are defined according to (180), we have

x_d_u-_ % = (o) + 2[ca¢” (o) + cs0™ (o) + ... ], (188)
K e + I '

o
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which proves the lemma. We may note that

w? 7t 3178
= —; cy=~1—3; = 2

12 " 720’ $ = 30,240 (189)

In order to apply (188) to an asymptotic evaluation of the inte-
grals (170), (171), and (172), we must first transform them into
suitable forms. Let

dmc? cosh 6 = u . (190)

First consider the integral for P. Then

_ 8wmics 1 ® du do(u)
p= 3B dme 1, du '’ (97)
3¢ +1
o
where we have put
do(u) _ .
= sinh? 6 . (192)

Hence,

o(uo) = fun sinh3 ¢ du = 0mc’fo sinh4 8 d@ , (193)

which is an integral we have already computed (Eq. [16]). Intro-
ducing, as before, the variable x which is defined by (Eq. [18]),

== sinh 6, , (194)
we have
dmc?
olue) = 5= f(x) (195)

where f(x) is defined as in equation (20). From (192) we derive that

&e _ 3 g 2 B
<duz)“=% = Sme sinh 6, cosh 8, = e 23 + 1) (06)
and

o\ 3 coshOy o

(du4)u=uo = (Omc?)’ sinb’ 6, (2 sinh? 6, — 1)

_ 3 (22 + 1)V2(2%% — 1) (197)
T (9me)3 %3 :
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By Sommerfeld’s lemma it now follows that

_wmAcs 4m* x(x? + 1)2
P =S|+ ey
Lm @ ) — )
15(mc?) 23f(x)
To evaluate the integral for N we write it as
8wVmscs 1 " do(u)
N =
3 dmc? I, +1 du
A A
where ¢(%) is now defined by
dfi;u) = 1 sinh 2.
From (200) we derive that
o) = 22 32,
(d’__(p 1 241
aw Jymuy,  Omcc  x °
and
(f!‘_w -3 1
Aut Jumu, (Omc?)d x5°
We thus have '
_ 8xVmic ™ 241 ™1
N = 3k xs[ + (Omc?)*  2x¢ 40(Imc?)4 8

+....

+ ...

(198)

(199)

(200)

(201)

(202)

(203)

J . (204)

The integral (171) for U can be evaluated similarly. We find that

1er s g(x)[ 4 (324 1)(x* 4+ 1)V2 — (222 + 1)

+ Omey xg(x)

where g(x) is defined as in equation (23).

] » (205)

On comparing (198), (204), and (z05) with the corresponding
expressions (19), (21), and (22), we see that the dominant terms in
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the present expansions agree with our earlier expressions for com-
plete degeneracy. On the other hand, we now see that the necessary
condition for the convergence of the foregoing expansions is that

amt x(x* 4 1)V2

ey 7 L1, (206)
Z-ﬂ—:;# %ﬁ L1, (207)

and
vt @+ @+ - (@t o (208)

(Imc)? xg(x)

As x — o, the foregoing inequalities take the limiting forms (cf.
Egs. [24] and [29])

™S ey ™ e, TS

(Fme?)? 2x4 13 (Omc?)? axt K13 (Omc?)? 2x4 K1. (209)
Again, as x — «, the inequalities (206), (207), and (208), take the
limiting forms

T2 2 72 I

2
(7?7;6_2);;;<<I’ W;z‘ Lr1. (210)

T
<15 (Ome*): x*
From (209) and (210) it is clear that a necessary and sufficient conds-
tion for the setting-in of degeneracy is

4 x(x? + 1)¥2

Omey: e Lr1. (211)

The inequality (211) implies the other two ({207] and [208]).

In using (211) as a criterion for degeneracy, it should be remem-
bered that x is related (in a first approximation) to the mean con-
centration, #, of the electrons by

8rmic3 k (3n\'3
"= ¥ ; x='—n—;<‘é;> . (212)

Further, ¢ is 1/kT.
For astronomical applications, the criterion of degeneracy is
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stated more conveniently in a somewhat different form, which will
be obtained in the next chapter.

We shall conclude the discussion of the case of degeneracy with a
derivation of the specific heat, Cy, of the electrons at constant
volume. To evaluate Cy we note that, by definition,

Cy = (%)N’V- (213)

According to (204), the condition of the constancy of N is equiva-
lent to

(iag __ = 2x% 4 1 (214)
aT)v ~  T(Ome): 3a3 214
By (205)

(ﬂ _ mVmics [dg (%

aT Jv =~ 3k |dx \aT/v

n 8wt (322 + 1)(a* + ")z — (222 4 1)] (215)
T(dmc?)? x :

It is easily found that

% — '24x2[(x2 + I)!/Z —_ I] . (216)

By (214), (215), and (216) we have

8mw3V mics

Cr = 3T (Imc?)?

w(a? + 1)/ (217)

or by (204), the specific heat per electron is given by

Cv _mk (a2 + 1)v2 |
N = e po T. (218)
7. The nondegenerate Maxwell-Jutiner case.—Let us now consider
the other limiting case when A™* is very large compared to unity.
We can then neglect the unity occurring in the denominators of the
integrands of (170), (171), and (172). The present case is therefore
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the opposite extreme to the one considered in § 1. The integrals for
N, P, and U can now be written as

3 o<}
N = S'WV};:” A Af g~ 9me* cosh d ginhz ¢ cosh 6 d6 , (219)
405 et
U= 81rT;;:n c Af g—9me*cosh 8 ginhz § cosh 6 (cosh § — 1)d8, (220)
and
4c5 *©
PV = Sw;’}::t 4 Af e—9mcicosh 0 ginha 9 46 . (221)

The last integral can be simplified by an integration by parts. We
find that
8rVmsdcd 1

PV = — 3 Af g—9mecoshf ginhz @ cosh 6 df.  (222)

Comparing (219) and (222), we see that
N =PV# or PV = NkT . (223)

In other words, Boyle's law is identically true for the nondegenerate
case. This important result was first established by Juttner, though
it is implicit in some earlier work by Planck.

The integrals occurring in (219) and (220) can be evaluated
explicitly in terms of Bessel functions. We use the formula’®

f e~7csh 0 cosh 8 d6 = K,(z) , (224)

where K,(z) is related to the Hankel function with imaginary argu-
ment as

K.(2) = Lmie=H" (iz) . (225)
Since
sinh? § cosh § = 1(cosh 30 — cosh 6) (226)
and
sinh? @ cosh? = (cosh 48 — 1), (227)

6 The formulae are contained in G. N. Watson’s Bessel Functions, Cambridge; see
pp. 79, 181, and 202 in Watson’s book. Equation (224) is due to Schlafli.
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we have, according to (219), (220), (224), (226), and (227),

_ 8xVmic

N = 7 A LK (dmc?) — Ki(dmc?)], . (228)

and

_ 8w Vmics

7 A BIK(3me) — Ko(9me)] — 3K (9me”) — Ki(9me?)]} . (229)

Using the recurrence formula,

Koi(s) = Kons) = =2 Ko(3) (230)
we find that
Ky(2) — Ku(z) = £ Ku(s) (231)
and
K{(2) — Ko(2) = 2 [3K,(2) + Ku(a)]. (232)

Equations (228) and (229) can therefore be simplified to the forms

8w Vmscs I .
N = T A m K;(t?mc) (233)
and
8 V 4,5
U = TS5 A 5= {3K,(9me) + Ku(9me)} — Ka(Ome)] . (234)

From (233) and (234) we find that

_ | 3Ks(3me?) + Ki(dme?) .
U= N[ WACTTD) I|me. (235)
By (223), equation (235) can also be written as
U L[ 3K:(9me?) + K.(dme?)
PV = dmc [ WK (Bme) —1]. (236)

If 9mc2 > 1 we can use the asymptotic formula

K,(z) ~ (i)‘/’e_,[l + ¢ — 17 + (4* — 11)(9° — 39 +... ] . (237)

1182 21(82)?
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Equation (236) now reduces to

U 3 5 :
jA (I + 40mc’) (dmec* > 1) . (238)

The inequality dmc* >> 1 is equivalent to the condition
kT K me? or T & 5.90 X 10° degrees Kelvin. (239)

On the other hand, if 9me* < 1 (i.e., T > 6 X 10°), we should use

Ki(s) ~ T LR, (240)

From (236) and (240) we find that

?UI—/—>3, T — o, dmc* — o . (241)
We thus see that U/ PV varies from 1.5 to 3 just as in the completely
degenerate case. Here this variation is associated with increasing
temperature, while there it arose because of increasing density. In
either case the change of the ratio (U: PV) from 1.5 to 3 is associated
with an increasing number of electrons in the assembly with veloci-
ties approaching that of light. In Table 24, due to Chandrasekhar,
the ratio (U:PV) as a function of dmc? is shown.

TABLE 24
THE INTERNAL ENERGY AND THE SPECIFIC HEAT OF A PERFECT GAS
omez U/PvV Cy/NE Ime U/pPv Cy/Nk
O v 3.0 3.0 1.0........ 2.3704 2.7515%
IS SEF . 2.0049 2.9952 1.5 .. ... 2.2129 2.6031
2 2.8193 2.9817 2.0 ... ... 2.1024 2.4778
I P 2.7422 2.9617 2.5 .. 2.0209 2.3743
I 2.6726 2.9370 3.0........ 1.9586 2.2883
5 e 2.6097 2.9o89 3.5 .. 1.9093 2.2173
6 2.5527 2.8787 4.0.... ... 1.8605 2.1571
I S 2.5008 2.8473 4.5 1.8367 2.1062
8 2.4535 2.8153 5.0 . ... 1.8093 2.0614
0.9 ....... 2.4102 2.7832 @ L 1.5 1.5

From (235) we now derive that

1 (2(1 _ mc* 9 [3K3(0mc’) + K.(9mc?) ]| d9mce® (242)
N\oT /r.v 4 9(Imc?) K.(9mc?) aT ’ \*4?
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or, writing z = 9mc?, we find -

N (%)T v ke gz[%@] ) (243)

]

Thus the specific heat (per electron) at constant volume is given by

Cv_ 73K, + K, 3Ki+K;
N a [ K K; @ . (244)
Using the formula

Kn——x + Kl’+l = —2K,', ) (245)

Wwe can re-write (244) as

Cl - 2 [3(K4 + K.) + (K. + K,) _ (3K; + K)(K: + Ks)} (2 6)
Nk 8 K, K: - %4

By using (237) and (240), we can show that the quantity on the
right-hand side of the foregoing equation varies from 1.5 to 3 as
dmc® decreases from infinity to zero. More directly, from (223),
(238), and (243) we derive that

QN_zz_"’_{i<5+—5-2+....)} (z > ®), (246

or

]CV_Z=%<I+20;§M’+'”') (Ome* — o). (247)
In Table 24 the quantity Cy/Nk is tabulated with dmc* as argu-
ment. Since Cp—Cy = Nk, it is clear that the ratio of the specific
heats varies from 5/3 for T < mc*/k to 4/3 as T > mc*/k.

8. The nondegenerate case: a second approximation.—If the ex-
ponential terms occurring in the denominators of the integrands in
(170), (171), and (172) are large (but not infinitely large) compared
to unity, we can expand

-1
I
—_ p9mc? cosh ¢ +
[ 1
(A )
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| as an infinite series and obtain

N=

U=

and

BIVMA XN, vwrinn [ ymniomer .
W z(—) A l g—mImetcosh 0 sinh? gcosh§d0,  (248)

8w Vmscs < _\ntiAn ® —ndme? cosh 8 ginh?
7 ;( A i e sinh* § (249)
X cosh 8 (cosh 6 — 1)df,

87r Vm‘cS z ( )n-hAnf —ndmc? cosh 0 sinh4 6de. (250)

Equation (250) can be transformed into

P \ntipn [
PV = 8“‘;;”363 52( )n A f g—nome cosh 0 ginh? § cosh 6 df . (251)

The integrals occurring in the foregoing equations are of the same
form encountered in § 7. By (224), (226), and (227) we now have

N

PV =

and

U=

87V mics o Ar
TS D () e (MK (n9me) + Ka(ndme)]

_ &rVmic ~ Nntr A" 5

== ;( ) po g K, (ndmc?) , (252)
8TV mics 1 wte A" .
e 02;( ) = Ku(ndme?) (253)

(254)
— K,(nd9mce?)} .

9. The unrelativistic case—So far we have distinguished between
degeneracy and nondegeneracy, but we have allowed in either case
for the relativistic mass variation with velocity. However, in certain
astronomical applications (as in most terrestrial applications of the



4co0 STUDY OF STELLAR STRUCTURE

Fermi-gas laws) it is permissible to neglect the relativistic effects
and write with sufficient accuracy

. -
E=_—; mdE=pdp. (255)

Inserting (255) in our general formulae (Egs. [161] and [163]), we

obtain
® EY(E
N = 4;;3 (2m)3/2£ WT.I.’ (256)
V ® E3/dE
U= 4"}:3 (2m)3/2£ TIE (257)
and
2 47V L E¥MdE
Py =8 (2m)s/£ e (258)

Comparing (257) and (258), we find that

U=

asls

PV (259)

is valid independent of degeneracy conditions—provided, of course,
that the relativistic effects are neglected. This is a generalization
of the result we have proved directly for the case of complete de-
generacy (Eq. [31]) and for complete nondegeneracy (Eq. [238]). Put

9E = u, a= —logA, (260)

and introduce the integral U,, defined by

U, 1 wdn (261)

equations (256), (257), and (258) can now be written more con-
veniently in the forms :

14
N = Zh—s— (2nemkT)3/* Uy, (262)
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and
PV =3%U = %/ (20mkT)3*kTU;;. . (263)

a) Degenerale case.—For this case of A large we can obtain an
asymptotic evaluation of the integral U, by an application of
Sommerfeld’s lemma. We write

o

— I du i vtr
T T+ 2) Tty du () . (264)
A

Uu

o

Then by the lemma we easily find that

_ (log A)"** [ A+ 1
= To+ 2 [ + 2\ % (og Ay

v+ vl — 1) — 2)
+ ¢ (log A)* +}]

UII

(265)

In particular,

Upp= -2~ /z[ S — ]
/ 3\/11' (log A)s" |1 + 8(log A)* + (266)

and

Us/a =15—\8/; (log A)s”2 [I + E(T(S);f_K)_z + ... ] . (267)

Using (266) and (267), we find that our present expansions for N,
PV, and U are equivalent to (204), (198), and (205) for the case
where x is small. The connection between x and our present log A
is readily seen to be (cf. Egs. [173], [175], [194], and [260])

log A = [(#* + 1) — 1]dmc* . (268)

b) Nondegenerate case—If A < 1, we can expand (1 + Ae™) in
a series and evaluate U, by integrating term by term. We find that

_ I mu S _\ntiAn,—nu
U, = I‘(v+1)_£ “duz,,=,( e 09
A? A3 A4
SAmgmtpE T emE {z70)
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Equations (262), (263), and (270) now give deviations from
Boyle’s law, etc., owing to the exclusion principle even for “ordi-
nary” densities.

This completes the analysis of the gas laws, which should be
valid for an assembly of particles obeying the Pauli principle,
though the discussion has been carried through explicitly only for
the case of an electron gas.

10. The vibrations of the normal modes of a radiation field.—In
order to consider a radiation field in a manner analogous to the
treatment of an assembly of similar particles, it is first necessary to
find suitable co-ordinates to describe its motion. We have to start,
then, by an analysis of the number of possible modes of vibration in
a given frequency interval; this stage of the analysis corresponds
exactly to the discussion in § 2 of the number of independent eigen-
functions in a given energy interval.

Let ¢ stand for any one of the components of the electric vector
E or the magnetic vector H. Then, according to the electromagnetic
theory, we have
02 02 92

= oV = ¢ (59; +3—y2 + 6_2;) V. (271)

LR
942

Further, we have

g OB O O
dIVE_8x+6 +

L = ©°- (272)

Let us consider for simplicity an inclosure of the shape of a rec-
tangular box,
oS2<k; oLy<hL; o<fz<l. (273)

Let ¢, be the value of ¢ for a given ¢t = o . We shall assume that
we can expand ¥, as a multiple Fourier series of the form

N RN cos kwx cos kymy cos k.wz
Yo = zz A, sin L, sin I, sin I, ° (274)

ky=0 ky=ok,=o
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Similarly, if ¥, is the value of dy/0¢ at ¢ = o, we can write

E Z Z cos k,7rx cos kymy cos ks (275)
bkt sin sin l, sin I, ° 75

z=0 ky=ok,=o e

From (274) and (275) it follows that the solution of (271) is

= iii {Akzkvk cos 27rut+A ’k') sin 21rvt}

k=0 ky=ok,=o (276)
cos k.wx cos k,wy cos kw3

sin I, sin I, sin I,

z

b

where

(2mv)? = r’c’{k + 7 + l:J’ (277)

and » is the frequency of the radiation considered.

It is clear that in each of the expressions (274), (275), and (276)
there are eight possible terms and eight independent coefficients,
A and A’, for given k., k,, and k..

We must now consider the boundary conditions more closely. We
assume that the walls of the inclosure are perfect conductors, so that
if ¢ = E,, then E, should vanish on the two walls parallel to the
(y, %) plane; that is, E; =oaty=o0,y=h,2=0,2= I, which
leaves only two terms of the type

cos karx . kywy . kw2

sin l: l” sin _l;— . (278)

Similarly, the Fourier expansions for E, and E, must contain re-
spectively only terms of the types

k.mx cos kyry in ks

I, sin I, 7, (279)

and

komx ” kymy cos k.wz

s Iz l, sin [,

(280)
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Since, however, the div E must vanish, the pure sine terms are im-
possible. Of the one remaining term in each of E,, E,, E,, only two
remain independent when (272) is satisfied. Thus there are two
normal modes of vibrations for a given set of values k., k,, and &,
which satisfy (277).

Let us return to equation (277), which we can write in the form

Rz kZ k2
ol IR PR 281
al  a;  ai ’ (281)
where
2y 2y 2y
a: =~ L ; @ =— Iy ; e == l;. (282)

The number of normal modes of vibration with frequencies » < v,
is equal to twice the number of points with integral co-ordinates in-
side an octant” of the ellipsoid (281) with » = »,, which has the
volume

‘g—’r a.0,a, . (283)

By (282) and (283) we thus have for the number of normal modes
of vibrations in a radiation field with frequency < »,
L = B (8
283 a,a,,az—scsvo:,,. 284)
Hence, the number of normal modes of vibration with frequencies
between » and » + dv is given by

8tV
63

vidv (283)

where we have replaced Ll by V, the volume of the inclosure.
Actually, the result has been obtained for an inclosure of a rectangu-
lar shape, but a somewhat more comprehensive analysis by Weyl
shows that the result is completely general.

It is of interest to notice that if, in the expression (64), which gives

” Only an octant, since kz, ky, and k- are by definition (Eq. [274]) nonnegative,
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the number of quantum states for a particle of mass m and energy
E in the range E, E + AE, we put

E=hv and m=o, (286)

we obtain precisely the expression (285).°

11. The statistics of light quanta.—To be able to apply the laws of
statistical mechanics to a field of radiation we first recall that, ac-
cording to the quantum theory, each active mode of vibration with
frequency v is associated with an energy /v of the field.

With some slight modifications the Pauli-Gibbs theory given in
§ 3 is capable of handling the present case.

Let us consider a field of radiation in a given volume V and with
an internal energy U due to the active normal modes of vibration.
A microscopic state of the radiation field will be completely deter-
mined by the specification of the number 7, of active modes of vibra-
tion with a frequency », and energy A»,. We then have

U= n,. (287)

A possible sequence of numbers #,, 72z, . . - -, %, . . . . , MUSE satisfy
(287). We shall write the different sequences of values for the n,’s
which satisfy (287) in the form

n®, w0 el

n®, n@,. ..., nP, .,

; ; ; 288
nd, n®, ., 8w, (288)
w w w

T GLIP U UL S

where W is the number of different solutions in integers of (287).
The entropy, S, of the radiation field is now defined by (cf., Eq.

[75])
Sh=W. (289)

8 This shows a certain formal equivalence (from the present point of view) of light
quanta and a particle of zero rest mass which satisfies the Dirac equation.
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As in the discussion in § 3 we now drop the restriction (287) on
the #,’s by the passage to a canonical state where the energy U is
no longer defined exactly but is distributed in such a way that U has
a sharp maximum at a certain prescribed value say U.

According to (287) and (28¢), we now have

03

Sk = e 5 , (290)

where ¢ is, for the present, an arbitrary constant. Equation (290)
can be written more ‘‘symmetrically” in the form (cf. Eqs. [78] and

[80]) S0
-3 n‘,1 hvg
eS/k—0U = Ze s . (291)

i

We now drop the restriction (287) and write, instead of (291),

_',Z”ah"a
RS TR -

s

where the summation over the #,’s is taken over all the possible #,’s.
But ¢ is now so chosen that

AN ‘
% <5(7)V —d=o, (293)

or, exactly asin § 3, & = 1/kT. If F is the free energy of the radia-
tion field, equation (292) can now be written as

o—F/HT — H Z e—nahve/kT | (204)
s ”8

We can show, exactly as in § 3, that ( 293) and (294) define for U an
extremely sharp maximum at U = U (say), and that U is ap-

preciably different from zero only in the range U + AU where

k

|(5)
ol )y, v=1v

~]

AUY = , (295)
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where (AU)? is used to denote the “mean square deviation” from U.
In the same way, we can show that the entropy, defined according
to (293) and (294), differs from that defined according to (289) only
by a quantity of the order (cf. Eq. [ro5])

1 Tk
) ”\/I(”) |
oU?Jv,u=0

Finally, we remark that (294) is now interpreted by the state-
ment that the probability of a microscopic state defined by the se-
quence (i, ...., #,, ....) (which define the number of active
modes with frequencies (s, . ..., ¥, ....]) and an energy U =

(295")

Zn,hv. is proportional to
-9 nghv,
e ; = I—Ie—n‘hvs/kT . (296)

In order, then, to obtain the probability of a microscopic state
with a definite total energy U which corresponds to the canonical
distribution (296), we must sum over all the sequences {#,} which
lead to the energy U.

For the internal energy U, we have, immediately,

; Nghy e~ st

U= Z z T (297)

If, as in (142), we now define

o= D e, (208)

g

then we can write

a
U = ——2 ﬁloga.. (299)
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This solves the statistical problem, and to obtain explicit formulae
we have to evaluate o,. We shall assume that #, can take all values
from o to «. This means, according to the discussion of § 4, that
the wave functions which describe the radiation field should be sym-
metrical in all the normal modes, each normal mode for this purpose
being described as a simple harmonic oscillator. Hence,

I

T = T Il (300)
or
9 hvs
_6_1_9 log oy = m . (301)
Therefore, by (299),
hv,
U= 2T (502

s

We can replace the sum by an integral and, weighting each frequency
interval by the appropriate density of the normal modes specified

by (285), we have
8xV (™ hwid
v=2" L e__._hy/k'; _V - (303)

c3

It is clear that if we wish to find the energy in the radiation field
in a given frequency interval, then we have a sum similar to (297),
the summation now being extended only over the required frequency
interval. We thus have

8whv? dv
udv = o AT — 10 (304)

which is Planck’s law. Since the radiation is isotropic, the Planck
intensity, B,, is related to «, by (Eq. [29], v)

c

Bv = 4—1_r Uy, (305)
or
2h3 1
B, = o AT — 1 (306)

This completes our discussion of the quantum statistics.
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CHAPTER XI

DEGENERATE STELLAR CONFIGURATIONS AND
THE THEORY OF WHITE DWARFS

The white dwarf stars differ from those we have considered so far.
in two fundamental respects. First, they are what might be called
““highly underluminous”; that is, judged with reference to an “aver-
age” star of the same mass, the white dwarf is much fainter. Thus,
the companion of Sirius, although it has a mass about equal to
that of the sun, is yet characterized by a value of L which is only
0.003 times that of the sun. Second, the white dwarfs are char-
acterized by exceedingly high values for the mean density; in fact,
we encounter densities of the order of 10° and even 1o gm cm™3, It
is this second characteristic which is generally emphasized, though
from a theoretical point of view the fact that L/Lg, is generally very
small is of equal importance.

Since the radius of a white dwarf is very much smaller than that
of a star on the main series, it follows that for a given effective
temperature the white dwarf will be much fainter than the star on
the main series. Similarly, for the same luminosity the white dwarf
will be characterized by a very much higher effective temperature
(i.e., much “whiter”) than the main-series star; this, incidentally,
explains the origin of the term “white dwarf.”

We shall discuss the observational material in somewhat greater
detail in § 3, but it should already appear plausible that the white
dwarfs differ from other stars in some fundamental way. The clue
to the understanding of the structure of these stars was discovered
by R. H. Fowler, who pointed out that the electron gas in the in-
terior of the white dwarfs must be highly degenerate in the sense
made precise in the last chapter. We shall see that the white dwarfs
can, in fact, be idealized to a high degree of approximation as com-
pletely degenerate configurations. In this chapter we shall be main-
ly concerned with the applications of the theory of degeneracy
toward the elucidation of the structure of the white dwarfs.

412
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1. The gaseous fringe of the white dwarfs.—It is clear that the
extreme outer layers of a white dwarf must, in any case, be gaseous,
i.e., nondegenerate, with the perfect gas law, p « pT, obeyed.
The question then arises as to how far inward we can descend be-
fore degeneracy sets in. To answer this question we shall have to
consider the criterion for degeneracy which was established in the
last chapter (Eq. [211]) and which we shall now write in the form

(9mc)*  f(x)
4 x(1 + x?)*/?

>1, (1)

where

=3  flx) = x(2a® — 3)(x* + 1)2 + 3sinh™x. (2

Finally, x is related to the mean electron concentration, #, by (Eq.
[212], x)

- e ()
We shall write
p = 8"3’;’“ pH ¥ = B3, ()
where
B = 8_7;_’;56_3“9}1 = 9.82 X 10%, . (5)

Anticipating our result that the regxon of the white dwarf where
the perfect gas law is valid is an ‘outer fringe only, we can use for
describing the structure of this gaseous fringe the theory of the
stellar envelope given in chapter viii. On account of the very small
values of L and R for the white dwarfs, the quantity a as defined in
chapter viii (Eq. [54]) is very small indeed (1 — B ~ 1074, so that
we can use the analysis of § 3 of chapter viii. We then have

_ 4 wHGM (1 _
I'=4% R (s I) ©

and

1 (1 328
Gl b ™
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where p is the mean density, £ is the radius vector expressed in terms
of the radius of the star, and f(o; w*) is defined as in equation (55)
of chapter viii. Inserting numerical values and expressing L, M,
and R in solar units, we find that

T =5.43 X Io“'u% (é— 1> (8)

_ #3.7523-5 " M75 \1/2 1 3.25
pmono ot (1) (5-1) 7 @

By (4) and (9), we now find

ud-1540-5 Mrs\1/z /1 3.25
a8 = 7.75 X 10-7;12(1 o ST (LR‘“) (E — 1> . (10)

By (1) and (8) we find that

Rz -2
3.04)(104I%M2 <§—1) mfﬁd—l)xh»l‘ (11)

From (10) and (11) we can determine the point at which the right-
hand side of (11) is unity; at this point we may say that “degeneracy
sets in.”

For most practical purposes it is found that it is sufficient to con-
sider for f(x) the limiting form which it takes for small values of x.
By equation (24) of chapter x

J(x) ~ §xs (x —o0). (12)
The inequality (11) now takes the simpler form,
4.86 X 104)[%% (g—— 1>—2x4>>1. (13)

Eliminating x between (10) and (13), we find that

2.2550.5 Mas\V/z /1 1.78
2.54 X 1073 /er(i"— ORE (LR3~5> <§ - 1> >1. (14)
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Now, since for the white dwarfs L and R are quite small, it follows
that for values of £ appreciably different from unity the right-hand
side is, in fact, much greater than unity. Thus, if we consider the
case of the companion of Sirius, for which (according to Kuiper)

Log M = — o.0o1, Log L = — 2.52, and Log R = — 1.71, equation
(14) takes the form
M:.z;i’g.s (_I_ _ >!,75
Boa-xpE ) P (x5)

If we assume that p ~ p. = 1.0, X, = §, f, = 10, then the right-
hand side of (15) is unity for § = 0.94. At this point, according to
Table 17, the mass traversed from the boundary is only o.23 per
cent of the mass of the star; further, it is found that at this point
% = o0.12, in agreement with our assumption that x is small. Final-
ly, at £ = 0.94, according to (8) and (9), p is found to be 1730
gm cm™3, while T is 1.7 X 107 degrees. For some of the other white
dwarfs the situation is even more “favorable,” in the sense that the
gaseous fringe is of even smaller extent. We thus see that the ma-
terial of the white dwarf must be almost entirely degenerate; this
result is implicitly contained in Fowler’s work, but the arguments,
essentially in the form we have given them, are due to Strémgren
and Sidentopf.

2. Completely degenerale configurations.—We have seen in § 1 that
the gaseous fringe of a white dwarf is of quite negligible extent, and
that, further, the radiation is entirely negligible—indeed, in the
gaseous fringe 1 — B~ 10 ¢ or less. It is almost certain (cf. the
discussion in § 6) that in the interior 1 — B does not exceed its
value in the gascous fringe, and we are thus led to consider equi-
librium configurations which are completely degenerate and in
which the radiation pressure is entirely neglected. The general
theory given in this section is due to Chandrasekhar.

The equation of state can be written as (cf. Egs. [19], [20], and [21]
of the last chapter)

P=Af(x); p=nuH =B, (16)

t According to Stromgren, under the conditions of the gaseous fringe of a white
dwarf, the guillotine factor fe must be quite large.
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where
S 3c3
A=1%§C_=6'°IXI°”§ B=W3~ZS—M{=9-82XIOSMe (x7)
and
f(®) = x(22* — 3)(x* + 1)*2 + 3 sinh x . (18)

The equation of equilibrium is (Eq. [6], iii)
1 d (rdP
el (; d_r> = — 47Gp. (19)

Substituting for P and p according to (16), we have‘

A1 d (rdfx) _ _
E ;2' _d_f (; ar = 41I'GB.7C3 . (20)

From the definition of f(x) we easily verify that

df(x)  8uas dx
dr (e 4+ 1) dr’ (1)
or
1dfx) 8 de _ dVard
©w odr @+ 07 dr 8 dr (22)

Hence, equation (20) can be re-written as

1d [ dVe 1 7GB*
F%(’z dr >=_2A v (23)
Put
y=x4+r1. (24)
Then,

Let x take the value x, at ‘the center. Further, let y, be the cor-
responding value of y at the center. Introduce the new variables
n and ¢, defined as follows:

r=an; y= 39, (26)
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where
24\"? 1 s 2
a_<;6> B—yo’ yo_xo-l"l' (27)

The differential equation finally takes the form

1 d zd¢__z__l3/2
Wn(” d_n)_ ("’ 5 (28)

By (26) we have to seek a solution of ( 28) such that ¢ takes the
value unity at the origin. Further, it is clear that the derivative of
¢ must vanish at the origin. The boundary is defined at the point
where the density vanishes, and this by (24) means that if 9. speci-
fies the boundary, then

I
é(n:) = o (29)

From our definitions of the various quantities it is easily seen that

¥3 13/
P = Po (yg — 1)3/2 <¢2 - )Tz> ’ (30)

po = Bx} = B(ys — 1)3 (31)

where

specifies the central density. Also, we may notice that the scale of
length, a, introduced in (27), has, in terms of the natural constants,

the form
_ I ﬂi 1/2
&= yrmpHy, (2cG> ’ (32)

or, inserting numerical values,

8
a=7.71>(10

= Ly, cm.
oy Yo (33)

We shall now consider a little more closely the structure of the con-
figurations governed by the differential equation (28).

a) The potential—The function ¢ has a physical meaning. v
is the inner gravitational potential, then from the general theory
(chap. iii, § 2)

av _ I dpP

= Tadr (34)
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From (16), (18), and (22) we see that

av 84 d¢

ar = T B Y (35)
or, integrating, we find that

84

V= -3 Yo¢ + constant . (36)

If we choose the zero of the potential at infinity, we have by (29) that
the “constant” in (36) is [(84/B) — GM/R] (cf. Eq.[10], iii). Hence,

V=-S5 (6-2)-L  ¢<B G

b) The mass relation.—The mass, interior to a specified point 7,
is given by

n n
M(n) = 4r£ pridr = 47ra3f enidy . (38)
B
y (o), ) aty] ( o >s/’ d (39)
1) = 47po W l ¢ 3 nan ; 39

or, using the differential equation (28),

3y3 d
M(n) = —ampn oz ™o (40)

Substituting for a and p, according to (27) and (31), we have

A1 d
M) = —an (24)" 5 v 22 (a1)

The mass of the whole configuration is given by

= g (AY L (220
AT <7"G) B (’7 dn>n=m. (42)

We notice that in (41) and (42) v, does not occur explicitly. It is,
of course, implicitly present inasmuch as vy, occurs in the differential
equation defining ¢.



STELLAR CONFIGURATIONS AND WHITE DWARFS 419

¢) The relation between the mean and the central density—Let
5(n) be the mean density of the material inside 7. Then

M(n) = $wa’n’p(n) - (43)
Comparing (40) and (43), we have
p(n) _ _ ¥3 1 d¢
Po SGi—1Fadn’ (44)

From (44) we deduce that the relation between the mean and the
central density of the whole configuration is

_ 1\32
po= —p (I——}Tg> prueeg (45)
where ¢’ denotes the derivative of ¢. It is of interest to notice the
similarity between the present relations (42) and (45) and the cor-
responding relations in the theory of polytropes (Egs. [69] and [78]
of chap. iv).

d) An approximation for configurations with small ceniral densities.
—By definition, y2 = 2 + 1, and we need a first-order approxima-
tion when #2 is small. We shall neglect all quantities of order «3 and
higher. Then,

¥ = 1+ 3x3. (46)
Put

I
P = =0,
¢ v (47)

In our present approximation we have
¢=1— 35— 0). (48)
At the origin, ¢ takes the value unity. Hence,
6(o) = 2. (49)
From (28) we derive the following differential equation for 6.

2

u
-]

18— o (50)

N -
U

&.l&
S |

]

nz
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Finally, introduce the variable £, according to
£= 2. (50

Equation (50) now reduces to

1d de
FaE <E’ E) = —6, (51)
which is the Lane-Emden equation with index # = 3/2, but the
solution we need is #o¢ the Lane-Emden function 0;/.. According to
(49), we need a solution of (51) which takes the value x2at £ = o.
Now, according to the homology theorem of chapter iv, § 8, as ap-
plied to the case n = 3/2, if 8(£) is a solution of (51), then C*9(C%)
is also a solution, where C is an arbitrary real number. Hence, from
85/ we can derive a function satisfying (49) by a homologous trans-
formation of 6,/,:

0 = x20,,(Vi £) . (52)
Hence, by (48), (50), and (52)
¢ =1 — 31 — 6,(Vaxon)} + O(x3) , (53)

which relates ¢ with 6;,,. From (53) we see that for these configura-
tions the boundary 5, must be such that

03/2(\/E m) =o0, (s4)

since, according to (29) and (46), ¢(n,) = y7* = 1 — 3a2. If £.(0,/,)
is the boundary of the Lane-Emden function, then from (54) we de-
duce that

- ft(es/:!)
(Vo (s5)
Again, from (53) we have
d — dby),
1_1% = 1x2V 2z, ——03(§£(E) . (56)

Combining (55) and (56), we find that

.48\ _ (&)3/’(,@)
(" d77>r,=m 2 ¢ 8t Je-ti0,0 (57)
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1 dd)) 3 (I dos/,)
("7 dﬂ n=nN v E d£ E=€l(9_wz) (5 )

From (58) and (45) we have

Further,

- —7 21(03/2)
P = TP ST &) (59)

which is precisely the relation between the mean and the central
density for a Lane-Emden polytrope of index # = 3/2. Again, from
(42) and (s57),

24\3/7 1 (xo>3/’< d03/,>
M= —4r(Z) = (2 e T .
A (wc) F\2) ¥ & )won (60)

On the other hand, if x, — o, we can write the equation of state (16)
in the form

P=flws e=be, (67)
or
P = K.,p53, (62)
where
_ 84 _ I {3 2/3 b2 _9.91 X 10%
K= 5B/ 20 <1r) m(uH)s" us’s . (63)

Hence, configurations with small central densities (i.e., %, small)
are Lane-Emden polytropes of index # = 3/2. The results based
on (63) and the theory of polytropes, and the approximation
derived from the exact differential equation (28) for x, — o are
easily seen to be equivalent. In particular, using (63), the mass re-
lation (60) can be re-written in the form

re) e (%)
M= - ( ‘r)/z 2 3/2 s 6
47 \geG) P\ dE Je=tu6379 (64)

which is identical with the mass relation for a polytrope of index
n = 3/2 based on the law (62) (cf. Eq. [69], iv).

¢) The limiting mass.—From the differential equation (28) we
see that

¢ — 03 as Yo —> @© . (65)
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But from (33) it follows that at the same time the radius tends to
zero. From the mass relation (42), on the other hand, we see that
the mass tends to a finite limit:

24\ 1 (. b,
M= —4m (7"G> B (E dg )£=&w;) ) (66)

The existence of this limiting mass was first isolated by Chandra-

sekhar, though its existence had been made apparent from earlier

considerations by Anderson and Stoner, who, however, did not con-

sider the problem from the point of view of hydrostatic equilibrium.
For x, —» « we can write (16) in the form

P = 24x4; p = Bx3, 67)
or
P = K2P4/3 ) (68)
where
_ 24 [3\"3 he _1.231 X 10%
*UBY T <;) 8(ucH)Vs ué ' (69)

By equation (70) of chapter iv the mass of a Lane-Emden configura-
tion based on (68) is given by

K.\ (. db
i = - (B () (70)

which is seen to be equivalent to (66) on substituting for K, accord-
ing to (69).
We shall denote by M the limiting mass (66).? The mass relation
(42) can then be written in the form
2(o
M) = 2, 20, (1)

o3

where

- (s . (.9
o5 = (E dt >e=el(03) ’ 00ye) (77 dﬂ>n=m' (72)

2 We denote the Jimiting mass by M; since, as x — «, ¢ — 8;, the Lane-Emden func-
tion of index 3.
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As the mass of the configuration increases monotonically with in-
creasing y,, we have the useful inequality

2(y0) < o3 (9o finite) . (73)

Finally, we may note that the insertion of numerical values in the
formula for M, yields

M;= 575" X O. (74)

f) The internal energy—By equation (23) of chapter x, the in-
ternal energy U of the configuration is given by

'R
U= el b e -0 - SV G

or, using equations (16) and (17) which express the equation of
state, we can re-write the foregoing in the form

84 (® x
U= ff pl(x + 22)v2 — 1]dV —f Pdv . (75"

But by equation (32) of chapter iii the second term on the right-
hand side of (75') is —/3 where Q is the potential energy. Hence,

84 (R .
v =¥ (6 + ) = alam) + 30 (76)
or, expressing x in terms of ¢ (cf. Eqgs. [24] and [27]), we have
'R
v =¥ f (¢ - l) M) + 32, (76")
° Yo
Using (37) for expressing ¢ in terms of the potential V, we obtain
R M
-- (v+%) o + 0. (77)
Finally, using equation (16) of chapter iii, we find

GM*

U=—42-
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For the case under consideration the internal energy is due entirely
to the kinetic energies of the motions of the electrons; we can, there-
fore, write

GM*
T=U=-j2- "5 (79)

The total energy, E, of the configuration is

GM?
For stars of small mass the configurations are (as we have shown in
section d, above) polytropes of index # = 3/2, and by equation
(90) of chapter iv,

6 GM*
By (79) and (80) we have
T= _%Q ’ (80/)

which is the statement of the virial theorem (chap. ii, § 1o) derived
on the basis of Newtonian mechanics. On the other hand, if
M — M, then (again by Eq. [9o], iv),

GM*
Q= _%T (M — M;). (81)
By (79) and (81) we now have
T=-—q, (81,)

which must be the statement of the virial theorem for material par-
ticles moving with very nearly the velocity of light.

g) General results.—In sections d and e we have considered cer-
tain limiting cases. However, the exact treatment on the basis of the
differential equation (28) will provide much more quantitative in-
formation. The boundary conditions,

- dé _
¢'—'I) d'ﬂ_o
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comuined with a particular value for y, will determine ¢ completely
and therefore the mass of the configuration as well. Equation (28)
does not admit of a homology constant, and hence eack mass has a
density distribution characleristic of itself which cannot be inferred from
the density distribution in a configuration of a different mass. This is
the most fundamental difference between our present configurations
and the polytropes. We thus see that each specified value for y, de-
termines uniquely the mass M, the radius R, the ratio of the mean
to the central density, and the march of the density distribution.
We have (collecting our results):

M _ 209 |
Ms oWy
R _m
A Yo ’ L (
82)
Bﬂ = 2 /3
B (yﬂ I)J
B____ 1 g(@)
" <1 - 'I—>3/2 7:\@%/g=ns
¥e
In (82) we have introduced the unit of length (I: = ay.),
= 1 3w\ _ -1 8 ’
L= ey (20G> 7.71p7" X 108 cm, (82"

which, therefore, does not involve the factor in y,. Further, the physi-
cal variables determining the structure of the configurations are:
_ _I— ( . _I‘>3/2 W
P Po (I _ l>3/2 yg ’

2

Yo
P = —po (1:-)3—/2 o dn’ &} 59

M(n) _ (”’ E%)

M3 (Ez %) )
d€ Je=t:09
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) Numerical results.—In section g we reduced the problem of the
structure of degenerate gas spheres to a study of the function ¢ for
different initially prescribed values of the parameter y,. The inte-
gration has been numerically effected by Chandrasekhar for ten dif-
ferent values of the parameter:

I
37 =0.8,0.6,0.5,0.4,0.3,0.2,0.1, 0.05, 0.02, 0.01 .
[

The integration is started at the origin by a series expansion and then
continued by standard numerical methods. The following expan-
sion for ¢ near the origin may be noted here:

=1 Loy ¢(s¢° + 14) o+ 7°(339¢* + 280)

6" T 4o 7! 3 X ol (84)
_ q7(1425¢* + 114369 + 4256) 4
5 X 11! K Tt

where ¢ = (y2 — 1)/92. The important quantities of interest are the
boundary quantities occurring in equation (82). These are tabulated
in Table 25. From the figures in Table 25 it is easy to calculate the

TABLE 25
THE CONSTANTS OF THE WHITE-DWARF FUNCTIONS

1/va 7 —nie’ (1) po/F
O 6.8968 2.0182 54.182
0.0f...... .. 5.3571 1.9321 26.203
0.02.......... 4.9857 1.8652 21.486
0.05...... ... 4.4601 1.7096 16.018
O.I........... 4.0690 1.5186 12.626
0.2........... 3.7271 1.2430 9.0348
0.3........... 3.5803 1.0337 8.6673
(<2 DA 3.5245 0.8508 7.8886
0.5 vt 3.5330 0.7070 7.3505%
0.6........... 3.6038 0.5679 6.9504
0.8....... ... 4.0446 0.3001 6.3814
I.0........... ® o 5.9907

mass in units of M, the radius in units of /;, and the central density
in units of B (= 9.82 X 105, gm cm™3). These express the chief phys-
ical characteristics in the “natural system” of units occurring in the
theory of these configurations (see Table 26). In Table 27 they are
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converted into the more conventional system of units which express
the radius and the density in c.g.s. units and the mass in units of the

TABLE 26

THE PHYSICAL CHARACTERISTICS OF COMPLETELY DEGEN-
ERATE CONFIGURATION IN THE “NATURAL” UNITS

1/% M/M; R/ po/B
L= I I o ©
OO0L....ovvnnnn. 0.95733 0.53571 985.038
0.02. e 0.92419 0.70508 343.
0.05. cvvii a 0.84709 0.99732 82.8191
[< 2% S 0.75243 1.28674 27.
0.2 i 0.61589 1.66682 8.
0.3, e o.51218 1.96102 3.50423
[ 2 0.42600 2.22908 1.83711
0.5 i 0.35033 2.49818 I.
0.6.............. o.28137 2.79148 0.54433
0.8 ... 0.15316 3.61760 0.125
T.0. .o o © o

TABLE 27*

THE PHYSICAL CHARACTERISTICS OF COMPLETELY
DEGENERATE CONFIGURATIONS

po in Grams £ mean in Grams Radius §
/92 M/O per Cubic per Cubic adius in

Centimeter Centimeter Centimeters
= S 5.75 © 3 o
[ =Y S 5.51 9.67X10% 3.70X 107 4.13X 10}
0.02. . cviiiinnn 5.32 3.37X 108 1.57X107 5.44 X108
0.05. e 4.87 8.13X 107 5.08X 10® 7.69X 108
(-7 S 4.33 2.65X107 2. 10X 10° 9.92X10°
0.2, i 3.54 7.85X 106 7.9 X108 1.29X10%
0.3 i 2.95 3.50X 108 4.04X 108 1.51 X109
(-39 DUN 2.45 1.80X 100 2.29X 108 1.72X10°
0.5 e 2.02 9.82X 108 1.34 X108 1.93X10°
06..... ... 1.62 5.34 X108 7.7 Xiot 2.15X10°
0.8 ... 0.88 1.23X10% 1.92X10% 2.79X 107
T.0. . i iiien s (o] [+] o @

* The values given in this table differ slightly from the published values (S. Chandrasekbar M.N.,
05, 208, 1935, Table III). The difference is due to the change in the accepted values of the fundamental
physical constants.

The calculations are for u, = 1. For the other values of u,, M should be multiplied by r. % R by by,

and po by g,

sun. To see the order of magnitude of the quantities involved, it is
of interest to point out that the mass 4.87©p.* has a radius only
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slightly larger than the radius of the earth, while the mass 0.957M,
has a radius considerably less than the radius of the earth. In Fig-

55}~
5.0
45}
40

351

0 ! L [ 1 ! ! L | I A
0 041 02 03 04 05 06 07 08 09 10
MM~

F16. 31.—The solid-line curve represents the exact (mass, radius) relation for the
completely degenerate configurations. This curve tends asymptotically to the dotted
curve as M—o.

ures 31 and 32 we have illustrated the mass-radius and the mass-
central density relationships. The dotted curves in the two cases
are the corresponding relations based on the Lane-Emden polytrope
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of index # = 3/2 (the approximation considered in section d, above),
and the exact curves tend toward these asymptotically for M — o.
We notice from Figures 31 and 32 how marked the deviations of
the dotted curves from the exact curves become even for quite small
masses. Thus, for M = o.15M; the central density predicted by the
exact treatment is about 25 per cent greater and the radius about 5
per cent smaller. The relativistic effects on the equation of state

4

+3

-2 r-

Fi6. 32.—The solid-line curve represents the exact (mass, Log po) relation for the

completely degenerate configurations. This curve tends asymptotically to the dotted
curve as M—o.

are therefore quite significant even for small masses. They certainly
cannot be ignored for masses greater than o.2M;. Of course, the
extrapolation of the # = 3/2 configurations for masses approach-
ing M, is quite misleading. The completely degenerate configura-
tions have a natural limit, and our discussion based on the differen-
tial equation shows how this limit is reached.

i) The relative density distributions in the different configurations.—
Our main diagram (Fig. 33) now illustrates the relative density dis-
tributions in the configurations studied. Here we have plotted p/p.
against /7, for the different masses for which we have numerical
results. The two limiting density-distributions specified by the Lane-
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Emden functions 6;/, and 8, are also shown (dotted) in the same dia-

gram. The density distributions specified by the differential equa-
10
09

08

07

0.2 -

0 01 02 03 0-4 05

- 06 07 0-8 09 10
('7/ 1 ) e

Fic. 33.—The relative density distributions in the completely degenerate con-
figurations. The upper dotted curve corresponds to the polytropic distribution n=§,
and the lower dotted curve to the polytropic distribution #=3. The inner curves
represent the density distributions for 1/%?=0.8, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.02,
and o.or, respectively.

tion (28) thus form a continuous family which covers the range speci-
fied by the polytropic distributions of indices 3/2 and 3.

3. The discussion of the observational material and of the theoretical
mass-radius relation.—We have already seen in § 1 that the gaseous
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fringe of the known white dwarfs can be neglected (in the first ap-
proximation) and that we can regard them (in the first approxima-
tion) as completely degenerate configurations. The theory developed
in § 2 can therefore be applied, as it stands, to the known white
dwarfs. A glance at Table 27 shows that the mean density, the mass,
and the radius of these degenerate configurations are all of the right
order of magnitude to provide the basis for the theoretical discussion
of the structure of the white dwarfs. However, a really satisfactory
test of the theory will consist in providing an observational basis for
the existence of a mass such that as we approach it the mean density
increases several times, even for a slight increase in the mass. At the
present time there is just one case which seems to support this aspect
of the theoretical prediction.

The case in question is Kuiper’s white dwarf (AC 70°8247), which
is, from several points of view, a most remarkable star; for instance—
and this is very unfortunate—in this star no spectral lines have been
detected so far and only a pure continuous spectrum has been ob-
served. According to Kuiper, the most probable values of L and
R are

Log L= —1.76, LogR= —2.38, (85)

L and R being expressed in solar units. From (85) we derive that

p = 19,600,000 (%-)gm cm™3. (86)
It is seen that we have here an unusually dense star. If we assume
that p. = 1.48, then the mass-radius relation established in § 2 leads
to a mass of 2.50, which would correspond to an actual mean den-
sity of 49,000.000 gm cm™. On the other hand, if we use the approxi-
mation P = Kp¥/3 (Eqs. [62] and [63]), then from the mass-radius
relation for the polytropes (Eq. [74], iv) we easily derive that

LogR = —3Log M — % Log p. — 1.397, (87)

where R and M are expressed in solar units. Assuming p. = 2.0
(which is the maximum we can permit), we find that (87) leads to
a mass of 280 for Kuiper’s white dwarf; it should be noticed that
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this is the minimum mass predicted on the basis of (87). (If we as-
sume for u, the more probable value of 1.5, then (8%) leads to
M = 1:180.) Since the mass predicted on the model P « p5/3 comes
out unusually high, it seems likely that Kuiper’s white dwarf does,
in fact, provide a confirmation of the theory. In any case, it is clear
that if spectral lines could be detected and identified in this star and
the red shift measured, we might have a most valuable astronomical
confirmation of the physical theory of degeneracy.’

However, since the theory is such a straightforward consequence
of the quantum mechanics and, further, uses Dirac’s theory of the
electron only in that phase of its application which has been con-
firmed by laboratory experiments (Klein-Nishina formula, produc-
tion of cosmic ray showers, etc.), there can be little doubt that it is
essentially correct.

We have seen that the theory provides a unique mass-radius rela-
tion if the radius is measured in units of I; (Eq. [82]) and the mass
in units of M,. But these units involve the ‘“molecular weight,” .,
so that we can apply the theory to determine p, for white dwarfs for
which both M and R are known, or to determine M for a white
dwarf for which only the radius is known (assuming, however, a
value for g.). It should be noticed that u. is not the same as the
mean molecular weight u used in the theory of gaseous stars. For, as
the definition of u. we have used

p = nuH, (88)

where # is the number of electrons per unit volume. For a mixture
of elements which are all completely ionized we can write, in the
notation of § 3 of chapter vii,

xzZ
”=§ :f—zy (89)

where the element of atomic number Z and atomic weight A, is
assumed to occur with an abundance x; by weight. The summa-

3 There is a possibility that Wolf 219, another white dwarf discovered by Kuiper,
for which Humason found recently a continuous spectrum, may be comparable to
AC 70°8247. If confirmed, this star would be even more extraordinary than AC 70°8247,
since it is of lower luminosity.
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tion in (8¢) is extended over the elements present. Comparing (88)

and (89), we derive
1

b — (99)
> (- ,)
If X, is the abundance of hydrogen, we can re-write (go) as
I _ xzZ
;; = XD + 2 Z; . (91)

ZF# 1

As a first approximation we can write Z/A4z = 1/2 for all the metals

and obtain

2
W= TTXL (92)

For the Russell mixture considered in chapter vii we find that

I
Be = 5 492 + 0.508X, (93)
We shall now consider briefly the other white dwarfs for which we
have data.

a) Sirius B.—We have already considered this star in § 1. Using
the data given there and using the theoretical mass radius relation,
it is found that w. = 1.32, X, = 0.52.

b) o. Eridani B.—According to Kuiper,

Log L = —2.26, Log M = —o0.35, LogR= —1.74. (94)

The mean density is 91,000 gm cm™. The theoretical mass-radius
relation leads to X, = o.15.

¢) Van Maanen No. 2—From the reliably known parallax and
spectral type, Kuiper derives for this star

LogL = —3.85, LogR = —2.05. (93)

The radial velocity of this star has been determined and found to
be +238 km/sec. According to Oort, most of this must be due to
the Einstein gravitational red shift. Assuming that the full amount
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is due to the red shift (which will give the right order of magnitude),
it is found, with the value of R given (Eq. [95]), that

Log M =o0.53, P = 6,800,000 gm cm™3 . (96)

The mass-radius relation now leads to g, = 1.206, X, = 0.66.

4. A stellar criterion for degemeracy—In the last chapter we
showed that the criterion for the applicability of the degeneracy
formulae is (Eq. {211], x),

gam* x(1 + x2)/2
(9me?)? f(x) Lr. (97)

However, for applications to stellar problems it is more convenient
to state the criterion for degeneracy in a rather different form.

Consider an assembly of IV electrons contained in a volume V at
temperature T. Then, on the basis of the perfect gas law, the elec-
tron pressure p. would be given by

N
pe = (7) ET . (98)
At temperature T we also have radiation pressure of amount given
by the Stefan-Boltzmann law

b = 3aT*. (98')

Let us denote by P the total pressure (=p, + p,) and introduce a
parameter f., defined as follows:

P=ptpe=pgpo=r=gt (99)

Eliminating T between the relations (gg), we find

pe = [k4 3 LTB_B”]I“”UJ s (IOO)

a
where we have used # for (N/V). Let

_ 8mrmic3 5
= 3h3 X3,

(101)
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as in equation (3). Then (100) can be transformed into

_ wmAcs (s12mhks 1 — B,
pe - 3h3 ( hSCJa Be > 2x4 .

(102)

Since the radiation constant a can be expressed in terms of the other
natural constants as (Eq. [107], v)

8 wSke
“= e (103)
equation (102) can be simplified to
po= A (2B, (x04)

where A4 is defined as in (7). It must, of course, be understood that
(104) is simply another form of (98).

Now for an assembly having the same number N of electrons in
the volume V, we can formally calculate the electron pressure that
would be given by the degenerate formula, namely,

paeg = Af(x) . (105)
We have already shown (Eq. [26], x) that for all finite values of x
18 < (x < @). (106)

Hence, comparing (104) and (105), we have the result that if for
a prescribed N and T, the value of 8., calculated on the basis of the
perfect gas equation (98), be such that

6o 1 — B.
91'_4 BGB I H (107)

then the pressure given by the perfect gas formula is greater than
that given by the degenerate formula—not only for the prescribed
N and T, but for all values of N and T which specify the same g..
Let B, be such that

960 1 — B.

B, 1, (108)
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or
1— f,=0.009212....; Bo=0.90788.... . (109)

We can state the result just obtained in the following alternative
form. If for material at density p and temperature T the fraction
(1 — B), calculated according to (98), (98'), and (99), is greater than
(1 — B.), then the sysiem is definitely not degenerate.

On the other hand, if

%I—;’zﬁ<1, (110)

or
I_ﬂe<1_6w; ﬁe>ﬂw; (III)

then for the specified 8. the electron assembly becomes degenerate
for sufficiently high electron concentrations. The criterion for de-
generacy under these circumstances would then be the following.

For the specified N and T, calculate 8, on the perfect gas law
(i.e., p. = n.kT) and solve the equation

(ﬂo_ I_—_Be>1/3 _ =) (112)

T B. 2x4 "

(A solution exists, since [110] holds.) Denote the solution by x’. If
x for the prescribed V (according to Eq. [101]) is much less than «’,
then the system is far removed from degeneracy, while if x is much
greater than x” the system will be more or less completely degen-
erate.

Table 28 provides solutions of (112) for different values of 1 — ..

If (110) holds, we can use the following approximation for the
real equation of state:

p. = Af(x) (x 2 &)

~and (113)

— 1/,
b= 24(%2 e

x' being such that

(L“’ I_—ﬁ)m - [&) (114)

4 Be 2x’4 "
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5. The effect of radiation pressure. The mass I = M,8;%2.—In
§ 2 we considered the equilibrium of completely degenerate con-
figurations, neglecting the radiation pressure entirely. This was jus-
tified in § 1, where it was shown that for the known white dwarfs
these assumptions (of complete degeneracy and zero radiation pres-
sure) were entirely justified and our object in the study of the com-
pletely degenerate configurations is primarily one of obtaining a
satisfactory theory for the white dwarfs. It is, however, of some
theoretical interest to consider the effect of “introducing” radiation
pressure in these configurations.

Let us, in the first instance, consider a degenerate configuration
which is built on the standard model. Then the total pressure, P,
will be given by

P = 8., (115)

where p. is the electron pressure and . is a constant. Then, accord-
ing to equation (16),

P =g Af(x);  p=Bs. (116)

It is clear that the analysis of § 2 applies to our present models if
we replace A (wherever it occurs) by 8;A. In particular, the mass
relation (42) now takes the form

) = — e (ZAVL (298
M(ﬁe; yo) - 47!' <7rBeG) Bz <'7 dn)fl=m’ (117)

where ¢ is, as before, a solution of (28). We can also write (117) in
the form
M(Be; yo) = M(I; yo)ﬂ:3/2 ’ (118)

in an obvious notation. In particular,
M(Be; =) = MB73. (119)

From (118) and (119) it would at first sight appear that by allowing
B. — o we can obtain degenerate configurations for any mass. This
is, however, incorrect. For, according to the criterion of degeneracy
established in § 4, 8. has to be greater than B, if the matter is to be
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regarded as degenerate, and we see that the maximum mass of the
configurations which can be regarded as degenerate is therefore

given by
M= M,8;%2. (120)

The result just stated is extremely general and can be proved as
follows: Consider a completely degenerate configuration of mass M,
slightly less than M. The density will everywhere be so great that
we can increase the radiation pressure from zero to a value only
slightly less than (1 — 8,) at each point of the configuration and
still regard the matter as degenerate. According to (118), the mass
of the new configuration so obtained will be approximately Mg,
When M — M, the result becomes exact. We have thus proved
that the maximum mass of a stellar configuration which, consistent
with the physics of degenerate matter, can be regarded as wholly de-
generale, is M = M,B,%%.
We may notice that

M=1.156M; = 6.650u;2. (121)

6. Composite configurations.—We shall now give some elementary
considerations concerning stellar configurations with degenerate
cores, a subject initiated by Milne. Milne, however, considered de-
generate cores at such densities that the approximation P = Kp5/3
could be made. Since the exact treatment based on the differential
equation (28) leads to the existence of the two masses M, and I, and
since, further, there are no analogues to these on the approximate
considerations, it is clear that very considerable care should be ex-
ercised in interpreting the results derived on the basis of the approxi-
mate considerations. In particular, the formal results which are de-
rived for masses greater than ¢ have no physical meaning. On the
other hand, it is possible to indicate the general characteristics of
these composite configurations by allowing the degenerate core to
be described by ¢ without any elaborate machinery.

First of all, it is important to bear in mind that, while in the de-
generate regions the electrons contribute toward the pressure almost
entirely, the situation is different in the gaseous region: depending
on the abundance of hydrogen, the atomic nuclei would also con-
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tribute appreciably toward the gas pressure. The consideration of
the composite configurations which allow for these factors is ele-
mentary but complicated. However, the essential features of the sit-
uation can be understood by considering the case where we can put
pe = p; this implies that 1 — 8, = 1 — 8.

According to (104), we have (for the case under consideration) in
the gaseous region

— 1/
P = %[’e = 24 (91%) %) 3x4 (122)
and
p = Bx?. (123)

Eliminating x between (122) and (123), we have

601 — B\/3 1
P =24 (9r—4 ﬁ“ > W p4/3 . (124)

We shall assume that the gaseous region is governed by the stand-
ard-model equations, i.e., 8 is constant in (124). The gaseous region
must then be governed by a solution 6(£) of the Lane-Emden equa-
tion of index 3—mnot necessarily 6;. The mass relation (Eq. [70], iv)
is now

= g (YL (9f0 1 — B "’(,‘ﬁ
M= —yr <1rG> bz <1r4 B ) Ed5>s=sx(o)’ (123)

which by (66) can be written as

— 1/2
M=M, <@2 L ﬁ) s (126)

T4 B4 ow;

where, in the notation of chapter iv,

= (e @) ) _ _( . ?ﬁ)
o (E @ Je=toy’ T ¢ At Je=t0) (x27)

If the configuration is wholly gaseous, we have

M=wM, (9@ 1= 3)"’, (128)

4 B4

which is Eddington’s quartic equation in a different form.
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Now for a given mass M, equation (128) determines a 8 = B(M).
Start with this mass having an infinite radius and imagine it being
slowly contracted. At first the configuration will be so rarefied that
it will be wholly gaseous and the path of the “representative point”
in the (R, 1 — B) plane will be along the line parallel to the R-axis
through 8 = B(M). How far is this process of contraction possible?
From our criterion of degeneracy we can now conclude that if
1 — (M) > 1 — B, then the process of contraction is theoretical-
ly possible to an unlimited extent. Since S, according to definition,
is given by

-g6o 1 — Be

o, (129)

it follows that a configuration for which B(M) = 8, is, according

to (128),
MB5%* =M. (130)

a) The domain of degeneracy.—For configurations of mass greater
than 9N, the appropriate 1 — B(M) is greater than (1 — B3,) and
the representative point will travel down the straight line 8 = 8(M),
however far the contraction may proceed. But the situation is dif-
ferent when the mass of the configuration is less than I¢. For such
masses, 1 — 3(M) < 1 — B,, and hence a stage must be reached
when the configuration should begin to develop central regions of
degeneracy. On the scheme of approximation (113) and (114), we
can now easily see how far the process of contraction is possible be-
fore degeneracy sets in.

Let the central density be p,. Then

po = Bad. (131)
Degeneracy would just begin to develop at the center for a value of
& = &, such that
flxo) _ (ﬁg 1 — B\~
228 \w B )

For this configuration the mean density p is (according to Eq. [78],
iv, which gives the ratio of the mean to the central density fora

polytrope)

(132)

— I d03>
= —3 (2% Ba.
P 3 (E A€ Je=e0p ¥ (x33)
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The radius R, of the configuration is, therefore, given by

Mass

4R} = oSS
3720 = Mean density *

(134)

Substituting (125) and (133) in the foregoing expression, we obtain

_ [24\Y* (960 1 — B\*/® 1
R, = <1r_G> (1'_—4 g ) B_xofx(os) . (135)
Define a unit of length by (cf. Egs. [27] and [33])
_ [24\Y? £(6;) _ 7.71 X 10° X 6.897
l - (TG) B - u H (136)
or, numerically,
= 5.32 X 10% *cm. (137)
From (135), then,
R _ (9605 =B\ x
Bo(L5H L (138)

where %, is again determined from (132). By using (132), we can
write (138) more conveniently as

Rl )" 1

; o B) wm (139)

It is a fairly simple matter to calculate from (132) and (139) cor-
responding pairs of values for (R,/!) and B. These are tabulated in
Table 28. This (R,, 1 — B) curve can therefore be drawn in the
(R, 1 — B) plane (see Fig. 34). The region bounded by this curve
and the two axes then defines the domain of degeneracy meaning
that it is only in this region that the curves of constant mass are
distorted from straight lines parallel to the R-axis.
From (132) and (139) we see that, as § — 8.,

, R,—o. (140)

X —> @©

Hence, as we should expect, the (R,, 1 — B) curve intersects the
(1 — PB) axis at a point where 8 = B,. It can be proved easily that
the (R,, 1 — B) curve intersects the (1 — B) axis vertically.

b) The nature of the curves of constant mass for M < M; in the
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domain of degeneracy.—In (a), above, we have shown at what stage
a configuration of mass less than 9% (contracting from infinite ex-

2:0-
19
18
174
16
1'5- 15
1-4-
1-34
12
1-14
= 104w Emden -Eddington
4 ®
09 By Polytropes
] =81§ (Wholly gaseous configurations)
0-8 »5
3
0-7 % ‘g
0-6 S
05" Region of
0-4-44 eomposite
o configurations
0'3_:“‘, (Domain of degeneracy)
0249
7
0144 3
¢ ? 2 1 Yo
0 T 1 T 1 1 = 1 1 T 4 T
0 0-01 0-02 0-03 0-04 0'05(0’06 )0'07 0-08 009 0-10 0-11 0-12
1-B)~
F16. 34.—The curve running from 1—8=0.092 . ... to infinity along the R-axis is
the (R., 1—pB) curve (see Eq. [139]). The points marked (s, . ..., 15) on the (Ro, 1—8)
curve and the R-axis are the end-points (in the domain of degeneracy) of the curves of
constant mass for the values of M tabulated in Table 29. The points marked (1, .. .., 4)

on the (R,, 1—f) curve and on the (1—f) axis are the corresponding end-points for
some curves of constant mass (M; <M < IN) on the standard model (see Table 30).

tension) begins to develop degeneracy at the center. This happens
when the appropriate line (1 — 8) = 1 — (M) intersects the
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(R,, 1 — B) curve. If the contraction continues further, the con-
figuration will begin to develop finite degenerate cores, and our prob-
lem now is to examine how the curves of constant mass run inside
the domain of degeneracy.

TABLE 28

THE STELLAR CRITERION FOR DEGENERACY AND
THE (Ro, 1 — 8) CURVE

x 1 —8 R./! x 1 —8 Ro/1
O v o ] 2.8......... 0.00919 0.3515%
0.2.. .. .....| ©.00040 1.9868 3.0 ..., .07149 .3304
[< 20 SN .00282 1.3787 3.5 ... .07598 .2870
0.6........... 00793 1.0956 4.0......... .07920 .2535
o8, .. ... . ... .01505 0.9187 4.5 ... 08158 2268
1.0, ... .02305 0.7934 5.0, . ... .08337 .2051
T2 0. .03101 0.6985 6.0......... .08583 L1721
| S DR .03839 0.6235 7.0 ..., .08739 . 1481
1.6........... .04495 0.5627 80......... .08844 .1299
1.8, ... 05068 0.5123 Q.0 ........ .08918 L1157
2.0, ... 05561 0.4699 10.0......... .08972 .1043
2.2 .05983 0.4337 200, ... ... 09150 .0524
2. 4.0 00344 0.4025 30.0......... .09185 .0350
2.6, 0.06653 0.3753 @ 0.09212 o

In § 2 we made an analysis of completely degenerate configura-
tions. Each mass (less than M;) has a certain uniquely determined
radius. Thus, if the mass under consideration has a central density
corresponding to y = ¥,, then the radius, R, is given by

24\1/? g,
R=an-= (;5) =, (141)

where 7, is the boundary of the corresponding function ¢(y,). In
terms of the unit of length, ! (Eq. [136]),

R

R m{(30)]
!

I
Yo E(8y) (142)

These completely degenerate configurations correspond to 8 = 1.
Hence, we know from (142) the point at which the curves of con-
stant mass for M < M, must intersect the R-axis. Also, for any
mass M we can calculate the value of 8 in the wholly gaseous state.
Let 8t be the value of 8 for a wholly gaseous configuration which in
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its completely degenerate state has a central density corresponding
to ¥y = y.. Then, according to equations (71) and (128), we have the
relation

~ B 78 ’ (143)

o3

R

where, as in equation (72),

Qyo) = —nt (Z—: (144)

>n=m(¢<y.,>) '
Now the line through 81 parallel to the R-axis will intersect the
(Ro, T — B) curve at [Ro(M(v,)), 1 — B1]. In the domain of de-
generacy the continuation of the curve must in some way connect
the point [R,(M(y,)), 1 — 1] and the point R on the R-axis, where

R _ 1 nx[¢(yo(M))]
T=%@D &6y (x45)

From the numerical values for 7,, @, etc., for the ten different
values of y, given in Table 25, the corresponding values of R/!
(according to [145]) and BT can be evaluated. The results are given

TABLE 29

/% M/M; 1 — Bt R/
1. 0.07446 o
0.95733 .069066 0.07767
0.92419 .06596 0.10223
0.84709 .05746 0.14460
0.75243 .04732 0.18657
0.61589 .03358 0.24168
0.51218 02414 0.28434
0.42600 .o1718 0.32320
0.35033 .01187 0.36222
0.28137 .00779 0.40475
0.15316 .00236 ©.52453
o o ==

in Table 29. We have thus fixed the “end-points” for the curves of
constant mass for M < M, in the domain of degeneracy. The cor-
responding pairs of points on the (R,, 1 — ) curve and the R-axis
are shown in Figure 34.



STELLAR CONFIGURATIONS AND WHITE DWARFS 445

It is clear that the curve for M; must pass through the origin of
our system of co-ordinates. Further, if 8, is the value of 8 for M,
in the wholly gaseous state, then, according to (143),

960 1 — B,
™ B

=1, (146)

or

I— P =0.07446;  Bo = 0.92554. (147)

¢) The nature of the curves of constant mass for M > M, inthe
domain of degeneracy.—In (b), above, the end-points for the curves
of constant mass (for configurations with mass less than, or equal
to, M,) have been fixed. We further saw that the curve for M; must
pass through the origin. The question now arises: What happens
for configurations with 2 > M > M,? The answer to this question
can be given quite simply if (1 — B) has the same value in the de-
generate core as in the gaseous envelope. We have already shown
(Eq. [119]) that the completely relativistic configuration has a mass

M = Mp/ (r2828) (148)

and is of zero radius. Hence, the curves of constant mass for M > M,
must cross the (1 — 8) axis at a point (1 — 8*), say, such that

M = M,B*3/2, (149)

Let us denote by Bt the value of 8 in the wholly gaseous state.
There is a simple relation between 8* and 8t. Comparing (143) and
(149), we derive that

5= (s rog) (150)

From (150) we see that 8* = 1, 81 = B, (Eq. [146]). is a solution;
in other words, the appropriate curve for M, must pass through the
origin which in fact it does. Again, 8* = Bt = B, is also a solution
of (150); the appropriate curve for 9% is therefore the full line
through (1 — B,) parallel to the R-axis, as we should have expected.

Table 30 gives a set of corresponding pairs of values for 8* and
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Bt (see also Fig. 34, where the corresponding pairs of points are
marked [1, 2, 3, 4] on the [R,, 1 — B] curve and the [1 — 8] axis).

The results described above (in []) are true for the usual standard
model. If we consider as an another limiting case configurations in
which 8 = 1 in the degenerate core and 8 < 1 in the gaseous enve-
lope, then the discussion is similar but somewhat more complicated
(cf. Chandrasekhar’s papers quoted in the Bibliographical Notes).

TABLE 30

1 — 8t 1 —B* M/M

0.09212......... 0.09212 I.
L0Q0. . ... .08220 0.0838
085, ... .05768 0.0457
o080........... .03143 0.9075
O75. .00319 0.8692
0.07446. . ... .... o 0.8651

A more detailed discussion of composite configurations would con-
sist in describing the mathematical methods for handling them pre-
cisely, i.e., by a consideration of the methods of fitting a solution of
the Lane-Emden equation of index 3 to a solution of the differential
equation for ¢. Such discussions, however, are beyond the scope of
the monograph. Reference may be made to the literature quoted in
the Bibliographical Notes.

7. Partially degenerate configurations.—So far we have considered
completely degenerate configurations and also stellar configurations
with degenerate cores. For describing the degenerate state we have
used the exact equation of state (allowing for relativistic effects)
which should be valid if the degeneracy criterion is satisfied. In
considering the composite configurations in § 6, we changed over
from the perfect' gas equation to the degenerate equation of state
at a definite interface, the interface being defined in such a way that
both the equations of state give the same numerical value for the
pressure for the density and the temperature at the interface. We
have seen that this approximation is quite good so long as we deal
with configurations of not too small masses (in units of ;). How-
ever, for stars of small mass (~o.1 M;) the central density, even in the
completely degenerate state, is not unduly high. Under these cir-
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cumstances, we may expect that in actual stars (e.g., Kriiger 60) the
“transition zone” between the perfect gas region and the region of
more or less complete degeneracy will be quite extensive. It is there-
fore a matter of some importance to allow for these incipiently de-
generate regions in a satisfactory way.

We shall illustrate a method of approach to the problem just
stated in one case, namely, that in which the configuration is so poor
in hydrogen that we can put u = g, = 2. Further, we shall assume
that the star is of such small mass that relativistic effects can be neg-
lected. Under these circumstances, the equation of state can be para-
metrically expressed as follows (cf. Egs. [262] and [263], x):

puss = 75 (2mm)2(RT)Uy (x51)

o = 2 cam)/(KT) ol Uy, (x52)

where U, stands for the integral

{eo]
1 udu

U, =
T T+ 1) T
Ke +I

(153)

o

We shall assume that U,;, and U;,, are known functions of A, so that
the parametric representation of the equation of state is in terms
of A.

We shall consider two classes of equilibrium configurations built
on the equation of state (151) and (152) which allows for the transi-
tion between p « p7T to p « p5’3 quite accurately.

a) The isothermal gas sphere—In this case, T is assumed con-
stant, and the equation of equilibrium,

1 d (rrdp\ _
;z(;z;)— 47mGp , (154)

on inserting for p and p according to (151) and (152), becomes

1d (7 dUy\ _ _ 2 /2 1/2 2
r? dr (Ux/a dr ) = 4G <h3 (zwm)/? | (RT) V() Usss - (155)
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Let
r=af, (156)
where
b3 1/2
“= <8wG(zm>%/f<kT>1/z<nH>2) ' (x57)

Equation (154) now reduces to

1d [ d _
?z @. (-UT/z dg_ UJ/Z) = U[/z . (158)
Now it is easily seen that
d 1 ? werdu I
EUV_ F(U+I)Az (I - )2—XUU—1« (159)
K (4 + I

Equation (158) can therefore be simplified to the form

1 d [ ,dlog A\
2 (D) — v, (160)

If A « 1, we have (cf. Eq. [270], %)

.= A. (161)
Hence, if we write
A=¢ev; =&, (162)
equation (160) transforms to
L4 (L, _
E, df (E ds) =€ ) (163)

which is the isothermal equation of a classical perfect gas sphere
(cf. § 22, iv).
On the other hand, if A > 1, then (Eq. [266], x)

4
Uy = — (log A)3/2. 6
/ 3\/‘"_(08 ) (164)
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Hence, if we make the substitutions

~\ 1/2
logA=6; ¢= <§_j\4/_1r> £, (165)
equation (160) reduces to
I d 2 iq —_ — fp3/2
Fa(eE) - 69

which is the Lane-Emden equation of index # = 3/2. We thus see
that, depending upon T, we obtain from (160) either the classical
isothermal case (T — =) or the polytrope, # = 3/2 (I'—>o0). A
closer study of the differential equation (160) than has yet been
made will make it possible to study how the change from the classical
isothermal gas sphere to the polytrope # = 3/2 takes place as A
increases from very near o to «. The discussion of (160) may lead
to results of cosmological importance.

b) The standard model.—We shall next consider the standard
model built on the equation of state, (151) and (152). Quite gen-
erally, on the standard model, we have

I I a
P=Epgas—;—;‘§3T". (167)
Let
0.= % Gomprs Q= m3IZE (x68)
Equations (151), (152), and (167) can now be written as
pgas = Qx(kT)S/zUs/z, (169)
p= Q!(kT)J/ZyH Uy, (170)
and
(kT)* = Qupeas - (171)

From (169) and (171), we obtain

(RT)** = Q:Q:Uy/a - (172)



450 STUDY OF STELLAR STRUCTURE

Substituting for 27T according to (172) in (169) and (170), we obtain

BP = pgas = Qkxg/ng/SUg;g (173)
and
p = QiQuHU./Uy, . (174)

Substituting (173) and (174) in the equation of equilibrium (154),
we find

1d< r? d

r? dr \U,;Uy, dr U3/2> = _47"GBQ§/3Q§/3(I‘H)2Us/zUl/z . (175)

By (159) we can simplify (175) somewhat into the form

1d dlog A _ 3mGRQY QY3 (uH)
- 2772/
rt dr ( rU3s dr > 2 U;.Uspn . (176)

Let

2 1/2
= ot = (sramororear) (77)

Equation (176) now reduces to

1 d [ . .,.dlogA
Eé d_g' <§‘ U,&g dg‘ > = _U3/2U1/2 . (178)

If A < 1, we have U, = A, and (178) can be written as

1d dA

2 A1/ A2 .

e (S RV I €

or, if
6=A; ¢=Vig, (180)

equation (179) reduces to the Lane-Emden equation of index # = 3,
as would be expected.

On the other hand, if A > 1, then, according to equations (266)
and (267) of chapter x,

4 15
Uy = —— (log A)¥7 U;;: = —>= (log A)5/2. 8
/ 3\/1r(0g ) 3/ 8\/1r(0g ) (x 1)
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If we now put

(log A)¥3 = 8 ; ¢ = \/3_7r ( IS >m.§, (182)

20 \8Vr

equation (178) reduces to the Lane-Emden equation of index n =
3/2. We thus see that a detailed study of (178), which has not as
yet been made, should give insight into the structure of partially
degenerate stars. The numerical discussion of the models (Egs.
[160] and [178]) cannot be very difficult; a one-parametric series of
integrations would be sufficient.
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CHAPTER XII
STELLAR ENERGY

In this chapter an attempt will be made to indicate some general
trends in the current approach to the difficult problem concerning
the origin of stellar energy. This subject is as yet in an early stage
of development and the present brief account is intended primarily
to indicate the directions in which the greatest progress is being, or
is likely to be, made. This chapter, then, is on an entirely different
level from the preceding ones, in which an attempt toward rigorous
development has been made.*

1. The Helmholtz-Kelvin time scale—We shall first examine the
reason for postulating a source of stellar energy. To see this, let us
consider gaseous configurations in which the radiation pressure can
be neglected; the majority of the normal stars (sun, Capella, etc.)
are in this category. Then, as we have shown from the virial theorem
in chapter ii, § 10,

_3y— 4

E = (37'—4)U_3(7_I)Q) (I)
where E, U, and Q are the total, the internal, and the potential
energies, respectively. If the configuration contracts and if, as a re-
sult of this, there is a change in the potential energy of amount dg,
then (as was shown) a fraction (3v — 4)/3(y — 1) of the energy
| AQ| “liberated” is radiated to the space outside, while the remaining
fraction [1 — (3v — 4)/3(y — 1)] is used in increasing the internal
energy of the configuration. Hence, the amount of energy, — AE,
which is radiated to the space outside, consequent to a decrease in
the potential energy of amount |AQ|, is given by

_3r— 4
30— A% (2)

t This chapter was written in December, 1937, and consequently it has not been
possible to include the more recent investigations of Gamow, Bethe, and others (see
the Bibliographical Notes at the end of the chapter).

453
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Now the contraction hypothesis of the origin of stellar energy postu-
lates that the energy radiated by a star is due to a slow secular
contraction. (The contraction hypothesis is also referred to as the
“Helmholtz-Kelvin hypothesis.”) Thus, if the potential energy
alters by an amount AQ in time A¢, then the luminosity L is given by

- _AE_ _3v—4 40
L=-%~ sy —1) dt (3)

Now the contraction hypothesis allows an estimate to be made of
the time during which the normal stars could have existed. To make
this estimate, let us suppose that the configuration was initially in an
infinitely extended state and that after a time ¢ it has contracted to
a radius R and a potential energy ©. Then by (3) we should have

i 3 — 4
Ldt = ——=2——2_Q .
_£ (v —1) @
We can write
GMZ
0=—-¢-% (s)

where ¢ is a numerical constant of order unity; if the configuration is
a polytrope of index %, then (cf. Eq. [9o], iv),

g=—3—. (6)

We can re-write (4) in the form

— 4 GM?

mR, (7

It=g¢
where L is the mean luminosity during the time ¢. Equation (7) al-
lows us to establish the time scale of Helmholtz and Kelvin. For
the time during which a star with an observed luminosity L could
have existed while radiating at its present rate is given by

_,3r—4 GM*
13— IK ®
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If we assume ¥ = 5/3, we find that the sun could have existed at its
present rate of radiating energy to the space outside for a time
not longer than

tuk. (sun) = 1.59 X 107 X ¢ years . (9)

If we assume that the sun has a polytropic density distribution of
index 3, then ¢ = 1.5 and we have

tax. (sun) = 2.4 X 107 years . (10)
In the same way we find that
tux. (Capella) = 2.2 X 105 years . (11)

1t should be pointed out that (10) and (11) are not exact figures,
but it is clear that no reasonable adjustment of the parameters can
extend the time scale for the sun, for instance, to more than 10®
years. The order of the “age” of the sun thus derived on the Helm-
holtz-Kelvin contraction hypothesis is found to conflict with other
evidence which is essentially of a geological nature. Thus, the age of
the terrestrial rocks as derived from the uranium-lead and helium-
lead ratios of radioactive minerals is in the neighborhood of 1.6 X 10°
years, and the sun must have existed in somewhat its present form
for at least this length of time. Hence, the geological evidence com-
pletely disproves the contraction hypothesis for the sun, and there-
fore also for the normal stars. We are thus led to seek a different
origin for the source of stellar energy.

2. Transmutation of elements as the source of stellar energy—There
is also evidence in addition to that of a geological nature, which
points to an age for the sun (and therefore for the majority of the
normal stars) of at least 1 or 2 X 10° years. Astronomical evidence,
the discussion of which is beyond the scope of the present mono-
graph, also points to a similar age (10°-10™ years). It should, how-
ever, be mentioned that this does not necessarily mean that every
single stellar object that is observed must have existed for this length
of time; it only means that some aspects of the stellar system (e.g.,
the rotation of the galaxy) could not have existed for a time much
longer than 1o™ years. ;
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Now a source of stellar energy which will allow for most stars a
time scale of the order of 10 years is the transmutation of elements
—a suggestion which appears to have been first seriously considered
by Harkins, Perrin, Eddington, and, more recently, by Atkinson and
Houtermans. As we have seen in chapter vii, hydrogen is abundant
in stellar interiors; and as we shall see in § 3, the probability of
protons taking part in the transmutation processes is very much
greater than for the nuclei of the higher atomic numbers. Conse-
quently, most of the energy due to the transmutation processes will
arise from the building-up of the elements of higher atomic numbers
out of hydrogen. The mass of the hydrogen atom is 1.0081 in the
scale O = 16 and it is seen that the energy available from the trans-
mutation of a hydrogen atom is approximately o.008 of its mass.
In other words, the energy available from a gram of hydrogen is

0.008 X ¢ = 7.2 X 10¥ ergs. (12)

Now each gram of material from the sun liberates, on the average,
2 ergs per second. Hence, the order of the length of time during
which the sun (assumed to be initially a mass of pure hydrogen) can
go on radiating at its present rate before all the available hydrogen
is used up, is

3 X 7.2 X 10%sec = 1.1 X 107 years . (13)

Thus, on the transmutation hypothesis, the maximum time scale for
the sun is the “intermediate time scale.” If we consider the more
luminous stars, the time scale permitted will be very much more
limited; and unless we are willing to accept the hypothesis of the
annihilation of matter (for which hypothesis there is at the present
time no physical basis), we simply have to accept the much shorter
time scale for these stars. In any case, we shall restrict ourselves to
a consideration of the transmutation of the elements as the source
of stellar energy. Further, we shall see (§§ 3 and 4) that, for the
order of the temperatures found for the stellar interiors (chaps. vi
and vii), transmutations by proton capture of the lighter elements
can take place at nonequilibrium rates. What is meant by a process
occurring at a “nonequilibrium rate” will be made more precise
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presently—but it may be mentioned here that some investigators
(Milne and Sterne) have considered the possibility of the transmu-
tations occurring at equilibrium rates. We shall not, however, con-
sider these theories, for, first, they require temperatures for the
stellar interiors of an altogether different order (~ 10° degrees or
more) from those for which we have any evidence; second (as
Stromgren has pointed out), if transmutations occurring at equi-
librium rates are to be regarded as the source of stellar energy, then
the Russell-Vogt theorem will not be applicable; but, as we have
seen (chap. vii), the observational material strongly suggests the
validity of the theorem; third, one of the main reasons for the con-
sideration of transmutations occurring at equilibrium rates arose
from the belief that stellar configurations built on the alternative
hypothesis (transmutations occurring at nonequilibrium rates) are
unstable, for which belief, however, there does not appear to be at
present any convincing reason. It is beyond the scope of the mono-
graph to go into greater details on these questions, but reference
may be made to a general discussion of these matters by Stromgren
in a recent article.?

3. The transparency of potential barriers. The Gamow factor—We
have seen in § 2 that the most profitable approach to the problem
of the origin of stellar energy at the present time is made by examin-
ing the physical processes of the transmutation of the elements. For
example, a process which we shall consider is the disintegration of
lithium into two a-particles by the capture of a proton:

1Li+ H — 2¢He. (14)

The foregoing disintegration has of course been carried out in the
laboratory in the first experiments of Cockroft and Walton. We shall
presently see that transmutations of the kind (14) can—and do, in
fact—occur under the physical conditions which we have derived
for stellar interiors (chaps. vi and vii); we shall also see that the
“reaction” converse to (14), namely,

24He —1Li 4+ H, (15)

2 B. Stromgren, Erg. exakt. Naturwiss., 16, 466, 1937—especially §§ 14 and 18.
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does not occur. We are thus led to consider the transmutations of
elements occurring at nonequilibrium rates as the source of stellar
energy. This is different from assuming that reactions (14) and (13)
both occur at almost equal but slightly different rates, and that it is
the slight difference between the reaction rates in the two senses
that is responsible for the generation of stellar energy. This assump-
tion will have to be made if it is supposed that the transmutations
occur at equilibrium rates. However, for the reasons stated toward
the end of § 2 we shall not consider this alternative hypothesis.

If the transmutations occur at nonequilibrium rates, the problem
which we have to consider is the evaluation of the probability of the
penetration of potential barriers, which, on the basis of the classical
mechanics, cannot be expected to happen. The physical situation
can perhaps be understood by considering first the analogous prob-
lem of the a-decay of radioactive bodies.

Let us consider, for example, a uranium nucleus which is known
to be a active. From the experiments of Rutherford on the scatter-
ing of a-particles by the uranium nucleus it has been inferred that
the Coulomb law of attraction between the uranium nucleus and
the a-particle is valid up to a distance at least as small as 3 X 1072
cm; this means that we have

V(r) = %62 (r >3 X 10=cm), (16)

where we have written V(r) to denote the potential energy between
the two nuclei at the distance . However, at much smaller distances
we should expect deviations from the Coulomb law, since the
stability of the uranium nucleus requires the existence of a “potential
hole” at the center of the nucleus. The general nature of the func-
tion V(r) must therefore be of the character shown in Figure 33, in
which the dotted line represents the Coulomb potential and the
solid line the actual potential. The inner part of the curve has been
drawn arbitrarily, but for » > 3 X 1072 cm the scattering experi-
ments have shown that there is no appreciable deviation from
the Coulomb law. At the same time, the uranium nucleus, being o
active, emits a-particles which are found to have an energy of
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6.6 X 1079 ergs. It is, consequently, difficult to understand, on the
classical picture, how particles contained inside the potential hole
can go through a potential barrier which is at least twice as high as
their total energy. According to classical mechanics, particles with
energy 6.6 X 107 ergs could originate only from a point at a dis-
tance of 6 X 107" cm from the center, where the Coulomb potential

V(r) X108

L 1
5 10 rx10%

F1c. 35.—Potential energy of an a-particle in the field of a uranium nucleus

has the value 6.6 X 107¢ ergs. In this region, however, there can
be no question of the a-particle being stably bound to the rest of the
uranium nucleus. We thus see that apparently particles inside the
potential hole with energies much less than that corresponding to
the top of the potential barrier can, so to say, tunnel through. That
this paradox of the classical picture does not exist in the quantum
theory was, as is well known, shown to be the case by Gamow and
by Condon and Gurney.

The possibility of a particle’s going through a potential barrier is
connected with the wave nature of the wave functions ¢ and the
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interpretation of the square of the modulus of ¥, as the measure of
the density of the probability of the particle being in a certain region.
It is not true that the wave function vanishes in regions where the
potential energy V(r) is greater than the total energy E, and where
on the classical mechanics the particle will have a negative kinetic
energy. Actually, the wave function, although it decreases ex-
ponentially as we go out into the “forbidden region,” is yet finite at
great distances, thus giving a finite probability that a particle may
appear in such regions, and, in particular, penetrate the potential
barrier. An analogy (due to Gamow) from optics will illustrate the
kind of phenomenon we are dealing with here. If a beam of light is
incident on the boundary between two media with an angle of inci-
dence greater than the critical angle, then, according to the concepts
of geometrical optics, we will have a total reflection of the incident
beam—the presumption being that all the light will be reflected
at the surface separating the two media and that no disturbance in
the second medium occurs. However, when this same problem is
treated by the methods of the wave theory of light, it is found
that there is, in fact, a finite disturbance in the second medium as
well, which is appreciable for a distance of the order of a few wave
lengths of light and falls off exponentially as we go farther out in the
second medium. This disturbance in the second medium (which is
predicted on the wave theory of light, and verified by experiment)
for angles of incidence greater than the critical angle has no inter-
pretation in the language of geometrical optics. In exactly the
same manner the passage from classical mechanics to quantum
mechanics allows the possibility of particles penetrating potential
barriers, a feature which would be impossible to interpret in the
language of classical mechanics.

For practical purposes it is sufficient to consider for the potential
energy between two particles of charges Z,e and Z,e the form

Vi) =

VAV A
iZa > ()

and
V() =V, (r<r®. (18)
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V(r), considered as a function of 7, is shown in Figure 36. The
potential energy is maximum at 7 = r*, where it has the value

Z. 2.6

Vs = 25 (x9)

V3 is sometimes called the top of the potential barrier. The energy
of the a-particles (Z, = 2) emitted by radioactive bodies is much less
than the appropriate V. As we have already indicated, quantum

Viy

¥16. 36.—The nuclear model for the calculation of the transparency factor

mechanics allows us to calculate the probability of an a-particle
initially inside 7 = r* being emitted. We can then evaluate the life-
time of the radioactive nucleus. The calculation is a straightforward
piece of analysis in quantum mechanics, and we shall not go into
the details of the derivation (reference may be made to the litera-
ture quoted in the Bibliographical Notes at the end of the chapter).
The result of such calculations is to give, for the number of particles
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emitted per second by a radioactive nucleus of charge Z.e (assumed
to be at rest), the expression

’ \/, rzhze—zG
A 2 e (22 75 (20)
.Z‘[2 r f—* — E

where M, is the mass and E the energy of the emitted particle—
in the case of a-decay the emitted particle is, of course, an a-particle
—and where the Gamow exponent, G, is given by

G - CILE (78 (220 gY™y, (21)

/3 * 7

In (21) the upper bound of the integral, 7z, is defined in such a way
that the integrand vanishes at r = rz. The integration of (21) is
straightforward, and the result can be expressed in the form

_ (2M)V? Z.Z,e

G =2 2 e, (22)

where

x = % ;o g(®) = cosTra? — xV3(1 — x)V, (23)

From (22) we see that G increases with increasing nuclear charge,
decreasing energy of the emitted particle, and decreasing nuclear radius
as defined by 7*. That this should be so is intuitively obvious, since
increasing Z, and decreasing E and 7* imply that the particle will
have to penetrate a higher and a broader potential barrier, which is
naturally more difficult. Equation (20) can be interpreted by the
statement that the “half-life””s is given by

lo,
f, z. (24)

Equation (24) can be alternatively expressed as

To

T= w’ (25)

3 The “‘half-life” is defined as the time during which half the number of particles are
emitted.
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where W, the transparency of the potential barrier, is given by

W = e2G (26)

—21

and 7, is the lifetime without the potential barrier (1, ~ 3.3 X 10
sec. for radioactive nuclei); 73 will be, classically speaking, the num-
ber of times the a-particle will hit the inner wall of the potential hole
per unit time. Equation (25) can, therefore, be interpreted as fol-
lows: W is the probability, per collision, for a particle to penetrate
the potential barrier.

The expression for the transparency of the potential barrier which
we have just given is, in fact, quite general and is precisely what
is needed to calculate the probability of a particle penetrating in-
to the potential hole from outside—more precisely, W is the proba-
bility, per collision, that a particle of charge Z,¢ and energy E will
penetrate into another nucleus of charge Z.e, when the latter nucleus
is assumed to be at rest. The modification of the transparency fac-
tor, W, when both the particles are in motion is obvious; we then re-
gard E as the total kinetic energy of the two nuclei in a system of
reference in which the center of mass of the two particles is at rest;
further M is to be regarded as the reduced mass of the system,

MM,

M=m, (27)

where M, and M, are the masses of the two nuclei considered.
The Gamow exponent can therefore be written as

MM, \'* Z.Z.
G= (2 M.+ M,) e 8 - (28)

For most stellar applications a simplification of W is possible. As an
empirical fact, it is found that

Vs =~ 0.70Z,Z,A7*/3 million electron volts . (29)

If we remember that a million electron volts corresponds to a
temperature of the order of 10° degrees, it is clear that we can ap-
proximate g(x), given by (23), by its value for x — o. Since

g -7 as oo, (30)
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we have

MM, \V*12Z,7.e*
G = (2 Wt M,> WE (31)

Finally, the transparency is given by
W = e¢:G, (32)

4. The penciration of nuclear barriers by charged particles with
thermal velocities.—We shall now calculate the number of successful
captures of a nucleus of charge Z.e by another nucleus of charge Z,e
which occur in a system at temperature 7 and in which the distribu-
tion of the velocities of the different particles is given by Maxwell’s
law (chap. x). It should be mentioned here that each successful cap-
ture does not necessarily imply a transmutation—it is possible that
the captured particle may be re-emitted. We shall return to this
question in § s.

Now, the number of collisions (per unit volume and per unit time)
in which the total kinetic energy of the relative motion of the collid-
ing particles lies in the range E and E + dE is given by

2N .N.o?, [21r(M, + M)

12 —E/kT
(kT3 MM, J ¢ EdE , (33)4

where 702, is the effective cross-section for the collisions and N, and
N, are the numbers of nuclei per unit volume of the two sorts in the
system.

An approximate expression for ., can be given. If we represent
the colliding particles by plane De Broglie waves, then for “head-
on” collisions the collision cross-section is approximately given by
the square of the De Broglie wave length which characterizes the
incident particles in a system cf reference in which the center of
mass of the two particles is at rest. Thus,

: h? _ wh? ( /)
T = 32 T ZME 33

where M is the reduced mass (cf. Eq. [27]), v is the relative velocity
between the two particles, and E has the same meaning as in equa-

4 R. H. Fowler, Statistical Mechanics (2d ed., Cambridge), p. 665, Eq. (1863).
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“tion (33). If we consider a non-head-on collision which is character-
ized by a relative angular momentum, then to obtain the appropri-
ate cross-section we must multiply (33") by a factor which is very
small compared to unity. Hence, it is sufficient to restrict ourselves
to head-on collisions only.

Now the probability that a collision will result in the capture (and
thus lead to the possibility of a transmutation) is given by the fac-
tor W. Hence, according to (33) and (33”), the total number of pene-
trations occurring in the system per unit time is given by

NNA [en(M, + M) (® -6
P YSE [ MM, ] l ¢ dE . (34)
Let
E
=7 (35)
and
MM, \"27Z.7,¢e2\*/3
Q - {(2 Mx + M;) h(kT)l/z} . (36)
Equation (34) can then be written as
NN [2n(Mo + M) (2ot
27,.(]3]*)1/2[ MM, ] A e dy . (37)

To evaluate (37) we note that the exponential term in the integrand
of the expression has a sharp maximum at

—1+Qy¥=0 or y=Q. (38)

Since the exponential term falls off very steeply on either side of
vy = ()7, we write

y=u+Q (39)

and regard # as small, since the contribution to the integral arises

essentially from the immediate neighborhood of y = Q> We then
find

y+ 20y = 50+ 2 54 OGw). (40)
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We can therefore write for the integral in (37)

o _3 %
e‘302f e +Qdy. (41)
_QZ

The quantity (* is generally quite large compared to unity, and we
can write with sufficient accuracy

w _3 W -
2e‘30’f e +%@dy = 2\/§ Qe30 | (42)
o

Hence, the number of encounters which result in successful captures
that occur in the system per unit volume and per unit time is
given by

Substituting for Q according to (36), we have
R LA (LAY e
where we may notice that
MM, \'3 (nZ.Z2,2\*3 1
30 =3 (2 M, + M) ( 20 ) anyc @)

Inserting the numerical values of the atomic and other constants in
(44) and (44"), we find that we can express the number of penetra-
tions, P(Z,; Z.), per gram of each of the two sorts of nuclei in the
following form:

/:
Log P(Z.; Z,) = 39.480 + Log { - (A’ + A2>4 ’ (Zsz)‘“}

A4, \" A4,
_(AAZIZEN 1.850 X 108 2Log T [ 49
A+ 4, T3 3

where 4, and 4, are the atomic weights of the nuclei of charges Z,
and Z., respectively. Since, according to our hypothesis concerning
the origin of stellar energy, transmutations occurring at nonequilibri-
um rates are the fundamental physical processes, we have for the
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contribution to the rate of generation of energy by the transmuta-
tions of the kind we have been considering

2772 %
G(Z‘Zg) = constant XIXZPT—z/se—constant [2323/T) s (46)

where X, and X, are the abundances with which the nuclei of the
two sorts occur. Before discussing the important formula (46), we
shall first make a few remarks on its derivation. We assumed that
the distribution of the velocities of the nuclei involved is according
to Maxwell’s law. As a criticism of this, it may be argued that
transmutations generally lead to the emission of particles of very

TABLE 31

T (in Millions of Log P (1; 2)

Degrees) (See Eq [45])
S PP 7.85
2 e 13.27
B 15.89
B 17.54
TSP 18.70
TO. ot s 21.78
20 24.20
30 s 25.35
40 i 26.07

considerably higher energies than would correspond to the tempera-
ture 7. But this fact is not of great importance. These high energy
particles which are emitted during some types of transmutations con-
sidered will be rapidly slowed down because of the very efficient
stopping power of the stellar material. Thus, so long as we are not
concerned with physical processes which are 107 or 107 times less
frequent than those which are due to the particles with thermal
energies, it is safe to assume a Maxwellian distribution of velocities
for the nuclei taking part in the capture processes.

Returning to (44), we see that, according to this formula, the
penetration of protons into the lighter nuclei is easily possible under
the conditions which we have derived for the stellar interiors.
Table 31 illustrates the point.

Another very important feature now becomes apparent. Trans-
mutations by the capture of protons can occur only with elements of

2

very low atomic number. Because of the occurrence of (Z:Z2)*3 in
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the exponent in (46), the capture even of protons by the heavier
nuclei becomes extremely unlikely.

If we turn to a different aspect of the situation, it may be argued
that the rate at which captures occur for 7' < 4 X 10°is exceedingly
slow. But this question can only be settled by actual integrations
for stellar models with an underlying law for the energy generation
of the type (46). Integrations for one such set of configurations has
been made by Steensholt, who finds that the process considered
here is quite sufficient as a source of stellar energy. Finally, atten-
tion may be drawn to the extreme sensitiveness to temperature of
the law (46); it is this circumstance which led to the belief, s to which
we have referred at the end of § 2, that models built on the law (46)
are likely to be unstable.

5. Von Weizsdicker’s theory.—We have seen that the penetration
of protons through the potential barriers of the lighter nuclei occurs
in stellar interiors and that they will also suffice—with an adequate
supply of the lighter elements—as a source of stellar energy. As a
typical example we may consider the capture of protons by the
lithium nucleus. Now this capture does not lead to the formation of
a nucleus of a higher atomic number—instead, we have a disintegra-

tion process:
1Li+ H = 24He . (47)¢

We shall consider presently other examples of captures which result
in similar disintegration processes, but it follows that we shall have
an increasing proportion of the lighter nuclei. It is thus clear quite
at the outset that we have to distinguish carefully between syn-
thesis processes and disintegration processes—the German words
Aufbauprozesse and Abbauprozesse, which von Weizsicker has intro-
duced, are very much more expressive. At this stage we should con-
sider three possibilities:

a) That the heavy elements like lead, thorium, and uranium are
now continually being formed in the stellar interiors and that all

s Not confirmed by Cowlings investigation (M.N., 94, 768, 1934) on the stability
of such models.

6 In writing equations representing nuclear reactions, we shall adopt the convention

of prefixing the letter denoting the element on its upper left-hand corner by its atomic
weight and on its lower left-hand corner by its atomic number.
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the heavier elements now present have been synthesized in the
stars during the past.

b) That a great (or an appreciable) fraction of the heavy elements
now present in the stars have been formed at some earlier stage, and
that at the present time, though we have a further synthesis of these
elements, they do not occur at a sufficient rate (or have occurred for
a sufficient length of time) to account for the actual abundances of
the different elements.

¢) That all the heavy elements now present in the stars have been
formed at some earlier stage, and that at the present time we have
only a further transformation of hydrogen (involving, principally,
proton captures) into the lighter elements.

These three possibilities cannot of course be sharply distinguished.
The difference between them is mainly one of degree, and we can
easily conceive of a variety of other “intermediate” possibilities.
However, as a working hypothesis, the second and the third have
the disadvantage of not being capable of being made quite definite
at present; in any case, need for the other possibilities can be felt
only by attempting to follow the full consequences of the first
hypothesis. This is the procedure von Weizsicker has followed.
The fundamental assumption, then, is the following:

Apart from secondary effects of minor importance, the transmutation
of elements is the entire cause of the presence of all elements in the stars;
they are all being synthesized continually in the stars which are assumed
to have started as pure masses of hydrogen; further, transmutations are
the only source of stellar energy.

The foregoing hypothesis, which we shall refer to as the “von Weiz-
sicker hypothesis,” is made, it will be understood, entirely for the
purpose of having a definite working basis, the partial failure or the
complete success of which will indicate the necessity or otherwise of
considering the other possibilities which we have mentioned.

From the von Weizsicker hypothesis we can draw certain immedi-
ate inferences. First, it is clear that the lighter elements are formed
by processes involving proton captures. These processes will be the
most important among those in which the transmutations are caused
by the capture of charged particles because, as we have seen in
chapter vii, hydrogen is abundant in stellar interiors, and also be-
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cause the occurrence of {exp — (Z2Z2/T%)} in the formula giving
the number of penetrations makes the capture even of a-particles
very much less probable than the capture of protons. Second, the
occurrence of (Z:Z2/T)"3 in the exponential in (46) shows that even
proton captures cannot be of any significance in the synthesis of
the heavier nuclei. Von Weizsicker’s hypothesis therefore requires
that some other physical process is fundamental for the synthesis
of the heavier elements. Now the experiments of Fermi and others
have shown that neutrons can be captured by the heaviest nuclei, so
that it is plausible that this is the physical process responsible for
the synthesis of the heavier elements in stellar interiors. We cannot,
however, assume that there are free neutrons present in stellar in-
teriors. The experiments of Fermi have again shown that the cross-
sections for the capture of neutrons by the atomic nuclei are so large
that, even if there were an appreciable amount of neutrons to start
with, they would all have disappeared in a very short time. We
thus infer that the only possibility consistent with von Weizsicker’s
hypothesis is that there must be a source for a continuous supply of
neutrons, and that the neutrons are formed as a by-product in such
transmutations as do occur under the conditions of the stellar in-
teriors. We shall now consider these questions in greater detail, fol-
lowing von Weizsicker.

(1) Transmutations due to proton captures—As we have already
seen, among the transmutations arising from the capture of charged
particles, those due to the capture of protons by the light nuclei are
by far the most important. We shall now consider more closely the
transmutations that can thus occur. In doing so we must distin-
guish between the synthesis and the disintegration processes. Now
an empirically well-established rule which can be used for this pur-
pose is the following.

The capture of a proton by a light nucleus can lead to a synthesis of
a nucleus of a higher atomic number if, and only if, a disintegration
process is not possible from pure energy considerations.

This rule can be understood by the use of the method of descrip-
tion of nuclear phenomena introduced by Bohr: When a proton
penetrates through the potential barrier into an atomic nucleus,
we have first the formation of an intermediate nucleus which in gen-
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eral will be in an excited state; this intermediate nucleus can follow
one of three courses: it re-emits the captured proton, or it emits
some other particle (generally an a-particle),” or, finally, it drops to
the ground state with the emission of a y-ray. If the first possibility
occurs, we have a simple scattering phenomenon if the second, a
disintegration process; and if the third, a synthesis process. Now,
since the lifetime of an excited nucleus with respect to y-emission is
long compared to the analogous “lifetime” 7, (introduced in § 3,
Eq. [25]), it is clear that (unless the potential barrier is very high and
broad and the energy of excitation of the intermediate nucleus is
distributed among the nuclear constituents) we shall, in most cases,
have the emission of a particle (if it is at all possible) before there
has been time enough for a y-emission. In the case of the lighter
nuclei the potential barrier can be penetrated without undue diffi-
culty; and since the number of nuclear constituents is small, the
energy of excitation of the nucleus is not distributed quickly among
the other particles. We thus see that for the lighter nuclei we havea
pure energy criterion for distinguishing a disintegration from a
synthesis process. Thus if we compare, for instance, two nuclei, one
of which after the capture of a proton is able (from considerations
of energy) to emit an a-particle and the other not, then in both
cases a synthesis is a priori improbable. But while in the former case
we almost always have a disintegration, in the latter case we will
have the re-emission of the proton. In the second case, since the
re-emission of the proton does not produce any effective change, itis
clear that the occasional synthesis which can occur is the only one
that matters. Thus, while in the first case every successful penetra-
tion of the nucleus by a proton will be quite invariably followed by
a disintegration, in the second case we have a synthesis only in a
small fraction of the total number of successful penetrations. Thus,
in the latter case we shall have to multiply the expression (44) for
the number of penetrations by another factor which gives the
probability of a synthesis occurring.

Now the probability for the occurrence of a transmutation with
the emission of a y-ray after the successful penetration of a particle
is given by the ratio of the probability of the emission of a y-ray

7 If this is possible from energy considerations.
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I'y =~ 10" sec™ (for the order of energies involved) and the proper
frequency #/Mr*: (=~10* sec™®) of the particle oscillating inside
the nucleus. Hence, the factor by which we have to multiply (44)
in order that we may obtain the number of transmutations is given
by
*2
o g (48)

The total number of transmutations occurring in unit volume and
in unit time is therefore given by®

NN,

24/3404/3 h’“(Z;Zzez)’/““r*zI‘», <M1 + M, 1/38_3(22 ( )
31/2 (kT)z/3 Al“]u'2 . 49

Having thus settled as to when a synthesis (as distinguished from
a disintegration) can occur, we shall next consider the stability of
the nuclei synthesized by proton captures. We shall now have to dis-
tinguish between stable nuclei and those which are 38 active; S-decay
of the unstable nucleus can consist either in the emission of electrons
(B~-decay) or positrons (8+-decay). Remembering that, according
to current views, the nuclear constituents are protons and neutrons,
we shall have Z-protons and (4-Z) neutrons in a nucleus of charge
Z and mass 4. We shall now state the following rule:

Stable nuclei are those in which the number of protons in the
nucleus is equal to, or 1 less than the number of neutrons, according
as the mass-number 4 is even or odd. All other nuclei are unstable;
nuclei with an excess of protons being 8+ active and those with an
excess of neutrons being 8~ active.

When some stable nuclei capture protons, they emit a-particles.
Thus,

1Li + iH — 24He,
B+ 1H — tHe + $Be (50)
BN+ 1H — 3He + "2C .

8 See a paper by G. Gamow and E. Teller (Pkys. Rev., 53, 608, 1938) that has since
appeared. Gamow and Teller have in addition considered ‘“‘resonance penetrations”
and indicate the importance of the consideration of such processes.
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In the boron-proton reaction the final nucleus 8Be (which is general-
ly left in an excited state) disintegrates almost immediately into two
a-particles.? It will be noted that in all the foregoing cases we have
the formation of especially stable nuclei (4He, *2C), in which the
number of neutrons and protons are equal. It will be found that by
proton captures we cannot have a further synthesis of elements
“over” these nuclei. On the other hand, if the capture of a proton by
a stable nucleus leads to an intermediate nucleus which, according to
our energy criterion, cannot emit an a-particle, then we will have the
synthesis of a nucleus of a higher atomic number which will be g+
active. We shall, however, see in (2) below that these 8+ active
nuclei can be “stepping-stones’ for the synthesis of still higher mem-
bers of the periodic table.

It follows from what we have said that by successive captures of
protons we cannot (under stellar conditions) have the synthesis of
nuclei heavier than, say, oxygen. This is so for two reasons, both of
which work in the same direction. First, by successive proton
captures we are led (according to our stability criterion) to the syn-
thesis of nuclei which will be more and more 8t active. Second, the
increasing nuclear charge will decrease exponentially the probability
of a proton penetrating the nucleus (because of the factor {exp —
constant [Z2Z2/T]*/3} in [44]). Since, for a further synthesis over
a 8" active nucleus, the proton will have to be captured before the
B*-decay, it is clear that we shall soon come to a stage where the life-
time of the nucleus for 8+- decay becomes less than the mean inter-
val of time between two successive proton penetrations. This con-
dition clearly sets an upper limit to the atomic number of the ele-
ments beyond which a further synthesis by proton captures can-
not be possible. The actual point in the periodic table where further
synthesis by proton captures in effect ceases will be, however, very
much earlier, since a successful penetration does not (as we have
seen) imply a successful synthesis.

Summarizing, we can say that nuclear reactions involving proton
captures result essentially in an accumulation of the lighter nuclei
which (as we shall see in greater detail below) in turn act as
catalysts in the production of further a-particles. This, then, is the

9 See N. Feather, Nuclear Physics (Cambridge, England, 1936), p. 191.
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fundamental physical process which is effective as the source of
stellar energy.

(2) Nuclear transmutations by prolon captures as an autocatalytic
chain of cyclical reactions.—We shall now examine more closely the
actual nuclear reactions involving proton captures. Because of the
incomplete nature of our information concerning the masses of
some of the lighter nuclei, the following discussion (due to von
Weizsiicker) should be regarded as partly tentative. However, the
discussion discloses certain characteristic features which are likely
to survive in the future discussions concerning stellar energy.

The natural starting-point is clearly the consideration of nuclear
reactions in which both protons and a-particles are involved. At
this point we encounter a difficulty; laboratory investigations have
so far failed to disclose the existence of a nucleus of mass 5. Von
Weizsicker believed that the existence of {Li and $He could be con-
jectured. However, according to Bethe, the more recent experi-
ments on artificial disintegrations exclude more or less definitely
the possibility of a nucleus of mass 5.” In spite of this, we shall out-
line the nuclear reactions considered by von Weizsicker as illustra-
tive of the nature of such discussions.

Von Weizsicker considers two possibilities:

3L is B* active (1)
and
3Li is stable . (11)

Let us first consider case I. The course of the reactions to be de-
scribed can be followed by referring to Figure 37. The first nuclear
reaction is (1) 4He + IH = 3Li, which by hypothesis is % active.
We then have either (1.1) a 8+-decay of 3Lz, in which case we would
have $Li = {He + 38+, or (1.2) a further capture of a proton by
$Li before it decays; in the latter case we have $Li + ;| H = $Be, and
this nucleus (according to our stability criterion) must be strongly
B+ active. In case (1.r) the most probable reaction is (r.11)
SHe 4 1H = 4He + 2D. We see that we have now completed a
cycle. The a-particle with which we started has been recovered, and
the whole cycle—(r), (1.1), (1.11)—can now be repeated; the net

10 See, however, reference 20 in the Bibliographical Notes (p. 486).
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result of each cycle is that a deuteron and a positron™ have replaced
two protons. The helium thus acts as a catalyst in this cyclical
chain of reactions. We shall postpone consideration of the part
which 2D plays in further reactions and return to the case (r.2).
Here we again have two possibilities: either (z.21) the 8+-decay of
®Be takes place before a proton capture (resulting in the formation
of the stable isotope $LZ of lithium) or (1.22) a proton is captured
by $Be before the +-decay (in which case we have the synthesis of
B, which must be strongly 8% active). In case (z1.21) the further
capture of a proton by $Li will result in (z.211) $Li 4 'H =
4He + 3He. Again a cycle has been completed; the a-particle with
which the chain of reactions—(1), (1.2), (1.21), (1.211)—started has
been recovered, and the three protons which took part in the re-
action chain have been replaced by 3He and a positron. We shall
consider the further reactions in which $He is involved a little later;
but, returning to case (1.22), we can assume that 7B is so strongly
B+ active that we effectively have only one possibility, namely,
(1.221) (the B*-decay of 1B to 7Be, which must also be ¥ active).
With 7Be we again have the two possibilities: (r.2211) the 8*-decay
of 7Be to the stable }Li, and (1.2212) the capture of a proton by 7Be
(before B+-decay) to form the B+ active 2B. In the case (1.2211) the
further capture of a proton will result in (z.22111), the disintegra-
tion of }L: into two a-particles. At this point another cycle has
been completed. We note, however, that at the end of this cycle
we have two a-particles for every one with which the cycle—(1),
(1.2), (1.22), (1.221), (1.2211), (1.22111)—started. In other words,
the cycle which we have just considered can be called (in the lan-
guage of chemistry) an “autocatalytic cycle,” since the net result
of the cycle is to increase the amount of the catalytic agent (4He)
present. In the case (z.2212) the B*-decay of 8B will lead to the
stable (or weakly a active) 2Be. The latter, on capturing a proton,
will form the B+ active ¢B, which after its B*-decay will result in
the formation of the stable 9Be. Finally, the most probable reac-
tion, which would result on 9Be capturing a proton, will be its dis-
integration into two a-particles and a deuteron. Another auto-

i The positron would later combine with an electron and emit two y-rays.
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catalytic cycle has ended. It is important to notice that again we
have the formation of deuterons.

We have yet to consider the further reactions in which {He and
2D are involved; but before doing so, we may note that if we con-
sider case II (where $Li is assumed to be stable), the whole se-
quence of the reaction chains is exactly the same as in case I, except
that the first cycle—(1), (1.1), (7.11)—does not exist for case IL.
This results in one important difference between the two cases:
if $Li is B* active, we have the formation of deuterons at an early
stage in the reaction chains, whereas they appear at a relatively later
stage in the sequence of the reaction chains if L is a stable nucleus.

We have considered the reaction chains among the lighter nuclei
up to the synthesis of a stable isotope of beryllium mainly for the
reason that, if $Li should be stable, then precisely at this point do we
have the formation of deuterons; as we shall presently see, the
production of deuterons is important in the further development of
the von Weizsicker theory. There is, however, not much point in
continuing the reaction chains to include formally the synthesis of
the higher members of the periodic table, as we have already ex-
plained (toward the end of [1], above).

We shall now consider the reactions in which 3He and 2D take
part. If 3He is B+ active it would be trancformed to {7. It can also
capture a proton and synthesize what must certainly be strongly
Bt active, namely, 4Li (which, after its *-decay, will result in the
formation of 4He).

As for the deuterons, since the probability of the capture process,

2D + H — 3He (4)

(with 3He following the chain of reactions already described), is
probably very small, we must also consider deuteron-deuteron re-
actions:

iD+1D = 3He+on (BI)
and

iD+1D

T+ 1H . (BII)

The reactions BI and BII are the most efficient artificial transmuta-
tions that have so far been effected in the laboratory; we can esti-
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mate the capture cross-section for BI and BII to be about 105 times
the capture cross-section for A. It is probable that, except in the
earliest stages in the history of a star, deuterons are more than 1075
times as abundant as protons, so that the reactions BI and BII
become more important than A. We thus see that in the reaction
cycles going on among the lighter nuclei we have found a process
which will serve as a source of neutrons, the need for which we have
already explained in § s.

We thus see that the characteristic features of the nuclear reac-
tions we have considered are (1) the nuclear reactions go in cycles;
(2) in the cycles the a-particles play the part of catalytic agents,
some cycles being even autocatalytic; (3) the reaction chains lead
at some point to the production of deuterons; (4) the deuterons, if
more than 1075 times as abundant as hydrogen, will serve as a source
of neutrons. These are the essential points in von Weizsicker’s
discussion.

In order to simplify our discussion we shall, following von Weiz-
sicker, consider the following model reaction chain:

H + 4He = 3Li,
$Li = iHe + 87, (s1)
SHe + (H = 4He + iD,
and
D+ 1D = iHe + in; iD+3iD = 3T+ iH. (52)

3He and T again lead to the formation of a-particles.

(3) Synthesis of the heavy elements by neutron capture.—Our dis-
cussion in (2) has brought out clearly the inadequacy of transmuta-
tions involving proton captures for the purpose of synthesizing the
heavy nuclei. As we have seen, we must look for the synthesis of
the heavier nuclei in transmutations involving neutron captures; for
this purpose we need a continuous supply of neutrons. We have
already shown that the reaction chains among-the lighter nuclei do,
in fact, include nuclear reactions (if the deuterons are more than
10 as abundant as hydrogen) which will serve as a source of neu-
trons. But before we can be sure that the neutrons do synthesize
the heavy nuclei, we should make certain that the neutrons are, so
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to say, not wasted by recombining with protons to form deuterons.
The deuterons thus formed may again produce neutrons, but it is
clear that for each such cycle there will be a reduction of the neu-
trons by a factor of 4. However, there is no very great danger of
this happening, for the capture of neutrons by atomic nuclei takes
place by what is called a “quantum mechanical resonance”; if the
incident neutron has an energy nearly equal to an energy level for
the neutron inside the nucleus, then we have a kind of “‘resonance”
which makes the transition probability for the neutron penetrating
the nucleus especially large; further, the energy levels for the neu-
trons inside the heavier nuclei lie very close together—it is this last
circumstance which makes the capture of neutrons by the heavy
nuclei relatively easy. However, the energy levels of the neutron
inside a 2D nucleus rapidly become spaced farther and farther apart;
and (according to von Weizsicker) in the energy range for the
neutrons corresponding to thermal energies in stellar interiors there
are very few resonance levels. This would make the capture cross-
section for the neutron-proton reaction very small compared to what
it is for the heavier nuclei. It thus seems safe to conclude that the
neutrons produced in the deuteron-deuteron reaction will be avail-
able for the synthesis of the heavier clements.

There is one further point which should be mentioned, namely,
that the liberated neutrons will soon attain thermal energies cor-
responding to the temperatures in the stellar interiors. The phenome-
non we encounter here is essentially the same as that which has
been found in laboratory experiments in which a block of paraffin
slows down high-energy neutrons so quickly that they very soon
attain the thermal energies corresponding to the room temperature;
also stellar material with its abundance of hydrogen is, with respect
to its stopping power of the neutrons, not very different froma
paraffin block. To avoid misunderstanding, it should be stated that
there is no contradiction here with our earlier remarks that the
capture cross-section for the neutron-proton reaction is small com-
pared to that for reactions with the other elements; for the probabil-
ity of elastic scattering is more than one hundred times the cor-
responding probability for the synthesis of a deuteron.

The synthesis of the heavy elements being thus made plausible,



480 STUDY OF STELLAR STRUCTURE

we may note the physical factors which would govern such trans-
mutations: (1) the rate at which the neutrons are liberated, and (2)
the density of the resonance levels for the nucleus concerned in the
energy range of the neutrons corresponding to the temperatures in
stellar interiors.

RaA3m

ThAi0s

6

Pl /
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82 83 84

Z —

o Stable nucleus o Radioactive nucleus

Fic 38 —The synthesis of the heavy elements over lead (Z=82)

We now come to what is perhaps a difficulty in the von Weiz-
sicker theory in its present form. If we assume that all the heavy
elements are synthesized at present in stellar interiors, we shall see
that the rate at which neutrons should be captured by the heavier
nuclei must be extremely rapid. Consider, for instance, the syn-
thesis of the elements above lead and bismuth (see Fig. 38). In
this region of the periodic table we have the elements of atomic
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number 84 (the C’-products) which are extremely o active and
which on a-disintegration result in the isotopes of lead. These C'-
products have half-lives with respect to a-decay which are extremely
short (the half-lives are noted in Fig. 38). In order, then, to synthe-
size Th and U, it is clear that we must have neutron captures in
such quick succession that we can go forward in the synthesis
processes in spite of the decay which is taking place all the time. The
synthesis will first continue along the sequence of the isotopes of
bismuth (Z = 83, C-products). The most difficult “barrier”” here is
RaC, which is B active with a half-life of 20 minutes—RaC on g-
decay goes over into RaC’, which in 107 sec will go over into RaD
(an isotope of lead) on a-disintegration. Further, the isotopes of
bismuth with masses greater than RaC (i.e., greater than 214) must
be all 8 active with much shorter lives than RaC. It is thus clear
that RaC should capture four successive neutrons (all consecutively)
before any B-decay occurs, in order that the 8 active isotope of
bismuth with mass 218 may, on its 3-decay, result in the synthesis
of RaA, the lifetime of which for a-decay can be measured at least
in minutes. We thus see that for the synthesis to go forward from
lead it is necessary that the neutrons be captured at a very rapid
rate; also, we cannot allow the mean interval between successive
neutron captures to be less than, say, 1 minute. It is only then that
we can have for instance the synthesis of uranium. Von Weizsicker
points out that this need for a very rapid succession of neutron
captures cannot be an exception, in so far as uranium and thorium
are not much less abundant than lead. It should be mentioned,
however, that for the synthesis of the “moderately’’ heavy elements
we should very probably not need so rapid a reaction-rate.

There are various problems suggested by the conclusions reached
above. We shall consider some of them in (4) below, but we,may
note here that precisely the extreme a-activity of C’-products will al-
low a more or less straightforward explanation of the relatively large
abundance of lead. Indeed, proceeding on similar lines, von Weiz-
sicker has examined the abundance of the different elements from
the present point of view in some detail; he believes the possibility
of the present scheme being sufficient (at least as a working basis)
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for a complete understanding of the general (Z, abundance) rela-
tion.” We shall not, however, go into these matters further here.

(4) Astronomical implications—So far we have been concerned
with general ideas; it now remains to examine the astronomical
implications of the von Weizsicker theory which we have described.
There are a great many details that remain to be worked out, but
we shall consider only two definite consequences of the theory.

i) The helium content of the stars.—If we consider the model
process (51) and (52), we see that the mass of helium that is formed
at the end of each cycle is much greater than the mass of the neu-
trons liberated. We can formally combine equations (51} and (52)
and write

2!H + 4He = iHe + D, (53)
D = i[on + 3He + 3T + H], (54)

and
tBHe + 3T + 2 1H] = §[4He] . (55)

Combining the foregoing, we have

4 proton — % a-particle + % neutron. (56)

Thus, as the net result of a complete autocatalytic cycle correspond-
ing to the model process, we have the liberation of one neutron for
every two a-particles synthesized; in other words, the mass of
helium synthesized is eight times the mass of the neutrons liberated.
Now according to our discussion in (3) above, it is the neutrons
which synthesize the heavier nuclei; we can therefore say quite
roughly that the mass of all the elements (other than helium)
synthesized will be equal to the mass of the neutrons liberated. We
thus see that an immediate consequence of the theory is that the
stars should contain a relatively high abundance of helium; in-
deed, according to the theory, we can expect helium to be as much
as (at least) eight times as abundant as the “metals.” This is an
astronomical prediction which should be capable of verification. In

2 Von Weizsicker has since abandoned this hope. See the Bibliographical Notes
(ref. 19) at the end of the chapter.
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chapter vii, § 9, we have already referred to Stromgren’s investiga-
tion of the helium content of the stars from the point of view of the
mass-luminosity-radius relation. From the discussion (see especial-
ly Table 16), Stromgren concludes that the hydrogen-helium-
Russell mixture hypothesis is “‘compatible with the observed
masses, luminosities, and radii of the stars.” This, then, can be re-
garded as supporting von Weizsicker’s theory in a general way.

ii) The role of convection currenis—According to the transmuta-
tion hypothesis of the origin of stellar energy, the rate of generation
of energy will be given by a law of the type (46). Now a law of this
type implies such a sensitive dependence of € on T that we should
expect the point-source model to be a suitable idealization for de-
scribing the structure of stars.

Since the nuclear transmutations among the lighter nuclei form
an autocatalytic chain of reactions in which each cycle results in
increasing the abundance of the lighter elements in some definite
ratio, it is clear that the abundance of the lighter elements should
increase exponentially with the number of cycles. If we consider
the sun, the 105 protons which it would contain if it were all hydro-
gen would all be used up after about 200 cycles, which then is the
upper limit to the number of cycles that could have occurred in the
sun. Now in each cycle the neutrons liberated have a mass of  (see
Eq. [56]), so that an average nucleus cannot have captured more
than 50 neutrons. On the other hand, we have seen in (3), above,
that for the synthesis of the heavy elements the neutrons should be
captured at a very rapid rate—in fact, about once a minute. It is
thus clear that the effective mass of the star which can, at a given
instant of time, take part in the nuclear reactions must be extremely
small. We have, therefore, to postulate that there exist convection
currents and that, further, they succeed in effecting a continuous
interchange of matter between those regions in which the nuclear re-
actions are taking place and the other parts of the star. There is,
of course, no difficulty in admitting convection currents—indeed,
from our discussion in chapter vi, § 2, it follows that in the point-
source model the radiative gradient must necessarily become un-
stable in the central regions. But if there is convection, then, we
should expect the currents to produce a more or less uniform condi-
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tion over an appreciable volume in the neighborhood of the center,
and it is difficult to see how we can succeed in confining the regions in
which the nuclear reactions are supposed to take place to an ex-
tremely limited volume which the von Weizsicker theory in its
present form requires. It will have to be borne in mind in this con-
nection, that we do not yet have a satisfactory method of dealing
with problems involving convection currents. It is not suggested
that tHese difficulties cannot be overcome, but they are problems
for future investigations. This is perhaps an unsatisfactory state in
which to leave the subject, but the object of devoting this amount of
space to the von Weizsicker theory is not because it is, as yet, a fully
developed theory but because it introduces some ideas which are
of general importance. There is still a variety of other problems
(e.g., stability) that can be discussed in this connection, but they
are all beyond the scope of this monograph.

BIBLIOGRAPHICAL NOTES

I. H. von Helmholtz announced his estimate of the time scale on the contrac-
tion hypothesis and suggested the meteoric theory of the origin of solar radiation
at a popular lecture delivered at Kénigsberg on the occasion of the Kant com-
memoration in February, 1854. But Kelvin showed that “neither the meteoric
theory of solar heat nor any other natural theory can account for the solar radia-
tion continuing at anything like the present rate for many hundred millions of
years.”’

Lord Kelvin’s contributions are:

1. Lorp KELVIN, Brit. Assoc. Repts., 1861, Part 11, pp. 27-28 (reprinted in
his Collected Papers, s, 141-144).

2. Lorp KELvIN, Les Mondes, 3, 473-480, 1863.

In a popular lecture delivered in 1897 Kelvin gives a most attractive account
of his ideas on the time scale. See—

3. Lorp KEeLvIN, Collected Papers, s, 205-230.

IL. For general information on nuclear physics the following references may
be given:

1. N. FEATHER, Nuclear Physics, Cambridge, 1936.

2. F. RasEr11, Elements of Nuclear Physics, New York: Prentice Hall, 1936.

3. G. Gamow, Structure of Atomic Nuclei and Nuclear Transformations, Ox-
ford, 1937.

4. C. F. voN WEIZSACKER, Die Atomkerne, Leipzig, 1937.

5. H. A. BETHE and OTHERS, Revs. of Modern Phys., 8, 82, 1936; 9, 69, 245,
1037



STELLAR ENERGY 483

Transmutation of elements as the source of stellar energy was suggested by—

6. A. S EDDINGTON, Brit. Assoc. Repts., 1920, D. 45.

7. J. PERRIN, Rev. du mois, 21, 113, 1920.

8. W. D. Harkins and E. D. WiLsoN, Phil. Mag., 30, 723, 1915.

After the discovery of the theory of a-decay by Gamow and by Condon and
Gurney, the transmutation of elements arising from proton captures was con-
sidered by—

0. R. ’E. AtkinsoN and F. G HouTeErMANS, Zs. f. Phys., 54, 656, 1929.

Further elaborations of the ideas contained in the paper of Atkinson and
Houtermans are contained in—

10. A. H. WiLson, M.N., 91, 283, 1931.

11. G. STEENSHOLT, Zs. f. Ap., 5, 140, 1032.

Further developments are contained in

12. R. I’E ATKINSON, 4p. J., 73, 250, 308, 1031.

At the time of Atkinson’s work (ref. 12), nuclear physics was in too rudimen-
tary a stage, and consequently many of Atkinson’s ideas have either been super-
seded or have to be reinterpreted.

The general theory described in § 5 is due to—

13. C. F. voN WEI1zSACKER, Phys. Zs., 38, 176, 1937.

For a general account of von Weizsicker’s work see—

14. B. STROMGREN, Erg. exakt. Naturwiss., 16, 465, 1935—particularly pp.
519-529.

The problem of the helium content is also examined in reference 14.

The following investigations have appeared since the writing of the mono-
graph:

15. G Gamow and E. TELLER, Phys. Rev., 53, 608, 1938.

16. G. Gamow, Phys. Rev., 53, 595, 1038.

In references 15 and 16 it is shown that resonance penetrations of charged
particles can be of great importance if there are low-lying nuclear energy-levels
(with excitation energies of the order of 10 kilovolts).

17. H. BETHE and C. H. CriTcHFIELD, Phys. Rev., 54, 248, 1938.

In reference 17 it is shown that the reaction }H + 1H = 2D 4 ¢t can occur
at quite appreciable rates under the conditions of the stellar interiors; indeed,
the authors show that this reaction is sufficient to account for the energy genera-
tion in the sun.

18. G. Gamow, Zs f. Ap., 16, 113, 1938. This paper contains an attractive
summary of the present state of the theories of the origin of stellar energy.

During the proof stage of this chapter another paper by von Weizsicker has
been received which carries somewhat further the discussion in reference 13.

19. C. F. voN WEIZSACKER, Phys. Zs., 39, 633, 1938.

In this paper von Weizsicker believes that the difficulties mentioned in § s
(pp. 481 and 483) are so serious that they require the abandoning of the hy-
pothesis made at the beginning of § 5 (p. 469). Von Weizsiicker now proceeds
on the basis of the alternative (c) mentioned on page 469.



486 STUDY OF STELLAR STRUCTURE

Also, the possible nonexistence of an atomic nucleus of mass 5 requires the
consideration of other types of nuclear reaction chains. Von Weizsicker (and
also Bethe) now suggest the following chain of reactions in which carbon plays
the role of a catalyst:

CHM =UN; N =C Bt
?C +:H =N,

SN +H =7%0; (0 = %N 4 *,
SN +1H = 4C + 4He .

Gamow has since come to the conclusion that the foregoing chain of nuclear
reactions represents the fundamental physical processes which serve as the pri-
mary source of stellar energy for the stars on the main series.

A still later paper by Joliot and Zlotowski appears to establish experimen-
tally the existence and stability of $He.

20. F. Joliot and I. Zlotowski, Jour. d. Phys. 9, 403, 1938 (December).



APPENDIX I
PHYSICAL AND ASTRONOMICAL CONSTANTS

TABLE 32
Number Logarithm
Velocity of light (cm/sec)......................: ¢ | 2.9978X10% 10.4768
Electronic charge (€s.u.) ........ovvineiiaa.as e| 4.801 Xio™® 10.6813
Electronic mass (gm)............cocooiuiei... me | 9.105 X107 | 28.9503
Mass of the proton (gm)....................... H | 1.672 X167 24.2232
Mass of the hydrogen atom....................... 1.673 X102 24.2235
Planck’s constant (ergsec)...................... k| 6.62 X107 27.8509
Boltzmann’s constant. . ............. ... k| 1.379 X107 16.1396
The gasconstant. . ..............coovenvnnn. k/H | 8.24 X107 _7.9161
The Stefan-Boltzmann constant....a = 8u—5k4/(x sc3hd | 7.55 X107 15.8779
The unrelativistic degenerate constant ,
5/2 — L (i 23k 12
Kyl 7o ‘ﬂ_) pongy - TF) 9.91 XI1o 12.996
The relativistic degenerate constant
Kuts = L(BYPH | | ot o | x
w3 =3\2) s | 128 X 5.090
The constants of the equation [ A = amgcs/3hs . 6.0o1 Xr1o% 22.779
of state of a degenerate gas \ Buz* = 8wmic3H/3h3 | 9.82 X10s 5.992
The Rydberg constant for infinite nuclear mass. . . R [ 1.098 X108 5.0406
The constant of gravitation (dynes cm?/gm?)...... G| 6.67 Xio# 8.8241
The mass of thesun (gm)...................... © | 1.985 X103 33:2978
The radius of thesun (cm) ................... Ro | 6.951 Xio™ 10.8420
The luminosity of the sun (erg/sec) ............ Lo | 3.780 X1o33 33-5775
The absolute bolometric magnitude of the sun....... +44.63 ...
The mean density of thesun .................. Po | 14109 0.1495
. 24\ L2 1
The unit of length (cm)......... Lipe = s 5| 77 X108 8.887
The limiting mass (gm) ,
A\ 3/21 dé. 1.142 X103
Mul = — <2_> _<2_3> .058
ske \x6) B\Fa)n| (=5.750) 34:95
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APPENDIX II
THE MASSES OF THE LIGHT ATOMS

TABLE 33*
Prob- Prob-
Atom Masst |22l | seability Atom Masst | 2Bl | seability
X105 X108
€. ........ 0.00055 [ P “B..... 12.019 70 | B~ active
%C..... 11.01526 | 35 | B* active
m....| 1.0c897 6 | B~ active 2C..... 12.00398 | 10 | stable
H...| 1.00813 2 | stable 3C..... 13.00761 | 15 | stable
(D) iH...| 2.01473 2 | stable 4C..... 14.00767 | 12 | B active
(T) iH...| 3.o1705 7 | stable “N....| 13.01004 | 13 | B+ active
ie...| 3.01707 | 12 | stablet UN....| 14.00750 8 | stable
:He...| 4.00389 7 | stable BN....| 15.00480 | 20 | stable
$He...| s5.0137 40 | n§active “N....| 16.011 200 | B~ active
®He...| 6.0208 50 | B~ active %0..... 15.0078 40 | B+ active
SLi. 6.01686 | 20 | stable %0..... 16.00000 | o | stable
L. 7.01818 | 18 | stable 0..... 17.00450 7 | stable
8L, 8.025 100 | B~ active 20..... 18.00369 | 20 | stable
®Be. 8.00792 | 28 | aactive(?) YF..... 17.0076 30 | B* active
iBe...| ¢.o1504 | 25 | stable BE..... 18.0056 40 | B* active
“Be. 10.01671 | 30 | B~ active WE..... 19.00452 | 17 | stable
%B....| 10.01631 | 25 | stable BF.. 20.007 250 | B~ active
nB.. 11.01292 17 | stable

* The values given in this table are taken from a paper by H. Bethe (Rev. Mod. Phys., 9, 373, 1937).

t To obtain the nuclear masses, the masses of the appropriate numbers of electrons should be subtracted
from the values given.

1 This nucleus will probably absorb a free electron and go over into .

§ More recent experiments by Joliot and Zlotowski seem to indicate that $He is stable.
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THE MASSES, LUMINOSITIES, AND RADII OF THE STARS
DERIVED HYDROGEN CONTENTS; CENTRAL DEN-
SITIES; AND CENTRAL TEMPERATURES

TABLE 340*
VISUAL BINARIES
Star Log M Log L Log R Xot Log pc 1—8 Log T,
Sun......... 0.00 0.00 o.co| 0.36 1.88 | o0.003 7.29
nCasA....... — .14 | —0.09 | —0.09 | ©0.25 2.00 003 | 7.32
B....... — .33 | —1.16 | —0.25 | [0.34] [r.29]] [.o01]| [7.25]
EriC....... — 70| —1.06 | —0.37 |
aAurA....... + .62 | +2.08 | 41.20 .30 —1.10 051 6.71
....... + .52 | +1.90 | +0.82 .30 —0.06 .033 | 6.99
aCMaA...... + .37 | +1.50 | +o0.25 .36 1.50 013 7.39
aCMi A...... + .17 | +0.76 | +0.23 .31 1.37 .007 7.25
tUMaA...... + .41 | +1.48 | +0.28 .45 1.45 o010 | 7.34
aCenA....... + .04 | +0.10 | +0.09 .36 1.66 003 | 7.23
....... — 06| —0.43 | —0.06 | { .43] [2.00]| [.002]| [7.25]
tBooA....... — 06| —0.32 | —0.06 | [ .39] [1.98]| [.002]| [7.29]
....... — .12 | —0.83 | —o.10 | [ .48] [2.07]] [.o01]| [7.21]
¢HerA.......| — .02 | +o.50 | +0.29 .12 0.99 cot1 | 7.13
—8°4352_£B ..... — 45| —1.40 | —o0.12 .20 1.79 .001 7.09
wHer BC..... — .35 —1.37 | —o.10 | [ .30] [1.85]| [.o001]| [7.10]
700ph A....... — .05 | —0.38 | —o.03 | [ .42] [r.93]| [ .002]| [7.24]
B....... — .13 [ —0.86 | —0.16 | [ .50] [2.22]| [ .o0o1]| [7.25]
Kr.6oA........ —o0.60 | —1.77 | —o.29 | [o.19] [2.15]] [o.009]| [7.15]

*In these tables L, M, and R are expressed in the corresponding solar units.
t These values were supplied by B. Strémgren. Those given in [ ] brackets are for stars too dense for

the theory of chap. vii to be applicable with reasonable certainty.

* The data used in chaps. vii, viii, and xi will be found, occasionally, to differ slightly
from the values given in this Appendix. The values given here correspond to Kuiper’s
final revision of the observational material and are taken from Ap. J., 88, 472, 1938.
For the data for the stars of the Hyades cluster see Table 15, p. 287.
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TABLE 34b
SPECTROSCOPIC BINARIES*
Star Log M Log L Log R
Castor Cr.......... —o0.201 —1.16 —o.18
Coovvvnnnn —0.247 —1.24 —0.22
BAur A.......... +0.378 | +1.83 +0.43
B........... +o0.370 | +1.83 +0.43
mSco AB......... +1.004 | +3.35 +o0.73
V Pup AB......... +1.265 +3.86 +0.83
YCyg AB......... +1.238 | +4.51 +o0.77
AoCas A........... +1.634 | +5.97 +1.36
B........... +1.582 +5.58 +1.23
29 CMaA........... +1.66 +5.84 +1.31
B........... +1.53 +5.39 +1.13

* The values of X, for B Aur A and B are (according to Stromgren)
o.zg and o.23, respectively. The corresponding values of (1 ~ 8) are 0.022
gn 0.023. The central temperature for both stars is about 19 million

egrees.

For the other stars in this table the theory of chaps. vi and vii cannot
be applied with reasonable certainty (cf. chap. viii, §§ 6 and 7).

TABLE 34c
TRUMPLER’S STARS

Star Log M Log L Log R Q*

NGC 2244, 15 . ............ .. 1.76: 5.49 0.66 3
8 1.99 4.69 0.86 2

NGC 2264,60................. 2.18 5.33 0.82 I
NGC 2362, 1................. 2.47 5.73 1.28 4
NGC6871, 2................. 2.35 5.33 1.18 6
St 2.60 5.01 1.22 5

NGC 7380, v................. 1.89 4.89 0.96 7

* The order of reliability of the measured red shifts according to a private communica-
tion from Dr. Trumpler.

TABLE 344
WHITE DWARFS

Star Log M Log L Log R
SiriusB............. —o0.01 —2.52 —1.71
oEriB............ — .35 —2.25 —1.74

Van Maanen No. 2...| —4o0.53: —3.85 —2.05




APPENDIX 1V
TABLES OF THE WHITE-DWARF FUNCTIONS

In the following tables (35-44) the solutions of the differential

equation
1 d qu) ( 1)3/’
—_— 2 = — 2z — — , )
n* dy (" dn A ()

for different values of 1/y2 and satisfying the boundary conditions

d
=1, d—;f=o (1=0), (2)

are given. In addition to the function ¢ and its derivative ¢’, cer-
tain other auxiliary functions are also tabulated. The quantities
0/ Po, Po/B(n) and —n?¢’ describe the physical structure of the com-
pletely degenerate configurations (see chap. xi, Eq. [83]).
Regarding the accuracy of the tables, it might be stated that
errors exceeding three to four units in the last figures retained are
not expected. The quantities ¢ and ¢’ have been checked by differ-
encing. These tables of the white-dwarf functions (computed by
Chandrasekhar) are published here for the first time.
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TABLE 35
I
- = o0.0I
0

7 ) p/po —¢’ po/B(n) —n%p’
o.... 1 1 o 1 o
o.1. 0.998361 0.995041 0.032737 1.00299 ©0.00033
0.2, 0.903472 0.980348 064802 1.01197 0.00260
0.3. 0.985420 0.956463 .095910 1.02704 ©0.00863
0.4. 0.974345 ©0.924245 .125284 1.04832 0.0200§
0.5. 0.960433 0.884805 .152576 1.07600 0.03814
0.6. ©.943011 0.830435 .177433 I.11032 0.06388
0.7. ©0.925036 0.789525 .199501 1.15156 0.09780
0.8. 0.904088 0.736480 .218883 1.20008 0.14009
0.9, 0.881358 0.681653 .235231 1.25626 0.19054
1.0. 0.8s57140 0.626289 .248642 1.32055 0.24864
1.1, 0.831725 ©0.571479 .259195 1.30347 0.31363
I.2. 0.805302 0.518140 .207030 I.47555 0.38452
1.3. 0.778403 0.467004 .272331 1.56739 0.46024
1.4. 0.751003 0.418618 .275316 1.66066 0.53962
1.5. 0.723410 ©0.373303 .276221 1.78306 0.62150
1.6. 0.695820 0.331468 .275294 1.90833 0.70475
1.7. 0.668404 ©0.203033 .272780 2.04629 0.78834
1.8, 0.641308 0.258055 .268918 2.19778 o.87129
1.9. 0.614057 0.226449 .263932 2.36370 0.95280
2.0... 0.588552 o.198070 .258032 2.54500 1.0321
2.1... 0.56307s 0.172730 .251407 2.74267 1.1087
2.2... 0.53828¢ ©.150216 244227 2.95774 1.1821
2.3. 0.5Y4243 0.130299 .236642 3.19130 1.2518
2.4. 0.490970 ©.112749 228782 3.44446 1.3178
2.5. 0.468492 ©.097337 .220758 3.71838 1.3797
2.6. 0.446821 ©0.083844 212666 4.01428 1.4376
2.7. 0.425059 ©.072004 .204582 4.33338 1.4914
2.8, 0.405002 0.061804 .1960574 4.67697 1.5411
2.9. 0.386640 0.05288¢ .188692 5.04634 1.5869
3.0. 0.368158 0.045157 .180079 5.44283 1.6288
3.1. ©0.350437 0.038463 .173467 5.86781 1.6670
3.2. ©.333457 0.032080 .166181 6.32268 1.7017
3.3. ©.317193 0.0276g0 .150138 6.80884 1.7330
3.4. 0.301621 ©0.023392 .152340 7.32773 1.7612
3.5. 0.286714 0.019697 .145824 7.88079 1.7863
3.6. 0.272447 0.016524 .139565 8.469350 1.8088
3.7. 0.258793 0.013800 .133572 9.00532 1.8286
3.8. ©0.245724 0.011480 .127844 9.75970 1.8461
3.9 ©0.233215 ©.000494 .122375 10.4642 1.8613
4.0. 0.221240 0.007803 .117160 I1.210X 1.8746
4.1. ©0.200775 0.006366 LI12194 11.99Q% 1.8860
4.2. 0.198794 ©.005149 107400 12.8324 1.8957
4.3. 0.188274 0.004121 . 102970 13.71106 1.9039
4.4. 0.178192 ©.003257 098696 14.6380 1.9108
4.5. 0.168527 ©0.002534 .094636 15.6130 1.9164
4.6. 0.150258 0.001933 .0go781 16.6378 1.9200
4.7. 0.150305 ©.001437 .087120 17.7137 1.0245
4.8. 0.141828 0.001033 .083646 18.8419 1.9272
4.9. 0.133630 ©.000707 .080350 20.0235 1.0202
5.0. 0.125752 0.000450 .077224 21.2504 1.9306
5.1. 0.118179 0.000254 074258 22.5505 1.9315
5.2, o.110895 0.000112 L071447 23.8874 1.9319
F 2 P 0.103885 ©0.000023 0.068782 25.3000 1.0321

n = 5.3571.
d(m) =o0.1; —n3¢’'(n) = 1.9321,

—¢’(n1) = 0.067325 ;

Po/F = 26.203 .
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TABLE 36

I

= = 0.02

o

n ¢ p/po —¢’ po/5(n) —np’
[ P 1 o 1 o
0.T......uu.. 008385 0.995066 0.032243 1.00297 0.00032
0.2...icvnnn. .903571 0.980445 .063915 1.011Q1 0.00256
0.3cvnnin. .985640 0.956674 .004473 1.02691 0.00850
Ofevvvennnn. .974730 0.924600 .123419 1.04808 0.01975
0.5 ciniinn. .g61024 0.885322 .150324 1.07562 0.03758
06.......... 944745 0.840119 174838 1.10977 0.06294
0.7 vnnrrins 926145 0.790366 .196703 1.15081 0.09038
o8 . ....... .905408 0.737456 .215751 1.199I0 0.13808
0.0 e 883001 0.682736 231905 1.25502 0.18784
) - IR 859214 0.627441 245168 1.31903 0.24517
| 5 SUEN 834151 0.572660 .255616 1.39163 0.30930
T.2.000einen. .808180 0.519309 .263383 1.47337 0.37927
K FI 781558 0.468121 .268650 1.560486 0.45402
S 754526 0.419650 271626 1.66676 0.53239
| S P 727302 0.374279 .272546 1.77979 0.61323
1.6.......... . 700078 0.332245 .271650 1.90471 0.60542
| S S 673024 0.293653 .269179 2.04233 0.77793
1.8.......... 646287 0.258507 .265367 2.19353 0.85979
) s TP 619988 0.226726 .260438 2.35921 0.94018
2.0, 1504229 0.198171 .254506 2.54037 1.0184
2.1, ... .560093 0.172658 .248029 2.73801 1.0938
2.2 .544642 0.149976 . 240906 2.95321 1.1660
2.3 e 520025 ©.129901 .233374 3.18708 1.2345
2.4 497977 ©0.112204 .225504 3.44081 1.2002
2.5 i 475818 0.096657 217585 3.71560 1.3599
2.6.......... . 454462 0.083043 .200533 4.01272 1.4164
2.7 433911 0.071155 .201486 4.33348 1.4688
2.8 414162 o.060801 .193509 4.67923 1.5171
2.0 .. .395200 0.051804 .185655 5.05138 1.5614
3.0 .377026 0.044004 .177965 5.45134 1.6017
3.E. . .359606 0.037255 .170474 5.88061 1.6383
3.2 342924 0.031428 .163205 6.34067 1.6712
3.3 .326957 0.026406 .156176 6.83309 1.7008
34 .311680 0.022086 . 149401 7.35941 1.7271
3.5 00t . 297068 0.018379 . 142887 7.92125 1.7504
3.60......... 283004 0.015203 .136638 8.52020 1.7708
3.7 269732 0.012490 .130655 09.15788 1.7887
3.8 256954 o.o10178 .124935 9.83504 1.8041
3.Qceiinnn .244736 0.008214 .119476 10. 5560 1.8172
4.0 ... .233050 0.006551 .114273 11.3197 1.8284
4.1 ... 221873 0.005151 .109318 12.1286 1.8376
4.2, L21I1179 ©0.003976 . 104604 12.9842 1.8452
4.3t . 200044 0.002099 .100124 13.8882 1.8513
) SN .191146 0.002192 .095870 14.8410 1.8560
4.5 e 181763 0.001535 .091832 15.8467 1.8596
4.6.......... \172773 ©0.001008 .088002 16.9038 1.862r1
I N .164156 0.000597 .084372 18.0143 1.8638
4.8.......... .155892 0.000291 .080934 19.1791 1.8647
4.9 .147963 0.000085 0.077681 20.30984 1.8651
7 = 4.9857 .
#(m) = 0.14142; —mé'(m) = 1.8652,
—¢'(m) = 0.07504 ; Po/P = 21.486 .
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TABLE 37
= = 0.0
A 5

n ] p/po —¢’ po/3(n) —n'¢’
[ . I 1 o 1 o
O.X.......... 0.998459 0.995141 0.030775 1.00293 0.00031
0.2.......... 0.993863 0.980742 .o61014 1.01173 0.00244
0.3 ... 0.986291 0.957315 090205 1.02049 0.00812
(<20 S, 0.975873 0.925680 .117878 1.04735 0.01886
0.5 v, 0.962780 0.886897 .143628 1.07447 0.03591
0.6.......... 0.047222 0.842203 .167122 1.10811 0.06016
0.7 .. 0.920439 0.792933 . 188111 1.14854 0.09217
0.8 ... ..., 0.909689 0.740447 .200432 1.19613 0.13212
0.9..... ... 0.888244 0.686059 . 222005 1.25125 0.17982
I.0.......... 0.865380 0.630987 234825 1.31437 0.23483
I.I.......... 0.841369 0.576309 244958 1.38600 0.29640
I.2.......... 0.816474 0.522939 .252524 1.46670 0.36363
T.3...ooiee. ©.790944 ©0.471615 .257687 1.55709 ©.43549
T4, 0.7635010 0.422900 .260643 1.65785 0.51086
1.5 ..., 0.738882 0.377196 .261608 1.76972 0.58862
1.6.......... 0.712747 0.334753 . 260809 1.89348 0.66767
| S 0.686771 0.295699 .258474 2.03000 0.74699
1.8, 0.661006 0.260053 .254825 2.18019 0.82563
I.Q.c.iinn.. 0.635843 0.227753 .250074 2.34504 0.90277
2.0.... ... o.611111 0.198673 .244418 2.52557 0.97767
2. 0.0, 0.586083 0.172644 .238040 2.72291 1.0498
2.2, 0.563522 0.149465% .231100 2.93823 1.1185
2.3 0.540777 0.128920 .223746 3.17276 1.1836
2. 4.0 0.518783 0.110786 .216102 3.42781 1.2447
2.5 . ©0.497563 0.094840 .208279 3.70475 1.3017
2.6.......... 0.477130 0.080867 200369 4.00503 1.3545
2.7 0.457489 0.068663 .102452 4.33017 1.4030
2.8 ... 0.438637 0.058035 .184593 4.68173 1.4472
2.9l 0.420567 0.048807 .176845 5.00137 1.4873
3.0.......... 0.403263 0.040817 .169252 5.47081 1.5233
k2% SO, 0.386710 0.033919 .161847 5.91181 I.5554
3.2l 0.370886 0.027980 154658 6.38621 1.5837
3.3 0.355770 0.022884 147702 6.89590 1.6085
3.4, 0.341338 0.018525 . 140995 7.44284 1.6299
3.5, 0.327563 0.c14812 .134548 8.02889 1.6482
3.6.......... 0.314419 0.011664 .128363 8.65616 1.6636
KT S, 0.301881 0.009009 122446 9.32659 1.6763
3.8.......... 0.289921 0.006787 .116794 10.0421 1.6865
3.9, 0.278513 0.004044 .111407 10.8048 1.6045
4.0.... ... 0.267631 ©0.003435 .106282 11.6162 1.700§
4.1 0. 0.257248 0.002222 .I01414 12.4782 1.7048
4.2.......... ©.247340 0.001276 096708 13.3920 1.7075
4.3, 0.237881 0.000577 002430 14.3588 1.7090
4.4 0.228846 0.00012§ ©.088306 15.3789 1.7096

Mm = 4.4601 .
¢(m) = 0.22361; —ni¢'(n) = 1.7006,
—@'(n) = 0.08504 ; po/P = 16.018 .
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TABLE 38

1

— = 0.1

o

n ¢ p/poe —e’ po/p(n) —n7p’
O veiiian 1 I [ 1 o
(-3 S 0.998579 0.995270 0.028380 1.00285 0.00028
0.2 0ciinnnn. 0.094340 0.978615 .056278 1.01142 0.00225
0.3 s, 0.987355 0.958409 .083235 1.02579 0.00749
Odvuennnn. 0.977739 0.927526 .108826 1.04609 0.01741
0.5 e, 0.965647 0.889596 132683 1.07250 0.03317
0.6.......... ©0.951270 0.845787 .154500 1.10526 0.05562
0.7 ciiininnn 0.034823 0.797368 .174047 1.144065 ©0.08528
0.8, ... ... 0.916542 0.745636 191166 1.19102 0.12235
0.0 .. 0.896674 0.691858 .205776 1.24478 0.16668
1.0 . ocunnn. 0.875471 0.637216 217861 1.30636 0.21786
| 7 SO 0.853184 0.582768 .227469 1.37630 0.27524
| S T 0.830056 0.520422 .234701 1.45516 0.33797
| S P 0.806319 0.477922 .239694 1.54358 0.40508
) S 0.782186 0.428800 . 242621 1.64226 0.47554
b S 0.757857 0.382631 .243672 1.75198 0.54826
1.6.......... 0.733508 0.339545 .243050 1.87356 0.62221
) S8 2 0.709296 0.299748 . 240960 2.00792 0.69637
1.8, 0.685358 0.263292 .237606 2.15605 0.76984
I.Q9ieeiinn. 0.661810 0.230143 .233182 2.31900 0.84179
2,00, 0.638751 0.200202 227874 2.49792 0.91149
2. 0.0 0.616260 0.173321 221849 2.69405 0.97835
2.2 0.504400 0.140320 215262 2.90869 1.0410
2.3 0.573221 0.127997 . 208252 3.14327 1.1017
2.4 0.552760 0.109142 200040 3.39929 1.1574
2.5 0.533040 0.092540 .193432 3.67836 1.2090
2.6, 0.514077 0.077982 185821 3.98218 1.2562
2.7 0.495876 0.065266 178184 4.31257 1.2990
2.8 ... 0.478438 0.054204 .170588 4.67144 1.3374
2.9 il 0.461756 0.044618 .163087 5.06081 1.3716
3.00. ... 0.445816 0.036346 .155726 5.48280 1.4015
3.1 0.430604 0.020240 .148541 5.93960 1.4275
3.2 000l 0.416101 0.023167 .141561 6.43352 1.4496
3.3 0.402285 0.018008 . 134809 6.96689 1.4681
34, 0.389131 0.013658 .128301 7.54210 1.4832
3.5 0.376616 0.010023 .122050 8.16154 1.4951
3.60......... 0.364712 0.007026 . 116066 8.82752 I.5042
3% ZP 0.353394 0.004598 .110355 9.54224 1.5108
3.8 0.342632 0.002687 .104922 10.3076 I.5151
3.0 e 0.332400 0.001258 099771 II.1251 1.5175
4.0 i 0.322668 0.000300 0.094906 11.9952 1.5185
M = 4.0090 .
¢(n) = 0.31623; —ni¢'(n) = 1.5186,
—¢/'(m) = 0.09172; po/B = 12.626 .
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TABLE 39
=02
Y

n 3 p/po —¢' po/5(n) —n¢’
O.. ..o I I o I [e]
O.I.......... 0.998809 0.995540 0.023788 1.00269 0.00024
0.2.......... 0.995255 0.982302 .047195 1.01077 0.00189
0.3 iiinnnn. 0.989395 c.960704 060856 1.02432 0.00629
[ 20 0.981320 0.931414 .091432 1.04346 0.01463
0.5 it 0.971155 0.895308 .I111625 1.06837 0.02791
0.6.......... 0.959050 0.853418 .130183 1.09928 0.04687
(o S 0.945179 0.806876 146911 1.13647 0.07199
0.8.......... 0.9209733 0.756857 .161668 1.18026 0.10347
0.0.. ..., 0.912914 0.704522 L174371 1.23107 0.14124
1.0 .. vuunn. 0.804929 0.650977 184992 1.289032 0.18499
T.Xo.oooonn.. 0.875985 0.597228 .103549 1.35555 0.23419
I.2.......... 0.856286 0.544165 .200106 1.43033 0.28815
| S P 0.836027 ©.492537 .204759 1.51430 0.34604
| 0.815303 0.442952 .207635 1.60821 0.40696
T.§eeennnn . 0.704554 0.395876 .208876 1.71284 0.46997
1.6.......... 0.773667 0.351047 .208641 1.82908 0.53412
b 3 o.752870 0.310479 207004 1.95792 0.50850
1.8 0.732286 0.272487 . 204400 2.10041 0.66226
) S N 0.712023 0.237696 200720 2.25775 0.72460
2.0 ... 0.692170 0.206064 .196210 2.43121 ©.78484
25 SN 0.672804 0.177403 .19I0I5 2.62220 0.84237
2.2, 0.653083 0.151845 .185270 2.83225 0.89671
2.3 0.635764 0.128954 .179098 3.06302 0.04743
2.4 0.618176 0.108637 .172612 3.31631 0.90424
2.5 o.601249 0.090703 165908 3.50407 1.0369
2.6.......... ©0.584999 0.074959 -150074 3.89842 1.0753
2.7 0.560436 0.061213 .152185 4.23160 1.1004
2.8 0.554561 0.049284 .145308 4.59603 1.1302
2.9 00, 0.540372 ©0.039000 138497 4.99426 1.1648
3.00.... ... 0.526858 ©.030109 .131800 5.428908 1.1862
K% SO 0.514007 0.022735 .125258 5.90298 1.2037
3.2, o.501800 0.016478 .118g02 6.41011 1.2176
3.3 0.490219 0.0I1313 .112762 6.98018 1.2280
k7. DU 0.479240 0.007143 . 106860 7.58886 1.2353
3.5 i, 0.468838 0.003807 . 101218 8.24749 1.2399
3.6.......... 0.458987 0.001540 005856 8.95768 1.2423
37 0.449657 0.000143 0.090796 9.71958 1.2430

M= 3.7271.
() = 0.447215; —n3¢'(m) = 1.2430,
—¢'(m) = 0.08948 ; Po/P = 9.9348 .



APPENDIX 497

TABLE 40
I, 3
%

n ¢ p/po —¢’ po/B(n) —n2¢’
[ T 1 1 [ 1 o
[-75 S 0.999025 0.995827 ©.019473 1.00262 0.00019
0.2 ..., 0.096115 0.983429 .038655 1.01007 0.00155
0.3 it 0.991313 0.963163 057264 1.03256 0.00515
O dveenennn. 0.984600 0.935601 075038 1.04066 o.o1201
0.5 e 0.976341 0.901498 .091742 1.06396 0.02204
0.6.......... 0.966384 0.861752 .107178 1.09288 0.03858
[ % Z 0.054954 0.817358 .121183 1.12767 0.05938
0.8.......... 0.042199 0.769361 .133637 1.16866 0.08553
[ 3% TN 0.928281 0.718812 . 144462 1.21622 0.11701
T.0 .. cvuunn 0.913362 0.666724 .153622 1.27079 0.15362
| S U 0.897612 0.614046 .161115 1.33285 0.19495
1.2 0.881194 0.561631 166976 1.40299 0.24044
| S PR 0.864269 0.510234 .171267 1.48182 0.28944
) S U 0.846990 0.460436 . 174074 1.57007 0.34119
| S 0.829500 0.412780 .175501 1.66854 0.39488
1.6....... ... 0.811932 0.367636 .175664 1.77812 0.44970
| S S 0.794405% 0.325276 . 174689 1.89980 0.50485
1.8 0.777028 0.285874 .172705% 2.03467 0.55956
T.Qeeennnn.n 0.759804 0.249518 .160839 2.18395 o0.61312
2,00 0.743085 0.216226 .166217 2.34808 0.66487
2.0 i 0.726071 0.185952 .161061 2.53124 0.71425
2.2, 0.710710 0.158610 .157185 2.73236 0.76078
2.3 0.605248 0.134074 .151004 2.95411 o.80405
2.4 0.680322 0.112108 . 146487 3.19844 0.84376
2.5 . 0.665958 0.092818 .140750 3.46751 0.87¢969
2.6 0.652177 0.075763 .134864 3.76361 0.91168
2.7 0.638988 0.060860 .128898 4.08924 0.93967
2.8, 0.626398 0.047938 .122916 4.44710 0.96366
2.0 . 0.614404 0.036833 .116971 4.84001 0.98372
3.0 i o.603001 0.027393 LITIIIX 5.27096 1.00000
KIS S 0.592178 0.019478 .105377 5.74302 1.0127
3.2.. .0 0.581920 0.012964 099806 6.25017 1.0220
3.3 0.572210 0.007754 .004430 6.82226 1.0283
3.4 0.563026 0.003784 .089278 7.43466 1.0321
3.5 0.554346 0.001003 0.084376 8.09790 1.0336

7= 3.5803 ..
¢(m) = 0.547725 —ni¢'(n) = 1.0337,
—@/(n:) = 0.08064 ; po/B = 8.6673 .
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TABLE 41
I, 4
%
L] ¢ p/po —e’ po/5(n) ~nip’
O i I I [o] I [e]
O.T.......... 0.999226 0.996135 0.015456 1.00232 0.00015
0.2.......... 0.996916 0.984643 .030608 1.00932 .00123
[< 0 N 0.993101 0.965821 .045517 1.02106 .00410
[ S 0.987833 0.040149 .059720 1.03763 .00956
0.5 ... 0.981183 0.908264 .073130 1.05920 .01828
0b6.......... ©0.973239 0.87728¢9 085504 1.08506 .03081
[< 2 S 0.964100 0.829008 .0096085 1.11815 .04752
o8 ......... 0.953881 0.783404 .107204 1.15607 06861
0.9.......... 0.942701 ©0.735049 116184 1.20006 .00411
I1.0.......... 0.930687 0.684858 .123883 1.25053 .12388
I.I.......... 0.917967 0.633701 .130200 1.30794 .15765
| S 0.904671 0.582382 .135417 1.37282 . 19500
I.3...unn... 0.890925 0.531620 130209 1.44577 .23542
| S VU 0.876851 0.482036 .141991 1.52747 .27830
| S 0.862565 0.434155 .143562 1.61867 .32301
1.6.......... 0.848174 0.388394 . 144002 1.72023 .36888
| S 0.833778 0.345077 . 143671 1.83309 41521
.8 0.819468 0.304435 . 142695 1.95832 .46136
T.Q.0even.. 0.805324 0.266616 .140358 2.09711 . 50669
2.0, .. ... 0.791418 0.231699 .137660 2.25075 .55064
2.0 . 0.777811 0.199698 .134394 2.42072 .50268
2% 0.764555 0.170579 .130053 2.60861 .63236
2.3 0. 0.751604 0.144268 .126523 2.81621 66931
2. 4. ... 0.739261 0.120659 .122085 3.04547 .70321
2.5, 0. 0.727284 0.009625 .117415 3.20855 73384
2.6.......... 0.715783 0.081023 .112581 3.57778 .76105
2.7 ©.704772 0.064704 107646 3.88573 78474
2.8 0.694256 0.050515 .102666 4.22517 80490
2.9 ... 0.684238 0.038307 097690 4.50888 .82158
3.0 ... 0.674716 0.027937 .092766 5.01002 .83489
3.1, 0.665682 0.019274 .087931 5.46166 .84502
3.2, 0.657126 0.012210 .083223 5.05681 .85220
3.3, 0.649032 0.006662 .078674 6.49815 .85676
34, 0.641384 0.002610 .074316 7.08766 .85909
3.5 0.634161 0.000216 0.070816 7.72543 0.85078
M= 3.5245 .
#(m) = 0.63246; —7i¢'(m) = 0.8508,

—¢'(n) = 0.06922;

po/B = 7.8886 .



APPENDIX 499

TABLE 42
o s
y2
n ¢ p/po —¢’ po/p(n) -9’
............ 1 I o 1 [
(<75 U 0.9904IT 0.996471 o.or1760 1.00212 0.000118
0.2, v 0.997653 0.985967 .023371 1.00851 000935
0.3 et ©.994747 0.968730 034689 1.01922 .003122
R R ©.990730 0.945149 -045575 1.03434 007292
0.5 cenirnnns 0.985650 0.915750 055906 1.05401 .013976
0.6.......... 0.979571 0.881163 .065570 1.07841 023605
0.7 e 0.972562 0.842106 .074472 1.10774 036491
0.8.......... 0.964704 0.799351 082538 1.14227 .052824
0.9 ..., 0.956084 0.753699 .08g710 1.18232 072665
1.0 ccoun... 0.946793 0.705949 095952 1.22822 005952
| 3 SO 0.936925 0.656883 .101245 1.28043 .122506
| P TR 0.926576 0.607237 .105587 1.33938 .152045
b S PO 0.915839 0.557680 .108995 1.40563 .184201
| S U 0.904807 0.508825 .111496 1.47979 .218533
I.5 s 0.803569 0.461195 LI1I3133 1.56255 .254550
1.6.......... 0.882208 0.415233 .113958 1.65467 .291732
} S P 0.870802 0.371208 .114027 1.75701 .329538
1.8 0.850425 0.329672 . 113405 1.87057 .367432
b 3 T 0.848142 0.290560 .112160 1.99641 404898
2.0, ... 0.837012 0.254100 . 110361 2.13573 441445
2.0 0.826086 0.220367 .108078 2.28089 .476626
2.2 ... 0.815410 0.189387 .105380 2.46036 .510038
2.3 0.805022 0.160974 .102332 2.64881 541335
2.4 0.794953 0.135569 .098998 2.85706 .570227
2.8 0.785230 0.112503 .095438 3.08713 .506485
2.6.......... 0.775871 0.092107 .091707 3.34121 .619941
2.7 0.766892 0.073992 .087858 3.62172 .64048Y
2.8, 0.758302 0.058120 083938 3.93126 .658076
2.9 i 0.750105 0.044362 .079991 4.27261 .672721
3.0 ... 0.742303 0.032590 .076054 4.64868 .684490°
3.1 ... 0.734803 0.022685 072166 5.06249 .603513
3.2 0.727868 0.014544 .068357 5.51605 .609979
3.3 0.721218 0.008093 .064659 6.01473 . 704141
34 0.714931 0.003319 .obr102 6.55774 .7006344
3.5 0.708992 0.000390 0.057717 7.14658 ©0.707033

m = 3.5330.
#(n) = o.707107;  —mi¢'(m) = 0.70704,
—¢'(ns) = 0.056644 ; po/B = 7.3505 .
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TABLE 43
1
= =o0.6
%

L] ¢ o/py —¢’ po/p(n) —np’
[, 1 ) 1 o
O.I.......... .9995788 | ©.996843 0.0084087 1.00285 0.000084
0.2.......... .9983198 0.987436 .0167381 1.00761 000670
0.3 .9962374 | ©.971967 0248708 1.01719 .002238
[ 2 S 0033549 0.950741 .0327264 1.03070 .005236
0.5 ... .0897042 0.924171 .0402225 1.04826 .010056
0.6.......... .0853249 | ©.802758 .0472850 1.07003 017023
[ SN .9802638 0.857079 0538408 1.09618 .026386
0.8 .. ....... 9745733 0.817762 0508630 1.12604 .038312
0.9.......... .9683110 | ©0.775468 0652821 1.16256 .052878
1.0.......... .9615377 0.730873 .0700764 1. 203236 .070076
I.I.......... .0543172 0.684647 0742266 1.24969 .080814
I.2...0..0..... .9467142 0.637436 .0777247 1.30104 .I11924
I3, 0387039 | ©.580852 .0805729 1.36058 .136168
) S D .0306200 | ©0.542460 .0827830 1.42612 .162255
1.5 ... ...... .9222579 0.495766 .0843752 1.49915 . 189844
1.6.......... .9137655 0.450217 .0853772 1.58033 .218566
) S S .Q052010 | ©.406193 .0858223 1.67039 .248026
1.8 .8066183 | ©0.364011 0857490 1.77016 .277827
1.9, .. .8880672 0.323922 .0851990 1.88056 .307568
2.0 ... .8705930 | ©0.286120 0842168 2.00263 .336867
2.0 ... .8712367 | ©0.250740 0828478 2.13750 .365350
2 .8630348 0.217868 0811382 2.28647 .392709
2.3 ... ... .855018¢ 0.187543 .0701338 2.45005% .418618
2. 4. ... 8472163 | o0.150727 .0768970 2.63101 442927
2.5, . 8396500 0.134514 .0744175 2.83292 .465109
2.6.......... 8323383 0.111723 .0717910 3.05402 .485307
2.7 .8252960 | ©0.001316 0690381 3.29795 .503288
2.8 ... .. .8185337 | ©0.073204 0661952 3.56608 .518970
2.0.......... .8120588 0.057283 0632962 3.86357 .532321
3.0 .8058753 | ©.043447 .0003729 4.19033 -543356
3T -7999840 | ©0.031503 .0574542 4.54997 -552135
3.2, .7043834 0.021622 0545666 4.94529 .5587062
3.3 . 7800688 0.013456 .0517354 5.37892 .563308
34 .7840336 0.007051 .0480844 5.85315 . 566260
3.5 ... .7792685 ©0.002445 0463373 6.36051 .567632
3.6.......... .7747620 | ©0.000016 0.0438166 6.92839 0.567863

m = 3.6038.
#(m) = 0.774507; —72d'(m) = 0.56786,
—¢'(m) = 0.043724 ; po/B = 6.9504 .
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TABLE 44

1

—=0.8

¥

7 ¢ p/py —¢’ po/5(n) —n¢’
[ T 1 I o 1 o
(<75 S 0.9998510 | ©.99777 0.0029774 1.00134 0.000030
0.2 . cuiinn. 0.09994053 | ©.99110 0059300 1.00538 .000237
0.3cccnennnn. 0.9986664 0.98008 0088370 1.01217 000795
[ 70 PN 0.9976402 0.96485 .0116730 1.02165 .001868
0.5 e, 0.9963349 | ©0.04563 .0144170 1.03400 .003604
0.6.......... 0.9947606 | ©.92265 0170489 1.04925 .006138
0.7 i 0.9929295 | ©.89620 .0195501 1.06751 .009580
08.......... 0.9908555 | ©0.86662 .0219039 1.08801 .014018
0.0 .. 0.9885541 0.83425 .0240960 1.11358 .019518
I.0...vennnn. 0.9860421 0.79047 .0201144 1.14168 .026114
| S SR 0.9833374 0.76268 0279490 1.17341 .033818
b - 0.9804587 0.72427 .0205923 1.20000 .042613
1.3, 0.9774254 | ©.68465 .0310308 1.24867 .052457
| S P 0.9742574 | 0.64418 0322885 1.29272 .063285
T.50eeenenns 0.9709744 0.60326 0333382 1.34144 .075011
1.6.......... 0.9675963 0.56224 .0341907 1.309520 .087528
T.7 0.9641427 | ©0.52146 .0348408 1.45436 .100716
1.8, 0.9606326 | 0.48121 .0353210 1.51937 .114440
) O« P 0.9570845 0.44178 .0356114 1.59070 .128557
2,00 i 0.9535161 0.40341 0357296 1.66888 .142918
2.1 ©.9499440 | ©0.36632 .0356854 1.75450 157373
2.2 0.0463841 0.33070 0354891 1.84821 .171767
2.3 i 0.9428509 0.29669 .0351524 1.95073 .185956
2.4 0 0.9393579 | ©0.26442 0346870 2.06285 .199797
2.5 0.09359174 0.23398 .0341053 2.18546 .213158
2.6.......... 0.9325403 0.20543 .0334198 2.31049 .225918
2.7 0.9292364 | ©.17882 0326428 2.46604 .237966
2.8..... 0.9260144 0.15417 .0317867 2.62625 249208
2.0 .0 0.9228814 | o.13147 .0308637 2.80139 .259564
3.00. ... 0.9108435 0.11071 .0298853 2.99287 .268968
E TS S 0.9169058 | ©.091856 0288630 3.20217 .277373
3.2 0.9140720 0.074869 .0278077 3.43090 284751
3.3 0.9113450 | ©.059699 0267297 3.68081 .201086
34 0.9087265 | ©0.046289 0256389 3.95370 .206386
3.5 0.9062173 | ©.034584 .0245445 4.25146 .300670
3.6 0.9038174 | ©0.024533 .0234553 4.57599 -303981
3T 0.9015258 0.016004 .0223799 4.92910 306381
3.8 0.8993407 | ©.009251 0213264 5-31239 307955
3.0l 0.89725095 0.004042 .0203034 5.72690 308815
4.0t 0.8952787 | ©0.000665 0.0193196 6.17285 0.309114
M = 4.0446 .
¢(n) = 0.804427; —mi¢'(m) = 0.30012,

—¢/(m) = 0.018806 ;

po/p = 6.3814 .
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Abbauprozesse, 468
Absorption coefficient, 190

Rosseland mean, 212, 263

in terms of Einstein coefhicients, 191
Adiabatic changes

infinitesimal, 16

for matter and radiation, 55

for perfect gas, 39

quasi-statical, 16
Adiabatic exponents for matter and radi-

ation, 56

table of, 59
Adiabatic inclosures, 12
Alpha decay

theory of, 460

of uranium, 458
Anderson, W., 409, 422, 451
Atkinson, R. d’E., 456, 485
Aufbauprozesse, 468

Beer, A., 314, 321

Bethe, H., 474, 484-86
Betti, E., 101, 180
Bialobjesky, 1., 229, 248
Biermann, L., 227, 248, 356
Black-body radiation, 53
Bohr, N., 256, 470

Brock, E. K., 369, 410
Bruggencate, P. ten, 451

Capella, 75, 221, 276-77, 289, 305, 308
Carathéodory, C., 11, 23-24, 32, 34, 37,
357
Carathéodory’s principle, 24
Carathéodory’s theorem, 23
Central condensation of stars, 292, 303—30
dependence on chemical composition,
307
systematic variation in H.R. diagram,
315, 320
tables for the evaluation of, 302—4
Central pressure
minimum of, 65, 72
in stars, 230, 232, 354
Chandrasekhar, S., 72, 75, 82-83, 96, 182,
219, 248, 292, 314, 321, 328, 356,
397, 490, 411, 415, 422, 420, 440,
451, 491

Cluster diagrams, Kuiper’s interpretation
of, 286

Companion of Sirius, 412, 414

Composite configurations, 170, 438

Condon, E. U,, 450

Contraction hypothesis, 454

Convection currents, 83, 225, 483

Convective equilibrium, 84

Cosmogenetic changes, 48

Cowling, T. G., 227, 248, 332, 353, 356,
468

Darwin, C. G., 409
Darwin, G. H., 180
Degeneracy
criterion for, 393
stellar criterion for, 434, 436, 443
Degenerate configurations, 415
approximation for small central densi-
ties, 419
effect of radiation pressure in, 437
limiting mass, M3, 421
observational verification of the theory
of, 431
physical characteristics of, 417, 423,
427-30
Degenerate electron gas
elementary treatment, 357
equation of state of, 360-61
general treatment, 388
internal energy of, 36061
Deuterons as a source of neutrons, 477
Diathermic partitions, 12
Dirac, P. A. M., 363, 366, 409-10
Dirac equation, 363, 432
solution of, 364
Disintegration of elements, 457, 468
criterion for, 470
Domain of degeneracy, 440, 442
nature of curves of constant mass in,
442, 445

Earth’s atmosphere, temperature gradi-
ent in, 85

Eddies, 225

Eddington, A. S., 51, 60, 72, 82, 213, 221,
248, 278 ff., 291, 321, 410, 456, 485

Eddington’s quartic equation, 229, 243,
305

505
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Ehrenfest Affanasjewa, T., 34, 37, 409
Einstein coefficients, 189, 191, 204
Einstein-Bose distribution, 382, 384
Electron gas
degenerate case, 357, 388
general formulae for, 382, 385, 387
nondegenerate case, 304, 308
specific heat of, 304
unrelativistic case, 399
unrelativistic degenerate case, 401
unrelativistic nondegenerate case, 401
Electron scattering, Thomson’s formula
for, 270
Emden, R, 40, 43, 48, 53, 60, 84, 94, 96,
176, 180-81, 248
Emden’s thermodynamical theorem, 41,
48
Emden’s transformations, go, 157
Emden’s variables, 43

Emission coefficient, 189
in terms of Einstein coefficients, 190

Entropy, 27, 370
principle of increase of, 31

Equation of transfer, 198, 206
solution for far interior, 207

Equations of fit, 172
methods of solution of, 173

Fairclough, N., 182

Feather, N., 473, 484

Fermi, E., 409, 411, 470

Fermi-Dirac distribution, 382, 384

Fermi’s law of velocity distribution, 387

First law of thermodynamics, 14

Fowler, R. H., 84, 124, 181, 257, 261, 291,

409 ff., 451

Fowler’s theorem, 124 ff., 136, 150

extension to cases & < 1, 144 ff.

Free energy, 35, 372
Frenkel, J., 409

Gamow, G., 459-60, 472, 484-86

Gamow factor, 457, 463

Gaposchkin, S., 314

Gaunt, J. A., 262, 283

Gaunt factor, 262-63

Gibb’s ensemble, 369 fi.

Gravitational equilibrium, the equations
of, 62, 213, 225

Gravitational potential, 63

Green, G., 95, 180

Guggenheim, E. A., 261, 291

Guillotine factor, 250
table of, 269
variation through a star, 273

Gurney, R. W., 459

Hardy, G. H., 123

Hardy’s theorem, 123

Harkins, W. D., 456, 485

Helium content of stars, 255, 287, 482

Helmbholtz, H. von, 453-55, 484

Hertzsprung, E., 287, 291

Hertzsprung gap, 285

Hertzsprung-Russell diagram, 251
Stromgren’s interpretation of, 280 ff.

Hilbert, D, 215

Hill, G. W, 180

Homer Lane’s function, 88

Homologous family .of solutions, 103

Homologous transformations, 81, 233

Homology-invariant functions, 101 ff.

150 ff.

Hopf, E,, 115, 119, 181

Houtermans, F. G., 456, 485

Hund, F., 409-10

Hyades cluster
central condensations of stars in, 312
stars in, 287
Hydrogen content, 2535
curves of constant
in (mass, radius) diagram, 283
in H.R. diagram, 285
spreading-out of, 282, 290
of stars, 276, 287, 433, 489
Hydrogen and helium content of stars
288-89

Instability for radial oscillations, 52

Integral theorems
on the equilibrium of a star, 61 ff.
on the radiative equilibrium of a star,
216 ff.
Integrating denominator, 19

Tsothermal equation, 156
homology theorem for, 158
reduction to first order, 159
singular solution of, 157
in (1, v) plane, 160

discussion of, 168
in (v, z) plane, discussion of, 161

Isothermal E-solutions
starting series for, 156
uniqueness of, 161
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Isothermal functions
asymptotic behavior of, 164, 167
oscillatory character about the singular
solution, 166

Isothermal gas sphere, 155, 447

Jea‘nsl J' H') 527 295’ 321) 356
Joliot, F., 486, 488

Joule-Kelvin experiment, 3o
Juttner, F., 387, 394-95, 410

Keenan, P. C., 350

Kelvin, Lord, 24, 30, 34, 40, 84-8s, 88, 95,
176-79, 453755, 434

Kelvin’s transformation, 89, 157

Kirchhoft’s laws, 199 ff.

Kothari, D. S, 411

Kramers, H. A., 262, 283

Kuiper, G. P., 2, 287, 291, 310fl., 415,
431, 452

Landau, L., 409
Lane, H., 47, 60, 84-8s, 88, 176-78
Lane-Emden equation, 88
asymptotic behavior of the solutions of,
121, 123, 134, 136, 143
discussion of, in (. v) plane, 146
arrangement of solutions, 152
discussion of, in (y, z) plane, 107-39
arrangement of solutions, 126, 130,
142
spiraling about the second singular
point, 134, 143
D-solutions of, 142
equivalent first-order differential equa-
tion, 103, 106
E-solutions of, 103, 106, 119
F-solutions of, 120
homologous family of solutions of, 103
homology theorem for, 101
M-solutions of, 120
O-solutions of, 144
singular solution of, 8¢
transformations of, 89
Lane-Emden function, 88
constants of, g6
for general n; 94

forn = o, 91
forn = 1, 92
forn =

starting series for, 95
Lane’s theorem, 47
Light quanta, statistics of, 405
Local thermodynamical equilibrium, 205

Luminosity formula, 218, 2go
for model e=constant, 326
for point-source model with x=con-
stant, 350
for point-source model with x e« pT73:5,

355

for standard model, 232

for stars with negligible radiation pres-
sure, 234, 238

for stars with varying xg, 243—45

use of, 249, 251

M, 437, 440, 442, 445
M;, 421, 441, 44345
Majumdar, R. C,, g410-11
Mass-luminosity diagram, 1, 3
Mass-radius diagram, 1, 4, 281-82
Maxwell’s law of distribution of veloci-
ties, 263, 387
Mean molecular weight, 254
of degenerate electron gas, 432
first approximation for perfect gas, 255
of Russell mixture, 260
second approximation for perfect gas,
256
of stars
determination of, 272
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WHAT Is SCIENCE?,

Norman Campbell
This excellent introduction explains scientific method, role of mathematics,
types of scientific laws. Contents: 2 aspects of science, science & nature, laws of
science, discovery of laws, explanation of laws, measurement & numerical laws,
applications of science. 192pp. 534 x 8. Paperbound $1.25

¥ADps AND FALLACIES IN THE NAME OF SCIENCE,

Martin Gardner
Examines various cults, quack systems, frauds, delusions which at various times
have masqueraded as science. Accounts of hollow-earth fanatics like Symmes;
Velikovsky and wandering planets; Hoerbiger; Bellamy and the theory of
multiple moons; Charles Fort; dowsing, pseudoscientific methods for finding
water, ores, oil. Sections on naturopathy, iridiagnosis, zone therapy, food fads,
etc. Analytical accounts of Wilhelm Reich and orgone sex energy; L. Ron
Hubbard and Dianetics; A. Korzybski and General Semantics; many others.
Brought up to date to include Bridey Murphy, others. Not just a collection of
anecdotes, but a fair, reasoned appraisal of eccentric theory. Formerly titled
In the Name of Science. Preface. Index. x - 384pp. 5% x 8.

Paperbound $1.85

PHYsICS, THE PIONEER SCIENCE,
L. W. Taylor
First thorough text to place all important physical phenomena in cultural-
historical framework; remains best work of its kind. Exposition of physical
laws, theories developed chronologically, with great historical, illustrative
experiments diagrammed, described, worked out mathematically. Excellent
physics text for self-study as well as class work. Vol. 1: Heat, Sound: motion,
acceleration, gravitation, conservation of energy, heat engines, rotation, heat,
mechanical energy, etc. 211 illus. 407pp. 534 x 8. Vol. 2: Light, Electricity:
images, lenses, prisms, magnetism, Ohm’s law, dynamos, telegraph, quantum
theory, decline of mechanical view of nature, etc. Bibliography. 13 table
appendix. Index. 551 illus. 2 color plates. 508pp. 534 x 8.
Vol. 1 Paperbound $2.25, Vol. 2 Paperbound $2.25,
The set $4.50

THE EVOLUTION OF SCIENTIFIC THOUGHT FROM NEWTON TO EINSTEIN,

A. d’Abro
Einstein’s special and general theories of relativity, with their historical implica-
tions, are analyzed in non-technical terms. Excellent accounts of the contri-
butions of Newton, Riemann, Weyl, Planck, Eddington, Maxwell, Lorentz and
others are treated in terms of space and time, equations of electromagnetics,
finiteness of the universe, methodology of science. 21 diagrams. 482pp. 534 x 8.
Paperbound $z.50
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CHANCE, Luck AND STATIsTICS: THE SCIENCE OF CHANCE,

Horace C. Levinson
Theory of probability and science of statistics in simple, non-technical language.
Part I deals with theory of probability, covering odd superstitions in regard to
“luck,” the meaning of betting odds, the law of mathematical expectation,
gambling, and applications in poker, roulette, lotteries, dice, bridge, and other
games of chance. Part II discusses the misuse of statistics, the concept of statis-
tical probabilities, normal and skew frequency distributions, and statistics ap-
plied to various fields—birth rates, stock speculation, insurance rates, advertis-
ing, etc. “Presented in an easy humorous style which I consider the best kind of
expository writing,” Prof. A. C. Cohen, Industry Quality Control. Enlarged
revised edition. Formerly titled The Science of Chance. Preface and two new
appendices by the author. Index. xiv - 365pp. 534 x 8. Paperbound $2.00

BAsic ELECTRONICS,

prepared by the U.S. Navy Training Publications Center
A thorough and comprehensive manual on the fundamentals of electronics.
Written clearly, it is equally useful for self-study or course work for those with
a knowledge of the principles of basic electricity. Partial contents: Operating
Principles of the Electron Tube; Introduction to Transistors; Power Supplies
for Electronic Equipment; Tuned Circuits; Electron-Tube Amplifiers; Audio
Power Amplifiers; Oscillators; Transmitters; Transmission Lines; Antennas and
Propagation; Introduction to Computers; and related topics. Appendix. Index.
Hundreds of illustrations and diagrams. vi 4- 471pp. 614 x g14.

Paperbound $2.75

Basic THEORY AND APPLICATION OF TRANSISTORS,

prepared by the U.S. Department of the Army
An introductory manual prepared for an army training program. One of the
finest available surveys of theory and application of transistor design and
operation. Minimal knowledge of physics and theory of electron tubes required.
Suitable for textbook use, course supplement, or home study. Chapters: Intro-
duction; fundamental theory of transistors; transistor amplifier fundamentals;
parameters, equivalent circuits, and characteristic curves; bias stabilization;
transistor analysis and comparison using characteristic curves and charts; audio
amplifiers; tuned amplifiers; wide-band amplifiers; oscillators; pulse and switch-
ing circuits; modulation, mixing, and demodulation; and additional semi-
conductor devices. Unabridged, corrected edition. 240 schematic drawings,
photographs, wiring diagrams, etc. 2 Appendices. Glossary. Index. 263pp.
614 x 914. Paperbound §1.25

GUIDE TO THE LITERATURE OF MATHEMATICS AND PHYSsICs,
N. G. Parke III
Over 5000 entries included under approximately 120 major subject headings of
selected most important books, monographs, periodicals, articles in English,
plus important works in German, French, Italian, Spanish, Russian (many
recently available works). Covers every branch of physics, math, related engi-
neering. Includes author, title, edition, publisher, place, date, number of
volumes, number of pages. A 4o0-page introduction on the basic problems of
research and study provides useful information on the organization and use of
libraries, the psychology of learning, etc. This reference work will save you
hours of time. 2nd revised edition. Indices of authors, subjects, 464pp. 534 x 8.
Paperbound $2.75
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THE RiSE oF THE NEW PHysics (formerly THE DECLINE OF MECHANISM),
A. d’Abro

This authoritative and comprehensive 2-volume exposition is unique in scien-
tific publishing. Written for intelligent readers not familiar with higher
mathematics, it is the only thorough explanation in non-technical language of
modern mathematical-physical theory. Combining both history and exposition,
it ranges from classical Newtonian concepts up through the electronic theories
of Dirac and Heisenberg, the statistical mechanics of Fermi, and Einstein’s
relativity theories. “A must for anyone doing serious study in the physical

sciences,” J. of Franklin Inst. g7 illustrations. gg1pp. 2 volumes.
Vol. 1 Paperbound $2.25, Vol. 2 Paperbound $2.25,
The set $4.50

THE STRANGE STORY OF THE QUANTUM, AN ACCOUNT FOR THE GENERAL
READER OF THE GROWTH OF IPEAS UNDERLYING OUR PRESENT ATOMIC
KNOWLEDGE, B. Hoffmann
Presents lucidly and expertly, with barest amount of mathematics, the problems
and theories which led to modern quantum physics. Dr. Hoffmann begins with
the closing years of the 1gth century, when certain trifling discrepancies were
noticed, and with illuminating analogies and examples takes you through the
brilliant concepts of Planck, Einstein, Pauli, de Broglie, Bohr, Schroedinger,
Heisenberg, Dirac, Sommerfeld, Feynman, etc. This edition includes a new, long
postscript carrying the story through 1958. “Of the books attempting an account
of the history and contents of our modern atomic physics which have come to
my attention, this is the best,” H. Margenau, Yale University, in American
Journal of Physics. g2 tables and line illustrations. Index. 275pp. 534 X 8.
Paperbound $1.75

GREAT IDEAS AND THEORIES OF MODERN COSMOLOGY,

Jagjit Singh
The theories of Jeans, Eddington, Milne, Kant, Bondi, Gold, Newton, Einstein,
Gamow, Hoyle, Dirac, Kuiper, Hubble, Weizsicker and many others on such
cosmological questions as the origin of the universe, space and time, planet
formation, “continuous creation,” the birth, life, and death of the stars, the
origin of the galaxies, etc. By the author of the popular Great Ideas of Modern
Mathematics. A gifted popularizer of science, he makes the most difficult
abstractions crystal-clear even to the most non-mathematical reader. Index.
xii 4 276pp. 534 X 814. Paperbound $2.00

GREAT IDEAS OF MODERN MATHEMATICS: THEIR NATURE AND USE,

Jagjit Singh
Reader with only high school math will understand main mathematical ideas
of modern physics, astronomy, genetics, psychology, evolution, etc., better than
many who use them as tools, but comprehend little of their basic structure.
Author uses his wide knowledge of non-mathematical fields in brilliant exposi-
tion of differential equations, matrices, group theory, logic, statistics, problems
of mathematical foundations, imaginary numbers, vectors, etc. Original publica-
tions, 2 appendices. 2 indexes. 65 illustr. g22pp. 534 x 8. Paperbound $2.00

THE MATHEMATICS OF GREAT AMATEURS, Julian L. Coolidge
Great discoveries made by poets, theologians, philosophers, artists and other
non-mathematicians: Omar Khayyam, Leonardo da Vinci, Albrecht Diirer,
John Napier, Pascal, Diderot, Bolzano, etc. Surprising accounts of what can
result from a non-professional preoccupation with the oldest of sciences. 56
figures. viii 4 211pp. 534 x 814. Paperbound $1.50



CATALOGUE OF DOVER BOOKS

COLLEGE ALGEBRA, H. B. Fine
Standard college text that gives a systematic and deductive structure to algebra;
comprehensive, connected, with emphasis on theory. Discusses the commutative,
associative, and distributive laws of number in unusual detail, and goes on
with undetermined coefficients, quadratic equations, progressions, logarithms,
permutations, probability, power series, and much more. Still most valuable
elementary-intermediate text on the science and structure of algebra. Index.
1360 problems, all with answers. X 4+ 631pp. 534 X 8. Paperbound $2.75

HIGHER MATHEMATICS FOR STUDENTS OF CHEMISTRY AND PHYSICS,

J. W. Mellor
Not abstract, but practical, building its problems out of familiar laboratory
material, this covers differential calculus, coordinate, analytical geometry,
functions, integral calculus, infinite series, numerical equations, differential
equations, Fourier’s theorem, probability, theory of errors, calculus of varia-
tions, determinants. “If the reader is not familiar with this book, it will repay
him to examine it,” Chem. & Engineering News. 8oo problems. 189 figures.
Bibliography. xxi + 641pp. 534 x 8. Paperbound $2.50

TRIGONOMETRY REFRESHER FOR TECHNICAL MEN,

4. A. Klaf
A modern question and answer text on plane and spherical trigonometry. Part I
covers plane trigonometry: angles, quadrants, trigonometrical functions, graph-
ical representation, interpolation, equations, logarithms, solution of triangles,
slide rules, etc. Part II discusses applications to navigation, surveying, elasticity,
architecture, and engineering. Small angles, periodic functions, vectors, polar
coordinates, De Moivre’s theorem, fully covered. Part III is devoted to spherical
trigonometry and the solution of spherical triangles, with applications to
terrestrial and astronomical problems. Special time-savers for numerical calcula-
tion. 918 questions answered for you! 1738 problems; answers to odd numbers.
494 figures. 14 pages of functions, formulae. Index. x -} 62gpp. 534 x 8.

Paperbound $2.00

CALCULUS REFRESHER FOR TECHNICAL MEN,

A. A. Klaf
Not an ordinary textbook but a unique refresher for engineers, technicians,
and students. An examination of the most important aspects of differential and
integral calculus by means of 756 key questions. Part I covers simple differential
calculus: constants, variables, functions, increments, derivatives, logarithms,
curvature, etc. Part II treats fundamental concepts of integration: inspection,
substitution, transformation, reduction, areas and volumes, mean value, succes-
sive and partial integration, double and triple integration. Stresses practical
aspects! A 50 page section gives applications to civil and nautical engineering,
electricity, stress and strain, elasticity, industrial engineering, and similar fields.
756 questions answered. 556 problems; solutions to odd numbers. 36 pages of
constants, formulae. Index. v 4 431pp. 534 x 8. Paperbound $2.00

INTRODUCTION TO THE THEORY OF GROUPS OF FINITE ORDER,

R. Carmichael
Examines fundamental theorems and their application. Beginning with sets,
systems, permutations, etc., it progresses in easy stages through important types
of groups: Abelian, prime power, permutation, etc. Except 1 chapter where
matrices are desirable, no higher math needed. 783 exercises, problems. Index.
xvi 4 447pp- 534 x 8. Paperbound $3.00
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FIVE VOLUME “THEORY OF FUNCTIONS” SET BY KONRAD KNOPP

This five-volume set, prepared by Konrad Knopp, provides a complete and
readily followed account of theory of functions. Proofs are given concisely, yet
without sacrifice of completeness or rigor. These volumes are used as texts by
such universities as M.I.T., University of Chicago, N. Y. City College, and many
others. “Excellent introduction . . . remarkably readable, concise, clear, rigor-
ous,” Journal of the American Statistical Association.

ELEMENTS OF THE THEORY OF FUNCTIONS,

Konrad Knopp
This book provides the student with background for further volumes in this
set, or texts on a similar level. Partial contents: foundations, system of complex
numbers and the Gaussian plane of numbers, Riemann sphere of numbers,
mapping by linear functions, normal forms, the logarithm, the cyclometric
functions and binomial series. “Not only for the young student, but also for the
student who knows all about what is in it,” Mathematical Journal. Bibliography.
Index. 140pp. 534 x 8. Paperbound $1.50

THEORY OF FUNCTIONS, PART I,

Konrad Knopp
With volume 11, this book provides coverage of basic concepts and theorems.
Partial contents: numbers and points, functions of a complex variable, integral
of a continuous function, Cauchy’s integral theorem, Cauchy’s integral for-
mulae, series with variable terms, expansion of analytic functions in power
series, analytic continuation and complete definition of analytic functions,
entire transcendental functions, Laurent expansion, types of singularities.
Bibliography. Index. vii4 146pp. 534 x 8. Paperbound $1.35

THEORY OF FUNcCTIONS, PART 11,

Konrad Knopp
Application and further development of general theory, special topics. Single
valued functions. Entire, Weierstrass, Meromorphic functions. Riemann sur-
faces. Algebraic functions. Analytical configuration, Riemann surface. Bibliog-
raphy. Index. x 4 150pp. 534 X 8. Paperbound $1.35

PROBLEM BOOK IN THE THEORY OF FUNCTIONS, VOLUME 1.

Konrad Knopp
Problems in elementary theory, for use with Knopp’s Theory of Functions, or
any other text, arranged according to increasing difficulty. Fundamental con-
cepts, sequences of numbers and infinite series, complex variable, integral
theorems, development in series, conformal mapping. 182 problems. Answers.
viii 4 126pp. 534 x 8. Paperbound $1.35

PROBLEM BOOK IN THE THEORY OF FUNGTIONS, VOLUME 2,

Konrad Knopp
Advanced theory of functions, to be used either with Knopp’s Theory of
Functions, or any other comparable text. Singularities, entire & meromorphic
functions, periodic, analytic, continuation, multiple-valued functions, Riemann
surfaces, conformal mapping. Includes a section of additional elementary prob-
lems. “The difficult task of selecting from the immense material of the modern
theory of functions the problems just within the reach of the beginner is here
masterfully accomplished,” 4m. Math. Soc. Answers. 138pp. 534 x 8.

Paperbound $1.50
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NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS,

H. Levy & E. A. Baggott
Comprehensive collection of methods for solving ordinary differential equations
of first and higher order. All must pass 2 requirements: easy to grasp and
practical, more rapid than school methods. Partial contents: graphical integra-
tion of differential equations, graphical methods for detailed solution. Numer-
ical solution. Simultaneous equations and equations of 2nd and higher orders.
“Should be in the hands of all in research in applied mathematics, teaching,”
Nature. 21 figures. viii + 238pp. 534 x 8. Paperbound $1.85

ELEMENTARY STATISTICS, WITH APPLICATIONS IN MEDICINE AND THE

BioLoGICAL ScIENCES, F. E. Croxton
A sound introduction to statistics for anyone in the physical sciences, assum-
ing no prior acquaintance and requiring only a modest knowledge of math.
All basic formulas carefully explained and illustrated; all necessary reference
tables included. From basic terms and concepts, the study proceeds to frequency
distribution, linear, non-linear, and multiple correlation, skewness, kurtosis,
etc. A large section deals with reliability and significance of statistical methods.
Containing concrete examples from medicine and biology, this book will prove
unusually helpful to workers in those fields who increasingly must evaluate,
check, and interpret statistics. Formerly titled “Elementary Statistics with Ap-
plications in Medicine.” 101 charts. 57 tables. 14 appendices. Index. vi 4
376pp. 534 x 8. Paperbound $2.00

INTRODUCTION TO SYMBoOLIC Locic,

§. Langer
No special knowledge of math required — probably the clearest book ever
written on symbolic logic, suitable for the layman, general scientist, and philos-
opher. You start with simple symbols and advance to a knowledge of the
Boole-Schroeder and Russell-Whitehead systems. Forms, logical structure, classes,
the calculus of propositions, logic of the syllogism, etc. are all covered. “One
of the clearest and simplest introductions,” Mathematics Gazette. Second en-
larged, revised edition. 368pp. 534 x 8. Paperbound $2.00

A SHORT ACCOUNT OF THE HISTORY OF MATHEMATICS,

W. W. R. Ball
Most readable non-technical history of mathematics treats lives, discoveries of
every important figure from Egyptian, Phoenician, mathematicians to late 1gth
century. Discusses schools of Ionia, Pythagoras, Athens, Cyzicus, Alexandria,
Byzantium, systems of numeration; primitive arithmetic; Middle Ages, Renais-
sance, including Arabs, Bacon, Regiomontanus, Tartaglia, Cardan, Stevinus,
Galileo, Kepler; modern mathematics of Descartes, Pascal, Wallis, Huygens,
Newton, Leibnitz, d’Alembert, Euler, Lambert, Laplace, Legendre, Gauss,
Hermite, Weierstrass, scores more. Index. 25 figures. 546pp. 534 x 8.

Paperbound $2.25

INTRODUCTION TO NONLINEAR DIFFERENTIAL AND INTEGRAL EQUATIONS,
Harold T. Davis
Aspects of the problem of nonlinear equations, transformations that lead to
equations solvable by classical means, results in special cases, and useful
generalizations. Thorough, but easily followed by mathematically sophisticated
reader who knows little about non-linear equations. 137 problems for student
to solve. xv 4 566pp. 534 X 814. Paperbound $2.00
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AN INTRODUCTION TO THE GEOMETRY OF N DIMENSIONS,

D. H. Y. Sommerville
An introduction presupposing no prior knowledge of the field, the only book
in English devoted exclusively to higher dimensional geometry. Discusses
fundamental ideas of incidence, parallelism, perpendicularity, angles between
linear space; enumerative geometry; analytical geometry from projective and
metric points of view; polytopes; elementary ideas in analysis situs; content of
hyper-spacial figures. Bibliography. Index. 6o diagrams. 196pp. 534 x 8.

Paperbound $1.50

ELEMENTARY CONCEPTS OF ToproLogy, P. Alexandroff
First English translation of the famous brief introduction to topology for the
beginner or for the mathematician not undertaking extensive study. This un-
usually useful intuitive approach deals primarily with the concepts of complex,
cycle, and homology, and is wholly consistent with current investigations.
Ranges from basic concepts of set-theoretic topology to the concept of Betti
groups. “Glowing example of harmony between intuition and thought,” David
Hilbert. Translated by A. E. Farley. Introduction by D. Hilbert. Index. 25
figures. 73pp. 534 X 8. Paperbound $1.00

ELEMENTS OF NON-EUCLIDEAN GEOMETRY,

D. M. Y. Sommerville
Unique in proceeding step-by-step, in the manner of traditional geometry.
Enables the student with only a good knowledge of high school algebra and
geometry to grasp elementary hyperbolic, elliptic, analytic non-Euclidean geom-
etries; space curvature and its philosophical implications; theory of radical
axes; homothetic centres and systems of circles; parataxy and parallelism;
absolute measure; Gauss’ proof of the defect area theorem; geodesic representa-
tion; much more, all with exceptional clarity. 126 problems at chapter endings
provide progressive practice and familiarity. 133 figures. Index. xvi 4 274pp.
5% x 8. Paperbound $2.00

INTRODUCTION TO THE THEORY OF NUMBERS, L. E. Dickson
Thorough, comprehensive approach with adequate coverage of classical litera-
ture, an introductory volume beginners can follow. Chapters on divisibility,
congruences, quadratic residues & reciprocity. Diophantine equations, etc. Full
treatment of binary quadratic forms without usual restriction to integral coef-
ficients. Covers infinitude of primes, least residues. Fermat’s theorem. Euler’s
phi function, Legendre’s symbol, Gauss’s lemma, automorphs, reduced forms,
recent theorems of Thue & Siegel, many more. Much material not readily
available elsewhere. 239 problems. Index. I figure. viii 4+ 183pp. 534 x 8.
Paperbound $1.75

MATHEMATICAL TABLES AND FORMULAS,

compiled by Robert D. Carmichael and Edwin R. Smith
Valuable collection for students, etc. Contains all tables necessary in college
algebra and trigonometry, such as five-place common logarithms, logarithmic
sines and tangents of small angles, logarithmic trigonometric functions, natural
trigonometric functions, four-place antilogarithms, tables for changing from
sexagesimal to circular and from circular to sexagesimal measure of angles, etc.
Also many tables and formulas not ordinarily accessible, including powers,
roots, and reciprocals, exponential and hyperbolic functions, ten-place loga-
rithms of prime numbers, and formulas and theorems from analytical and
elementary geometry and from calculus. Explanatory introduction. viii 4
269pp. 534 x 814. Paperbound $1.25
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A SOURCE BOOK IN MATHEMATICS,
D. E. Smith
Great discoveries in math, from Renaissance to end of 1gth century, in English
translation. Read announcements by Dedekind, Gauss, Delamain, Pascal,
Fermat, Newton, Abel, Lobachevsky, Bolyai, Riemann, De Moivre, Legendre,
Laplace, others of discoveries about imaginary numbers, number congruence,
slide rule, equations, symbolism, cubic algebraic equations, non-Euclidean
forms of geometry, calculus, function theory, quaternions, etc. Succinct selec-
tions from 125 different treatises, articles, most unavailable elsewhere in English.
Each article preceded by biographical introduction. Vol. I: Fields of Number,
Algebra. Index. 32 illus. 338pp. 534 X 8. Vol. II: Fields of Geometry, Probability,
Calculus, Functions, Quaternions. 83 illus. 432pp. 5% X 8.
Vol. 1 Paperbound $2.00, Vol. 2 Paperbound $2.00,
The set $4.00

FOUNDATIONS OF PHYSICS,

R. B. Lindsay & H. Margenau
Excellent bridge between semi-popular works & technical treatises. A discussion
of methods of physical description, construction of theory; valuable for physicist
with elementary calculus who is interested in ideas that give meaning to data,
tools of modern physics. Contents include symbolism; mathematical equations;
space & time foundations of mechanics; probability; physics & continua; electron
theory; special & general relativity; quantum mechanics; causality. “Thorough
and yet not overdetailed. Unreservedly recommended,” Nature (London).
Unabridged, corrected edition. List of recommended readings. 85 illustrations.
xi + 537PP- 5% X 8. Paperbound $3.00

FUNDAMENTAL FORMULAS OF PHYSICs,
ed. by D. H. Menzel

High useful, full, inexpensive reference and study text, ranging from simple
to highly sophisticated operations. Mathematics integrated into text—each
chapter stands as short textbook of field represented. Vol. 1: Statistics, Physical
Constants, Special Theory of Relativity, Hydrodynamics, Aerodynamics,
Boundary Value Problems in Math, Physics, Viscosity, Electromagnetic Theory,
etc. Vol. 2: Sound, Acoustics, Geometrical Optics, Electron Optics, High-Energy
Phenomena, Magnetism, Biophysics, much more. Index. Total of 8copp. 534 X 8.
Vol. 1 Paperbound $2.25, Vol. 2 Paperbound $2.25,
The set $4.50

THEORETICAL PHYSICS,

A. S. Kompaneyets
One of the very few thorough studies of the subject in this price range. Provides
advanced students with a comprehensive theoretical background. Especially
strong on recent experimentation and developments in quantum theory.
Contents: Mechanics (Generalized Coordinates, Lagrange’s Equation, Collision
of Particles, etc), Electrodynamics (Vector Analysis, Maxwell’s equations,
Transmission of Signals, Theory of Relativity, etc)), Quantum Mechanics (the
Inadequacy of Classical Mechanics, the Wave Equation, Motion in a Central
Field, Quantum Theory of Radiation, Quantum Theories of Dispersion and
Scattering, etc.), and Statistical Physics (Equilibrium Distribution of Molecules
in an Ideal Gas, Boltzmann Statistics, Bose and Fermi Distribution. Thermo-
dynamic Quantities, etc.). Revised to 1961. Translated by George Yankovsky,
authorized by Kompaneyets. 137 exercises. 56 figures. 529pp- 534 X 8l4.

Paperbound $2.50
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MATHEMATICAL PHyYsics, D. H. Menzel
Thorough one-volume treatment of the mathematical techniques vital for
classical mechanics, electromagnetic theory, quantum theory, and relativity.
Written by the Harvard Professor of Astrophysics for junior, senior, and grad-
uate courses, it gives clear explanations of all those aspects of function theory,
vectors, matrices, dyadics, tensors, partial differential equations, etc., necessary
for the understanding of the various physical theories. Electron theory, rel-
ativity, and other topics seldom presented appear here in considerable detail.
Scores of definition, conversion factors, dimensional constants, etc. *More

detailed than normal for an advanced text . . . excellent set of sections on
Dyadics, Matrices, and Tensors,” Journal of the Franklin Institute. Index. 193
problems, with answers. X - 412pp. 534 x 8. Paperbound $2.50

THE THEORY OF SoUND, Lord Rayleigh

Most vibrating systems likely to be encountered in practice can be tackled
successfully by the methods set forth by the great Nobel laureate, Lord
Rayleigh. Complete coverage of experimental, mathematical aspects of sound
theory. Partial contents: Harmonic motions, vibrating systems in general, lateral
vibrations of bars, curved plates or shells, applications of Laplace’s functions to
acoustical problems, fluid friction, plane vortex-sheet, vibrations of solid bodies,
etc. This is the first inexpensive edition of this great reference and study work.
Bibliography, Historical introduction by R. B. Lindsay. Total of 1040pp. 97
figures. 534 x 8. Vol. 1 Paperbound $2.50, Vol. 2 Paperbound $2.50,

The set $5.00

HybprobpyNAMICS, Horace Lamb
Internationally famous complete coverage of standard reference work on
dynamics of liquids & gases. Fundamental theorems, equations, methods, solu-
tions, background, for classical hydrodynamics. Chapters include Equations of
Motion, Integration of Equations in Special Gases, Irrotational Motion, Motion
of Liquid in 2 Dimensions, Motion of Solids through Liquid-Dynamical Theory,
Vortex Motion, Tidal Waves, Surface Waves, Waves of Expansion, Viscosity,
Rotating Masses of Liquids. Excellently planned, arranged; clear, lucid presenta-
tion. 6th enlarged, revised edition. Index. Over goo footnotes, mostly bibliogra-
phical. 119 figures. xv 4 738pp. 614 x g14. Paperbound $4.00

DyNaMIicAL THEORY OF GASES, James Jeans
Divided into mathematical and physical chapters for the convenience of those
not expert in mathematics, this volume discusses the mathematical theory of
gas in a steady state, thermodynamics, Boltzmann and Maxwell, kinetic theory,
quantum theory, exponentials, etc. 4th enlarged edition, with new material on
quantum theory, quantum dynamics, etc. Indexes. 28 figures. 444pp- 614 x 914.
Paperbound $2.75

THERMODYNAMICS, Enrico Fermi
Unabridged reproduction of 1937 edition. Elementary in treatment; remarkable
for clarity, organization. Requires no knowledge of advanced math beyond
calculus, only familiarity with fundamentals of thermometry, calorimetry.
Partial Contents: Thermodynamic systems; First & Second laws of thermo-
dynamics; Entropy; Thermodynamic potentials: phase rule, reversible electric
cell; Gaseous reactions: van’t Hoff reaction box, principle of LeChatelier;
Thermodynamics of dilute solutions: osmotic & vapor pressures, boiling &
freezing points; Entropy constant. Index. 25 problems. 24 illustrations. x
160pp. 534 x 8. Paperbound $1.75
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CELESTIAL OBJECTS FOR COMMON TELESCOPES,
Rev. T. W. Webb
Classic handbook for the use and pleasure of the amateur astronomer. Of
inestimable aid in locating and identifying thousands of celestial objects. Vol I,
The Solar System: discussions of the principle and operation of the telescope,
procedures of observations and telescope-photography, spectroscopy, etc., precise
location information of sun, moon, planets, meteors. Vol. 11, The Stars:
alphabetical listing of constellations, information on double stars, clusters, stars
with unusual spectra, variables, and nebulae, etc. Nearly 4,000 objects noted.
Edited and extensively revised by Margaret W. Mayall, director of the American
Assn. of Variable Star Observers. New Index by Mrs. Mayall giving the location
of all objects mentioned in the text for Epoch 2000. New Precession Table
added. New appendices on the planetary satellites, constellation names and
abbreviations, and solar system data. Total of 46 illustrations. Total of xxxix
-+ 606pp. 534 x 8. Vol. 1 Paperbound $2.25, Vol. 2 Paperbound $2.25
The set $4.50

PLANETARY THEORY,
E. W. Brown and C. A. Shook
Provides a clear presentation of basic methods for calculating planetary orbits
for today’s astronomer. Begins with a careful exposition of specialized mathe-
matical topics essential for handling perturbation theory and then goes on to
_indicate how most of the previous methods reduce ultimately to two general
calculation methods: obtaining expressions either for the coordinates of plane-
tary positions or for the elements which determine the perturbed paths. An
example of each is given and worked in detail. Corrected edition. Preface.
Appendix. Index. xii 4 go2pp. 534 X 814. Paperbound $2.25

STAR NAMES AND THEIR MEANINGS,

Richard Hinckley Allen
An unusual book documenting the various attributions of names to the
individual stars over the centuries. Here is a treasure-house of information on
a topic not normally delved into even by professional astronomers; provides a
fascinating background to the stars in folk-lore, literary references, ancient
writings, star catalogs and maps over the centuries. Constellation-by-constella-
tion analysis covers hundreds of stars and other asterisms, including the
Pleiades, Hyades, Andromedan Nebula, etc. Introduction. Indices. List of
authors and authorities. xx -+ 563pp. 5%4 X 814. Paperbound $2.50

A SHORT HISTORY OF ASTRONOMY, A. Berry
Popular standard work for over 5o years, this thorough and accurate volume
covers the science from primitive times to the end of the 1gth century. After
the Greeks and the Middle Ages, individual chapters analyze Copernicus, Brahe,
Galileo, Kepler, and Newton, and the mixed reception of their discoveries.
Post-Newtonian achievements are then discussed in unusual detail: Halley,
Bradley, Lagrange, Laplace, Herschel, Bessel, etc. 2 Indexes. 104 illustrations,
9 portraits. xxxi 4 440pp. 534 x 8. Paperbound $2.75

SoME THEORY OF SAMPLING, W. E. Deming
The purpose of this book is to make sampling techniques understandable to
and useable by social scientists, industrial managers, and natural scientists
who are finding statistics increasingly part of their work. Over 200 exercises,
plus dozens of actual applications. 61 tables. go figs. xix 4 6oz2pp. 534 X 8L%.
Paperbound $3.50
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PRINCIPLES OF STRATIGRAPHY,

A. W. Grabau .
Classic of 20th century geology, unmatched in scope and comprehepsweness.
Nearly 600 pages cover the structure and origins of every kind of sedlmentar‘y,
hydrogenic, oceanic, pyroclastic, atmoclastic, hydroclastic, marine hydroFlas}lc,
and bioclastic rock; metamorphism; erosion; etc. Includes also the constitution
of the atmosphere; morphology of oceans, rivers, glaciers; volcanic activities;
faults and earthquakes; and fundamental principles of paleontology (nearly 200
pages). New introduction by Prof. M. Kay, Columbia U. 1277 bibliographical
entries. 264 diagrams. Tables, maps, etc. Two volume set. Total of xxxii +
1185pp. 534 X 8. Vol. 1 Paperbound $2.50, Vol. 2 Paperbound $2.50,

The set $5.00

SNow CryYsTALS, W. 4. Bentley and W. J. Humphreys
Over 200 pages of Bentley’s famous microphotographs of snow flakes—the pro-
duct of painstaking, methodical work at his Jericho, Vermont studio. The
pictures, which also include plates of frost, glaze and dew on vegetation, spider
webs, windowpanes; sleet; graupel or soft hail, were chosen both for their
scientific interest and their aesthetic qualities. The wonder of nature’s diversity
is exhibited in the intricate, beautiful patterns of the snow flakes. Introductory
text by W. J. Humphreys. Selected bibliography. 2,453 illustrations. 224pp-
8 x 1014. Paperbound $3.25

THE BIRTH AND DEVELOPMENT OF THE GEOLOGICAL SCIENCES,

F. D. Adams
Most thorough history of the earth sciences ever written. Geological thought
from earliest times to the end of the 19th century, covering over goo early
thinkers & systems: fossils & their explanation, vulcanists vs. neptunists, figured
stones & paleontology, generation of stones, dozens of similar topics. g1 illustra-
tions, including medieval, renaissance woodcuts, etc. Index. 632 footnotes,
mostly bibliographical. 511pp. 534 x 8. Paperbound $2.75

OrGANIC CHEMISTRY, F. C. Whitmore
The entire subject of organic chemistry for the practicing chemist and the
advanced student. Storehouse of facts, theories, processes found elsewhere only
in specialized journals. Covers aliphatic compounds (500 pages on the prop-
erties and synthetic preparation of hydrocarbons, halides, proteins, ketones,
etc.), alicyclic compounds, aromatic compounds, heterocyclic compounds, or-
ganophosphorus and organometallic compounds. Methods of synthetic prepara-
tion analyzed critically throughout. Includes much of biochemical interest.
“The scope of this volume is astonishing,” Industrial and Engineering
Chemisiry. 12,000-reference index. 2387-item bibliography. Total of x
1005pp. K34 x 8. Two volume set, paperbound $4.50

THE PHASE RULE AND ITS APPLICATION,
Alexander Findlay
Covering chemical phenomena of 1, 2, 8, 4, and multiple component systems,
this “standard work on the subject” (Nature, London), has been completely
revised and brought up to date by A. N. Campbell and N. O. Smith. Brand
new material has been added on such matters as binary, tertiary liquid
equilibria, solid solutions in ternary systems, quinary systems of salts and
water. Completely revised to triangular coordinates in ternary systems, clarified
graphic representation, solid models, etc. gth revised edition. Author, subject
indexes. 236 figures. 5oy footnotes, mostly bibliographic. xii + 494pPp- 534 x 8.
Paperbound $2.75
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A COURSE IN MATHEMATICAL ANALYSIS,

Edouard Goursat
Trans. by E. R. Hedrick, O. Dunkel, H. G. Bergmann. Classic study of funda-
mental material thoroughly treated. Extremely lucid exposition of wide range
of subject matter for student with one year of calculus. Vol. 1: Derivatives and
differentials, definite integrals, expansions in series, applications to geometry.
52 figures, 556pp. Paperbound $2.50. Vol. 2, Part 1: Functions of a complex
variable, conformal representations, doubly periodic functions, natural bound-
aries, etc. 38 figures, 26gpp. Paperbound $1.85. Vol. 2, Part 2: Differential
equations, Cauchy-Lipschitz method, nonlinear differential equations, simul-
taneous equations, etc. 308pp. Paperbound $1.85. Vol. g, Part 1: Variation of
solutions, partial differential equations of the second order. 15 figures, 339pp.
Paperbound $3.00. Vol. §, Part 2: Integral equations, calculus of variations.
13 figures, 38gpp. Paperbound $3.00

PLANETS, STARS AND GALAXIES,

A. E. Fanning
Descriptive astronomy for beginners: the solar system; neighboring galaxies;
seasons; quasars; fly-by results from Mars, Venus, Moon; radio astronomy; etc.
all simply explained. Revised up to 1966 by author and Prof. D. H. Menzel,
former Director, Harvard College Observatory. 29 photos, 16 figures. 18gpp.
5% X 814, Paperbound $1.50

GREAT IDEAS IN INFORMATION THEORY, LANGUAGE AND CYBERNETICS,

Jagjit Singh
Winner of Unesco’s Kalinga Prize covers language, metalanguages, analog and
digital computers, neural systems, work of McCulloch, Pitts, von Neumann,
Turing, other important topics. No advanced mathematics needed, yet a full
discussion without compromise or distortion. 118 figures. ix 4 338pp. 5% x 814.
Paperbound $2.00

GEOMETRIC EXERCISES IN PAPER FOLDING,

T. Sundara Row
Regular polygons, circles and other curves can be folded or pricked on paper,
then used to demonstrate geometric propositions, work out proofs, set up well-
known problems. 89 illustrations, photographs of actually folded sheets. xii 4
148pp. 534 x 814. Paperbound $1.00

VisUAL ILLUSIONS, THEIR CAUSES, CHARACTERISTICS AND APPLICATIONS,
M. Luckiesh
The visual process, the structure of the eye, geometric, perspective illusions,
influence of angles, illusions of depth and distance, color illusions, lighting
effects, illusions in nature, special uses in painting, decoration, architecture,
magic, camouflage. New introduction by W. H. Ittleson covers modern develop-
ments in this area. 100 illustrations. xxi 4 252pp. 534 X 8.
Paperbound $1.50

ATOMS AND MOLECULES SIMPLY EXPLAINED,
B. C. Saunders and R. E. D. Clark
Introduction to chemical phenomena and their applications: cohesion, particles,
crystals, tailoring big molecules, chemist as architect, with applications in
radioactivity, color photography, synthetics, biochemistry, polymers, and many
other important areas. Non technical. g5 figures. X -+ 209pp. 5% X 814.
Paperbound $1.50
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THE PRINCIPLES OF ELECTROCHEMISTRY,
D. A. Maclnnes
Basic equations for almost every subfield of clectrochemistry from first prin-
ciples, referring at all times to the soundest and most recent theories and
results; unusually useful as text or as reference. Covers coulometers and
Faraday’s Law, electrolytic conductance, the Debye-Hueckel method for the
theoretical calculation of activity coefficients, concentration cells, standard
electrode potentials, thermodynamic ionization constants, pH, potentiometric
titrations, irreversible phenomena. Planck’s equation, and much more. 2 indices.
Appendix. 585-item bibliography. 137 figures. g4 tables. ii + 478pp. 554 x 83%4.
Paperbound $2.75

MATHEMATICS OF MODERN ENGINEERING,

E. G. Keller and R. E. Doherty
Written for the Advanced Course in Engineering of the General Electric
Corporation, deals with the engineering use of determinants, tensors, the
Heaviside operational calculus, dyadics, the calculus of variations, etc. Presents
underlying principles fully, but emphasis is on the perennial engineering
attack of set-up and solve. Indexes. Over 18y figures and tables. Hundreds of
exercises, problems, and worked-out examples. References. Two volume set.
Total of xxxiii 4 623pp. 534 x 8. Two volume set, paperbound $3.70

AERODYNAMIC THEORY: A GENERAL REVIEW OF PROGRESS,

William F. Durand, editor-in-chief
A monumental joint effort by the world’s leading authorities prepared under
a grant of the Guggenheim Fund for the Promotion of Aeronautics. Never
equalled for breadth, depth, reliability. Contains discussions of special mathe-
matical topics not usually taught in the engineering or technical courses. Also:
an extended two-part treatise on Fluid Mechanics, discussions of aerodynamics
of perfect fluids, analyses of experiments with wind tunnels, applied airfoil
theory, the nonlifting system of the airplane, the air propeller, hydrodynamics
of boats and floats, the aerodynamics of cooling, etc. Contributing experts
include Munk, Giacomelli, Prandtl, Toussaint, Von Karman, Klemperer, among
others. Unabridged republication. 6 volumes. Total of 1,012 figures, 12 plates,
2,186pp. Bibliographics. Notes. Indices. 534 x 814.

Six volume set, paperbound $13.50

FUNDAMENTALS OF HYDRO- AND AEROMECHANICS,

L. Prandtl and O. G. Tietjens
The well-known standard work based upon Prandtl’s lectures at Goettingen.
Wherever possible hydrodynamics theory is referred to practical considerations
in hydraulics, with the view of unifying theory and experience. Presentation
is extremely clear and though primarily physical, mathematical proofs are
rigorous and use vector analysis to a considerable extent. An Engineering
Society Monograph, 1934. 186 figures. Index. xvi -+ 270pp. 5% x 8.

Paperbound $2.00

APPLIED HYDRO- AND AEROMECHANICS,

L. Prandtl and O. G. Tietjens
Presents for the most part methods which will be valuable to engineers. Covers
flow in pipes, boundary layers, airfoil theory, entry conditions, turbulent flow
in pipes, and the boundary layer, determining drag from measurements of
pressure and velocity, etc. Unabridged, unaltered. An Engineering Society
Monograph. 1934. Index. 226 figures, 28 photographic plates illustrating flow
patterns. Xvi 4 311pp. 534 X 8. Paperbound $2.00
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APPLIED OPTICS AND OPTICAL DESIGN,

A. E. Conrady
With publication of vol. 2, standard work for designers in optics is now
complete for first time. Only work of its kind in English; only detailed work
for practical designer and self-taught. Requires, for bulk of work, no math
above trig. Step-by-step exposition, from fundamental concepts of geometrical,
physical optics, to systematic study, design, of almost all types of optical
systems. Vol. 1: all ordinary ray-tracing methods; primary aberrations; neces-
sary higher aberration for design of telescopes, low-power microscopes, photo-
graphic equipment. Vol. 2: (Completed from author’s notes by R. Kingslake,
Dir. Optical Design, Eastman Kodak.) Special attention to high-power micro-
scope, anastigmatic photographic objectives. “An indispensable work,” J., Opti-
cal Soc. of Amer. Index. Bibliography. 193 diagrams. 852pp. 614 x 914.

Two volume set, paperbound $7.00

MECHANICS OF THE GYROSCOPE, THE DYNAMICS OF ROTATION,

R. F. Deimel, Professor of Mechanical Engineering at Stevens Institute of

Technology
Elementary general treatment of dynamics of rotation, with special application
of gyroscopic phenomena. No knowledge of vectors needed. Velocity of a moving
curve, acceleration to a point, general equations of motion, gyroscopic horizon,
free gyro, motion of discs, the damped gyro, 103 similar topics. Exercises.
75 figures. 208pp. 534 x 8. Paperbound $1.75

STRENGTH OF MATERIALS,
J. P. Den Hartog
Full, clear treatment of elementary material (tension, torsion, bending, com-
pound stresses, deflection of beams, etc.), plus much advanced material on
engineering methods of great practical value: full treatment of the Mohr circle,
lucid elementary discussions of the theory of the center of shear and the
“Myosotis” method of calculating beam deflections, reinforced concrete, plastic
deformations, photoelasticity, etc. In all sections, both general principles and
concrete applications are given. Index. 186 figures (160 others in problem
section). g50 problems, all with answers. List of formulas. viii 4 323pp. 534 x 8.
Paperbound $2.00

HypravuLIC TRANSIENTS,

G. R. Rich
The best text in hydraulics ever printed in English . . . by former Chief Design
Engineer for T.V.A. Provides a transition from the basic differential equations
of hydraulic transient theory to the arithmetic integration computation re-
quired by practicing engineers. Sections cover Water Hammer, Turbine Speed
Regulation, Stability of Governing, Water-Hammer Pressures in Pump Dis-
charge Lines, The Differential and Restricted Orifice Surge Tanks, The
Normalized Surge Tank Charts of Calame and Gaden, Navigation Locks,
Surges in Power Canals—Tidal Harmonics, etc. Revised and enlarged. Author’s
prefaces. Index. xiv - 409pp. 534 x 814. Paperbound $2.50

Prices subject to change without notice.

Available at your book dealer or write for free catalogue to Dept. Adsci,
Dover Publications, Inc., 180 Varick St., N.Y., N.Y. 10014. Dover publishes more
than 150 books each year on science, elementary and advanced mathematics,
biology, music, art, literary history, social sciences and other areas.
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$3.00

LunAR ATLAS, edited by Dinsmore Alter. (21701-9) $5.00
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60612-0) Two-volume set $7.50
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(60771-2) $2.00
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AN INTRODUCTION TO THE STUDY OF

STELLAR STRUCTURE

S. CHANDRASEKHAR

In this monograph a leading modern astrophysicist explores a prob-
lem basic to stellar dynamics: What is the relationship between loss
of energy, mass, and radius of stars in the steady state?

The monograph is divided into two distinct parts. In chapters i-iv
Chandrasekhar presents the “classical” background necessary to his
argument: the laws of thermodynamics (from Carathéodory’s rigor-
ous axiomatic standpoint), adiabatic and polytropic laws, and the
work of Ritter, Emden, Kelvin, and others who developed the
applied mathematics of stellar structure. Chapters v-xii discuss mod-
ern results: the formal theory of radiation, the equations of radiative
equilibrium, the luminosity formula, the theory of stellar envelopes,
Gibbs statistical mechanics (the quantum mechanical version), white
dwarfs, etc. The closing chapter outlines some general trends in
current investigations of the problem.

Appendixes cover physical and astronomical constants; the masses of
light atoms; the masses, luminosities, and radii of the stars, derived
hydrogen contents, central densities and central temperatures, and
tables of white dwarf functions.

“Extremely interesting . . . it reaches the highest level of scientific
merit,” Bulletin, American Mathematical Sociely.

Unabridged, corrected republication of 1st (1939) edition. Bibliog-
raphy. Index. 33 figures, iv - 509pp. 534 x 8. 60413-6 Paperbound

A DOVER EDITION DESIGNED FOR YEARS OF USE!

We have made every effort to make this the best book possible. Our
paper is opaque, with minimal show-through; it will not discolor
or become brittle with age. Pages are sewn in signatures, in
the method traditionally used for the best books, and will not drop
out, as often happens with paperbacks held together with glue.
Books open flat for easy reference. The binding will not crack or
split. This is a permanent book.
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