1 Structure of White Dwarfs and Neutron
Stars

1.1 Introduction

In 1967 Jocelyn Bell, a graduate student, along with her thesis advisor,
Anthony Hewish, discovered the first pulsar, something from outer space
that emits very regular pulses of radio energy. After recognizing that these
pulse trains were so unvarying that they would not support an origin from
LGM’s (Little Green Men), it soon became generally accepted that the
pulsar was due to radio emission from a rapidly rotating neutron star [1]
endowed with a very strong magnetic field. By now more than a thousand
pulsars have been catalogued [2]. Pulsars are by themselves quite inter-
esting [3], but perhaps more so is the structure of the underlying neutron
star. This lecture discusses a project for calculating structure which can
be solved by a student writing either a Fortran or a Methematica pro-
gram for solving the Tolman-Oppenheimer-Volkov (TOV) equations [4] to
calculate masses and radii of neutron stars.

There is much more physics in the problem than just simply integrat-
ing a pair of coupled non-linear differential equations. In addition to the
physics (and even some astronomy ), the student must think about the sizes
of things he or she is calculating, that is, believing and understanding the
answers one gets. Another side benefit is that the student learns about
the stability of numerical solutions and how to deal with singularities. In
the process he or she also learns the inner mechanics of the calculational
package (e.g., Mathematica) being used.

The student should begin with a derivation of the (Newtonian) coupled
equations, and, presumably, become acquainted with the general relativis-
tic (GR) corrections. Before trying to solve these equations, one needs
to work out the relation between the energy density and pressure of the
matter that constitutes the stellar interior, i.e., an equation of state (EoS).
The first EoS’s to try can be derived from the non-interacting Fermi gas
model, which brings in quantum statistics (the Pauli exclusion principal)
and special relativity. It is necessary to keep careful track of dimensions,
and converting to dimensionless quantities is helpful in working these EoS’s
out.

As a warm-up problem the student can, at this point, integrate the
Newtonian equations and learn about white dwarf stars. Putting in the
GR corrections, one can then proceed in the same way to work out the
structure of pure neutron stars (i.e., reproducing the results of Oppen-
heimer and Volkov [4]). It is interesting at this point to compare and see
how important the GR corrections are, i.e., how different a neutron star
is from that which would be given by classical Newtonian mechanics.

Realistic neutron stars, of course, also contain some protons and elec-
trons. As a first approximation one can treat this multi-component sys-
tem within the non-interacting Fermi gas model. In the process one learns
about chemical potentials. To improve upon this treatment we must in-
clude nuclear interactions in addition to the degeneracy pressure from the
Pauli exclusion principle that is used in the Fermi gas model. The nucleon-
nucleon interaction is not familiar to a student in general, but there is a
simple model for the nuclear matter EoS. It has parameters which are fit
to quantities such as the binding energy per nucleon in symmetric nuclear
matter, the so-called nuclear symmetry energy (it is really an asymmetry)



and the (not so well known) nuclear compressibility. Working this out is
also an excellent exercise, which even touches on the speed of sound (in
nuclear matter). With these nuclear interactions in addition to the Fermi
gas energy in the EoS, one finds (pure) neutron star masses and radii which
are quite different from those using the Fermi gas EoS.

The above three paragraphs provide the outline of what follows in this
lecture.

We should point out that there is a similar discussion of this matter
by Balian and Blaizot [7]. Much of the material we discuss here is covered
in the textbook by Shapiro and Teukolsky [8]. However, the emphasis
here is on students learning through computation. One of our intentions
is to establish here a framework for the student to interact with his or her
own computer program, and in the process learn about the physical scales
involved in the structure of compact degenerate stars.

2 The Tolman-Oppenheimer-Volkov Equation

2.1 Newtonian Formulation

A nice first exercise is to derive the following structure equations from
classical Newtonian mechanics,
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Here G = 6.673 x 1078 dyne-cm?/g? is Newton’s gravitational constant,
p(r) is the mass density at the distance r (in gm/cm?), and € is the corre-
sponding energy density (in ergs/cm?®) [9]. The quantity M(r) is the total
mass inside the sphere of radius r. A sufficient hint for the derivation is
shown in Fig. 1. (Challenge question: the above equations actually hold
for any value of r, not just the large-r situation depicted in the figure. Can
the student also do the derivation in spherical coordinates where the box
becomes a cut-off wedge?)

Note that, in the second halves of these equations, we have departed
slightly from Newtonian physics, defining the energy density €(r) in terms
of the mass density p(r) according to the (almost) famous Einstein equa-
tion from special relativity,

e(r) = p(r)c* . (4)

This allows Eq. (1) to be used when one takes into account contributions
of the interaction energy between the particles making up the star.

In what follows, we may inadvertently set ¢ = 1 so that p and € become
indistinguishable. We’ll try not to do that here so students following the
equations in this presentation can keeping checking dimensions as they
proceed. However, they might as well get used to this often-used physicists’
trick of setting ¢ = 1 (as well as i = 1).

To solve this set of equations for p(r) and M(r) one can integrate
outwards from the origin (r = 0) to the point » = R where the pressure
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Figure 1: Diagram for derivation of Eq. (1)

goes to zero. This point defines R as the radius of the star. One needs an
initial value of the pressure at » = 0, call it pg, to do this, and R and the
total mass of the star, M(R) = M, will depend on the value of py.

Of course, to be able to perform the integration, one also needs to know
the energy density €(r) in terms of the pressure p(r). This relationship is
the equation of state (EoS) for the matter making up the star. Thus, a
lot of the student’s effort in this project will necessarily be directed to
developing an appropriate EoS for the problem at hand.

2.2 General Relativistic Corrections

The Newtonian formulation presented above works well in regimes where
the mass of the star is not so large that it significantly “warps” space-
time. That is, integrating Eqs. (1) and (2) will work well in cases when
general relativistic (GR) effects are not important, such as for the compact
stars known as white dwarfs. By creating a quantity using G that has
dimensions of length, the student can see when it becomes important to
include GR effects. (This happens when GM /c? R becomes non-negligible. )
As the student will see, this is the case for typical neutron stars.

It is probably not to be expected that an undergraduate physics major
derive the GR corrections to the above equations. For that, one can look at
various textbook derivations of the Tolman-Oppenheimer-Volkov (TOV)
equation [5] [8]. It should suffice to simply state the corrections to Eq. (1)
in terms of three additional (dimensionless) factors,
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The differential equation for M(r) remains unchanged. The first two fac-
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tors in square brackets represent special relativity corrections of order
v?/c?. This can be seen in that pressure p goes, in the non-relativistic
limit, like k%/2m = mv?/2 (see Eq. (14) below) while € and Mc? go like
mc?. That is, these factors reduce to 1 in the non-relativistic limit. (The
student should have, by now, realized that p and e have the same dimen-
sions.) The last factor is a GR correction and the size of GM/c?r, as we
emphasized above, determines whether it is important (or not).

Note that the correction factors are all positive definite. It is as if New-
tonian gravity becomes stronger at every r. That is, special and general
relativity strengthens the relentless pull of gravity!

The coupled non-linear equations for p(r) and M(r) can also in this
case be integrated from r = 0 for a starting value of py to the point where
p(R) = 0, to determine the star mass M = M(R) and radius R for this
value of pg. These equations invoke a balance between gravitational forces
and the internal pressure. The pressure is a function of the EoS, and for
certain conditions it may not be sufficient to withstand the gravitational
attraction. Thus the structure equations imply there is a maximum mass
that a star can have.

2.3 White Dwarf Stars
2.3.1 A Few Facts

Let us violate (in words only) the second law of thermodynamics by warm-
ing up on cold compact stars called white dwarfs. For these stellar objects,
it suffices to solve the Newtonian structure equations, Eqgs. (1)-(3) [10].

White dwarf stars [11] were first observed in 1844 by Friedrich Bessel
(the same person who invented the special functions bearing that name).
He noticed that the bright star Sirius wobbled back and forth and then
deduced that the visible star was being orbited by some unseen object, i.e.,
it is a binary system. The object itself was resolved optically some 20 years
later and thus earned the name of “white dwarf.” Since then numerous
other white (and the smaller brown) dwarf stars have been observed (or
detected).

A white dwarf star is a low- or medium-mass star near the end of its
lifetime, having burned up, through nuclear processes, most of its hydrogen
and helium forming carbon, silicon or (perhaps) iron. They typically have
a mass less than 1.4 times that of our Sun, Mg = 1.989 x 1033 g [12]. They
are also much smaller than our Sun, with radii of the order of 10* km (to
be compared with Ro = 6.96 x 10° km). These values can be worked out
from the period of the wobble for the dwarf-normal star binary in the usual
Keplerian way. As a result (and as is also the case for neutron stars), the
natural dimensions for discussing white dwarfs are for masses to be in units
of solar mass, Mg, and distances to be in km. Using these numbers the
student should be able to make a quick estimate of the (average) densities
of our Sun and of a white dwarf, to get a feel for the numbers that he will
be encountering.

Since GM/c?R =~ 10~* for such a typical white dwarf, we can concen-
trate here on solving the non-relativistic structure equations of Sec. 2.1.
(Question: why is it a good approximation to drop the special relativistic
corrections for these dwarfs?)

The reason a dwarf star is small is because, having burned up all the
nuclear fuel it can, there is no longer enough thermal pressure to prevent



its gravity from crushing it down. As the density increases, the electrons
in the atoms are pushed closer together, which then tend to fall into the
lowest energy levels available to them. (The star begins to get colder.)
Eventually the Pauli principle takes over, and the electron degeneracy
pressure (to be discussed next) provides the means for stabilizing the star
against its gravitational attraction [12, 8]. This is the physics behind
the EoS which one needs to integrate the Newtonian structure equations
above, Egs. (1) and (2).

2.3.2 Fermi Gas Model for Electrons

For free electrons the number of states dn available at momentum k per
unit volume is 5 )
d°k 4dmk*dk
dn = LA (6)
(27h)3 (27h)3
(This is a result from their modern physics course that students should re-
view if they don’t remember it.) Integrating, one gets the electron number

density
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The additional factor of two comes in because there are two spin states for
each electron energy level. Here kpc, the Fermi energy, is the maximum
energy electrons can have in the star under consideration. It is a parameter
which varies according to the star’s total mass and its history, but which
the student is free to set in the calculations he or she is about to make.
Each electron is neutralized by a proton, which in turn is accompanied
in its atomic nucleus by a neutron (or perhaps a few more, as in the case of
a nucleus like 6Feqq). Thus, neglecting the electron mass m,. with respect

to the nucleon mass my, the mass density of the star is essentially given
by

p=nmnA/Z, (8)

where A/Z is the number of nucleons per electron. For 12C, A/Z = 2.00,
while for ®Fe, A/Z = 2.15 . Note that, since n is a function of kr, so is
p. Conversely, given a value of p,

3n2p 2\ /?
be=n (22) o)

The energy density of this star is also dominated by the nucleon masses,
ie., e~ pc2.

The contribution to the energy density from the electrons (including
their rest masses) is
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carries the desired dimensions of energy per volume and = kg /mc.c. The
total energy density is then

e=nmyA/Z + ecrec(kr) . (12)

One should check that the first term here is much larger than the second.
To get our desired EoS, we need an expression for the pressure. The fol-

lowing presents a problem (!) that the student should work through. From

the first law of thermodynamics, dU = d@ — pdV, then at temperature T’

fixed at T = 0 (where d@ = 0 since dT = 0)

ou _ pd(e/n) de

=n——e=np—e, (13)
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where the energy density here is the total one given by Eq. (12). The
quantity p; = de/dn; defined in the last equality is known as the chemical
potential of the electrons. This is a concept which will be especially useful
in Section 5 where we consider an equilibrium mix of neutrons, protons
and electrons.

Utilizing Eq. (10), Eq. (13) yields the pressure (another problem!)

plkr) = L/kF(k2C2+mQC4)_1/2k4dk
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(Hint: use the n?d(e/n)/dn form and remember to integrate by parts.)

Using Mathematica [13] the student can show that the constant ¢y =
1.42 x 10%* in units that, at this point, are erg/cm?. (Yet another problem:
verify that the units of € are as claimed [14].) One also finds that Math-
ematica can perform the integrals analytically. (We quoted the results
already in the equations above.) They are a bit messy, however, as they
both involve an inverse hyperbolic sine function, and thus are not terribly
enlightening. It is useful, however, for the student to make a plot of € ver-
sus p (such as shown in Fig. 2) for values of the parameter 0 < kr < 2m,.
This curve has a shape much like ¢*/3 (the student should compare with
this), and there is a good reason for that.

Consider the (relativistic) case when kg > m.. Then Eq. (14) simpli-
fies to

kr/mec 2 4/3
€0 3 €0 4 he (3m°Zp
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A star having simple EoS like p = K¢€7 is called a “polytrope”, and we
therefore see that the relativistic electron Fermi gas gives a polytropic EoS
with v = 4/3. As will be seen in the next subsection, a polytropic EoS
allows one to solve the structure equations (numerically) in a relatively
straight-forward way [15].
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Figure 2: Relation between pressure p (y-axis) and energy density € (z-axis) in
the free electron Fermi gas model. Units are ergs/cm®. Note that the pressure
is much smaller than the energy density, since the latter is dominated by the
massive nucleons.

There is another polytropic EoS for the non-interacting electron Fermi
gas model corresponding to the non-relativistic limit, where kr < m.. In
a way similar to the derivation of Eq. (15), one finds

K2 3n2z \°/*
_ 5/3 _
P = Knon—rel€ ,  where Kpon—rel = 1572m, (AmNC2) : (17)
[Question: what are the units of Ky and Kpon—re1? Task: confirm that

in the appropriate limits, Eqs. (10) and (14) reduce to those in Egs. (15)
and (17).]

2.3.3 The Structure Equations for a Polytrope

As mentioned earlier, we want to express our results in units of km and
Mg. Thus it is useful to define M(r) = M(r)/Mg. The first Newtonian
structure equation, Eq. (1), then becomes

18
dr r (18)
where the constant Rp = GMg/c? = 1.47 km. (That is, for those who
already know, Ry is one half the Schwartzschild radius of our sun.) In this
equation p and e still carry dimensions of, say, ergs/cm3. Therefore, let us
define dimensionless energy density and pressure, € and p, by

P = €0p, € = €€ (19)

where ¢y has dimensions of energy density. This €y is not the same as
defined in Eq. (11). Its numerical choice here is arbitrary, and a suitable
strategy is to make that choice based on the dimensionful numbers that
define the problem at hand. We’ll employ this strategy to fix it below. For



a polytrope, we can write
p=Ké", where K = Ke,'~' is dimensionless. (20)
It is easier to solve Eq. (18) for p, so we should express € in terms of it,
e= (p/R)7. (21)
Equation (18) can now be recast in the form

dp(r) — ap(r)/ T M(r)
dr r2 ’ (22)

where the constant o is
a=Ry/K"Y" = Ro/(Kej ")/, (23)

Equation (22) has dimensions of 1/km, with « in km (since Ry is). That
is, it is to be integrated with respect to r, with r also in km.

We can choose any convenient value for « since ¢q is still free. For a
given value of a, €q is then fixed at

1 R\
= e _— . 24
We also need to cast the other coupled equation, Eq. (2), in terms of

dimensionless p and M,

dM(r)
dr
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Equation (25) also carries dimensions of 1/km, the constant S having
dimesnions 1/km®. Note that, in integrating out from r = 0, the initial
value of M(0) = 0.

2.3.4 Integrating the Polytrope Numerically

Our task is to integrate the coupled first-order differential equations (DE),
Egs. (22) and (25), out from the origin, r = 0, to the point R where the
pressure falls to zero, p(R) = 0 [17]. To do this we need two initial values,
p(0) (which must be positive) and M(0) ( which we already know must
be 0). The star’s radius, R, and its mass M = M(R) in units of My will
vary, depending on the choice for p(0).

For purposes of numerical stability in solving Egs. (22) and (25), we
want the constants « and (8 to be not much different from each other (and
probably not much different from 1). We will see below that this can be
arranged for both of the two polytropic EoS’s discussed above for white
dwarfs.

Our coupled DE’s are quite non-linear. In fact, because of the p'/7
factors, the solution will become complex when p(r) < 0, i.e., when r > R.
Thus we will want to recognize when this happens. How can this be
programmed?



Mathematica and similar symbolic/numerical packages have built-in
first-order DE solvers. Perhaps the solver is as simple as a fixed, equal-
step Runge-Kutta routine (as in MathCad 7 Standard), but there are often
more sophisticated solvers in more recent versions. These packages also
allow for program control constructs such as do-loops, whiles and the like.

Thus, consider a do-loop on a variable 7 running in appropriately small
steps over a range that is sure to contain the expected value of R. Call
the DE solver inside this loop, integrating the coupled DE’s from r = 0 to
7. When the solver routine exits, check to see if the last value of p, i.e.,
p(7), has a real part which has gone negative. If so, then break out of the
loop, calling R = 7. If not, go on to the next larger value of ¥ and call the
DE solver again.

More discussion of how to program the integration of the DE’s is in-
appropriate here, since we want to encourage the student to learn from
programming to appreciate how the symbolic/numerical package is used.

2.3.5 The Relativistic Case kg > m,

This is the regime for white dwarfs with the largest mass. A larger mass
needs a greater central pressure to support it. However, large central
pressures mean the squeezed electrons become relativistic.

Recall that the polytrope exponent v = 4/3 for this case and the
equation of state is given by P = K,q€e” with Ko given by Eq. (16).
After some trial and error, we chose in our program (the student may
want to try something else)

o= Ry =1.473 km [kp > m], (27)
which in turn fixes, from Eq. (24),
€0 = 7.463 x 10%%ergs/cm® = 4.17 My 2 /km? [kr > me]. (28)

The first question the student should ask, in checking this number, is
whether such a large number is physically reasonable.
Continuing with the kp > m, numerics, Egs. (16) and (26) give

8 = 52.46 /km® [kp > me], (29)

which is about 30 times larger than «, but probably manageable from the
standpoint of performing the numerical integration.

In our first attempt to integrate the coupled DE’s for this case (using
a do-loop as described above) we chose p(0) = 1.0. This gives us a white
dwarf of radius R ~ 2 km, which is miniscule compared with the expected
radius of ~ 10 km! Why? What went wrong?

The student who also makes this kind of mistake will eventually realize
that our choice of scale, g = 4.17Myc? /kmg, represents a huge energy
density. One can simply estimate the average energy density of a star
with a 10* km radius and a mass of one solar mass by the ratio of its rest
mass energy to its volume,

2
(€) = M]%C = 107" Mgc? /km? (30)
which is much, much smaller than the ¢y here. In addition, the pressure p
is about 2000 times smaller than the energy density € (see Fig. 2). Thus,
choosing a starting value of p(0) ~ 1075 would probably be more physical.




Table 1: Radius R (in km) and mass M (in Mg) for white dwarfs with a
relativistic electron Fermi gas EoS.

p(0) R M
10714 4840 | 1.2431
1071 | 8600 | 1.2432
10716 | 15080 | 1.2430

Doing so does give much more reasonable results. Table 1 shows our
program’s results for R and M and how they depend on 5(0). The surprise
here is that, within the numerical error expected, all these cases have the
same mass! Increasing the central pressure doesn’t allow the star to be
more massive, just more compact.

It turns out that this result is correct, i.e., that the white dwarf mass
is independent of the choice of the central pressure. It is not easy to see
this, however, from the numerical integration we have done here. The
discussion in terms of Lane-Emden functions [15] shows why, though the
mathematics here might be a bit steep for many undergraduates. For this
reason, we quote without proof the analytic results. For the case of a
polytropic equation of state p = K€" , the mass

3/2
M:4ﬂ62<v—%>/3( Ky )) & (). (31)

drG(y -1

_ By -2y
R = 47TG(’y—1) Cl € . (32)

In the above-mentioned solutions, {; and 6(¢;) are numerical constants
that depend on the polytropic index v. By examining Eq. (31), we see
that for v = 4/3 the mass is independent of the central energy density,

and hence also the central pressure pg. Also, note that from Eq. (32), the
(=227 _ /i,

and the radius

radius decreases with increasing central pressure as R « p
In any case, the student should notice this point and use it as check of the
numerical results obtained. Figure 3 shows the dependence of p(r) and
M(r) on distance for the case p(0) = 10716, It is interesting that p(r)
becomes small and essentially flat around 8000 km before finally going
through zero at R = 15,080 km.

The results and graphs shown here were generated with a Mathematica
4.0 program, but we were able to reproduce them using MathCad 7 Stan-
dard. In that case, however, programming a loop is difficult, so we searched
by hand for the endpoint (where the real part of p(r) goes negative). More
recent versions of MathCad have more complete program constructs, such
as while-loops, so this process could undoubtedly be automated. (Alter-
natively, the student might try to solve for a root of p(r) = 0.)

2.3.6 The Non-Relativistic Case, kr < m.

Eventually, as the central pressure p(0) gets smaller, the electron gas is
no longer relativistic. Also as the pressure gets smaller, it can support
less mass. This moves us in the direction of the less massive white dwarfs,
and, as it turns out, these dwarfs are larger (in radius) than the ones in
the last section.
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Figure 3: p(r) and M(r) for white dwarfs using the relativistic electron Fermi
gas model. Here p(0) = 10716,
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Table 2: Radius R (in km) and mass M (in Mg) for white dwarfs with a
non-relativistic electron Fermi gas EoS.

p(0) R M
1071 | 10620 | 0.3941
10716 | 13360 | 0.1974

In the extreme case, when kr < m., we can integrate the structure
equations for the other polytropic EoS, where v = 5/3. The programming
for this is very much the same as in the 4/3 case, but the numbers involved
are quite different (as are the results).

Inserting the values of the physical constants in Eq. (17), we find

cm?

Kuion—rel = 3.309 x 10723 (33)

ergs2/3
This time, however, and after some experimentation, we chose the constant
a = 0.05 km [kr < m], (34)

which then fixes
o = 2.488 x 10*7ergs/cm® = 0.01392 My ¢ /km® [kr < me]. (35)

Note that this €y is much smaller than our choice for the relativistic case.
The other constant we need, from Eq. (26), is

B =0.005924 /km® [kr < me], (36)

which, unlike the relativistic case, is not larger than « but smaller.

When we first ran our Mathematica code for this case, we (inadver-
tantly) tried a value of p(0) = 10712, This gave us a star with radius R
= 5310 km and mass M = 3.131. Oops!, that mass is bigger than the
largest mass of 1.243 that we found for the relativistic EoS! What did we
do wrong?

What happened (and the student can set up her program so this trap
can be avoided) is that the choice p(0) = 10712 violates the assumption
that kr < m.. One really needs values for p(0) < 4 x 10715, This says,
in fact, that the relativistic p(0) = 107!¢ case that we plotted in Fig. 3 is
not really relativistic.

Results for the non-relativistic case for the last two values of p(0) in Ta-
ble 1 are shown in Table 2. It is quite instructive to compare the differences
in the two tables. The masses are, of course, smaller, as expected, and
now they vary with p(0). Somewhat surprising is that the non-relativistic
radius is bigger for p(0) = 107° but smaller for p(0) = 10716, Figure 4
shows the pressure distribution for the latter case, to be compared with
the corresponding graph in Fig. 3. Note that this pressure curve does not
have the peculiar, long flat tail found using the relativistic EoS.

In fact, by this time the student should have realized that neither
of these polytropes is very physical, at least not for all cases. The non-
relativistic assumption certainly does not work for central pressures p(0) >
107, i.e., for the more massive (and more common) white dwarfs. On
the other hand, the relativistic EoS certainly should not work when the
pressure becomes small, i.e., in the outer regions of the star (where it
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Figure 4: p(r) for a white dwarf using the non-relativistic electron Fermi gas
model with central pressure p(0) = 10~16.

eventually goes to zero at the star’s radius). So, can one find an EoS to
cover the whole range of pressures?

We haven’t actually done this for white dwarfs, but the program would
be much like that discussed below for the full neutron star. Given the
transcendental expressions for energy and pressure that generate the curve
shown in Fig. 2, it should be possible to find a fit (using, for example, the
built-in fitting function of Mathematica) like

é(p) = Angp>® + Arp>/*. (37)

The second term dominates at high pressures (the relativistic case), but the
first term takes over for low pressures when the kr > m, assumption does
not hold. (Setting the two terms equal and solving for p, as Chandrasekhar
and Fowler did, gives the value of p when special relativity starts to be
important.) This expression for (p) could then be used in place of the
/7 factors on the right hand sides of the structure equations. Proceed to
solve numerically as before. We leave this as an exercise for the interested
student.

2.4 Pure Neutron Star, Fermi Gas EoS

Having by now become warm, the student can now tackle neutron stars.
Here one must include the general relativistic (GR) contributions repre-
sented by the three dimensionless factors in the TOV equation, Eq. (5).
One of the first things that comes to mind is how one deals numerically
with the (apparent) singularities in these factors at » = 0 [18].

Also, as in the case of the white dwarfs, there is a question of what
to use for the EoS. In this section we show what can be done for pure
neutron stars, once again using a Fermi gas model for, now, a neutron gas
instead of an electron gas. Such a model, however, is unrealistic for two
reasons. First, a real neutron star consists not just of neutrons but contains
a small fraction of protons and electrons (to inhibit the neutrons from
decaying into protons and electrons by their weak interactions). Second,
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Table 3: Radius R (in km) and mass M (in M) for pure neutron stars with a
non-relativistic Fermi gas EoS.

p(0) | R (Newton) | M (Newton) | R (GR) | M (GR)
10~* 16.5 0.7747 15.25 0.6026
10~° 20.8 0.3881 20.00 0.3495
107° 26.3 0.1944 25.75 0.1864

the Fermi gas model ignores the strong nucleon-nucleon interactions, which
give important contributions to the energy density. Each of these points
will be dealt with in sections below.

2.4.1 The Non-Relativistic Case, kr < m,

For a pure neutron star Fermi gas EoS one can proceed much as in the
white dwarf case, substituting the neutron mass m,, for the electron mass
me in the equations found in Sec. 3. When kr < m, one finds, again,
a polytrope with v = 5/3. (More exercises for the student.) The K
corresponding to that in Eq. (17) is

h? 327
Knon—rel = (

1572m,,

5/3 cm?
) = 6.483 x 10726 (38)

Am,,c? ergs?/3

This time, choosing v = 1 km, one finds the scaling factor from Eq. (24)
to be
€0 = 1.603 x 10 ergs/cm® = 0.08969 My c? /km® . (39)

Further, from Egs. (20) and (26),
K =1914 and 8 =0.7636 /km®. (40)

Note that, in this case, the constants o and (3 are of similar size.

Making an estimate of the average energy density of a typical neutron
star (mass = Mg, R = 10 km), one expects that a good starting value
for the central pressure p(0) to be of order 10~ or less. Our program for
this situation is essentially the same as the one for non-relativistic white
dwarfs but with appropriate changes of the distance scale. It gives the
results shown in Table 3. Note that the GR effects are small, but not
negligible, for this non-relativistic EoS. As in the white dwarf case, these
are the smaller mass stars. One sees that as the mass gets smaller, the
gravitational attraction is less and thus the star extends out to larger radii.

2.4.2 The Relativistic Case, kr > m,

Here there is again a polytropic EoS, but with v = 1. In fact, p = €/3, a
well-known result for a relativistic gas. The conversion to dimensionless
quantities becomes very simple in this case with relationships like K =
K = 1/3. It is still useful to factor out an €p, which in our program we
took to have a value 1.6 x 103® erg/cm?, as suggested by the value in the

previous sub-section. Then, if we choose this time
a =3Ry = 4.428 km (41)
we find

B =3.374 /km®. (42)
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We expect central pressures p(0) in this case to be greater than 107%.
Other than these changes, we wrote a similar program to the one above,
taking care to avoid exponents like 1/(y — 1).

Running that code gives, at first glance, enormous radii, values of R
greater than 50 km! We can imagine the student looking frantically for
a program bug that isn’t there. In fact, what really happens is that, for
this EoS, the loop on 7 runs through its whole range, since the pressure
P(r) never passes through zero. (A plot of p(r) looks quite similar, but
for distance scale, to that shown in Fig. 3, where v = 4/5.) It only falls
monotonically toward zero, getting ever smaller. By the time the student
recognizes this, she will probably also have realized that the relativistic gas
EoS is inappropriate for such small pressures. Something better should be
done (as in the next sub-section).

It turns out that the structure equations for v = 1 are sufficiently
simple that an analytic solution for p(r) can be found, which corroborates
the above remarks about not having a zero at a finite R. A suggestion for
the student is to try a power-law Ansatz.

2.4.3 The Fermi Gas EoS for Arbitrary Relativity

In order to avoid the trap of the relativistic gas, one should find an EoS
for the non-interacting neutron Fermi gas which works for all values of the
relativity parameter = kp/myc. Taking a hint from the two polytropes,
one can try to fit the energy density as a function of pressure, each given
as a transcendental function of kg, with the form

é(p) = ANrPY® + ARp. (43)

For low pressures the non-relativistic first term dominates over the second.
(The power in the relativistic term is changed from that in Eq. (37).) It is
again useful to factor out an €y from both € and p. In this case, it is more
natural to define it as
4.5 2
m,c 36 €rgs Mge
€0 = —5—= = 5.346 x 10> — = 0.003006 ——-. 44
0 (372h)3 cm? km? (44)
Mathematica can easily create a table of exact € and p values as a
function of kp. The dimensionless A-values can then be fit using its built-
in fitting function. From our efforts we found, to an accuracy of better
than 1% over most of the range of kr [19],

Ang = 2.4216 , Ag = 2.8663. (45)

We used the fitted functional form for € of Eq. (43) in a Mathematica
program similar to that for the neutron star based on the non-relativistic
EoS. With the ¢y of Eq. (44) and choosing a = Ry = 1.476 km, we obtain
B =0.03778. Our results for a starting value of p(0) = 0.01, clearly in the
relativistic regime, are

R = 15.0, M =1.037, Newtonian equations (46)
R = 134, M =0.717, full TOV equation. (47)

For this more massive star, the GR effects are significant (as should be
expected from the size of GM/c?R, about 10% in this case). Figure 5
displays the differences.
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Figure 5: p(r) and M(r) (r in km) for a pure neutron star with central pressure
p(0) = 0.01, using a Fermi gas EoS fit valid for all values of k. The thin curves
are results from the classical Newtonian structure equations, while the thick
ones include general relativistic corrections.
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Figure 6: The mass M (in Mg) and radius R (in km) for pure neutron stars,
using a Fermi gas EoS. The stars of low mass and large radius are solutions of
the TOV equations for small values of central pressure p(0). The stars to the
right of the maximum at R = 11 are stable, while those to the left will suffer
gravitational collapse.

It is now instructive to make a long run of calculations for a range of
P(0) values. We display in Fig. 6 a (parametric) plot of M and R as they
depend on the central pressure. The low-mass/large-radius stars are to
the right in the graph and correspond to small starting values of p(0). As
the central pressure increases, the total mass that the star can support
increases. And, the bigger the star mass, the bigger the gravitational
attraction which draws in the periphery of the star, making stars with
smaller radii. That is, increasing p(0) corresponds to “climbing the hill,”
moving upward and to the left in the diagram.

At about p(0) = 0.03 one gets to the top of the hill, achieving a max-
imum mass of about 0.8 Mg at a radius R ~ 11 km. That maximum M
and its R agree with Oppenheimer and Volkov’s seminal 1939 result for a
Fermi gas EoS.

What about the solutions in Fig. 6 that are “over the hill,” i.e., to the
left of the maximum? It turns out that these stars are unstable against
gravitational collapse into a black hole. The question of stability, however,
is a complicated issue [20], perhaps too difficult for a student at this level.
The fact that things collapse to the left of the maximum, however, means
that one probably shouldn’t worry too much about the peculiar curly-
cue tail to the M-R curve in the figure. It appears to be an artifact for
very large values of p(0), also seen in other calculations, even though it is
especially prominent for this Fermi gas EoS.

2.4.4 Why Is There a Maximum Mass?

On general grounds one can argue that cold compact objects such as white
dwarfs and neutron stars must possess a limiting mass beyond which stable
hydrostatic configurations are not possible. This limiting mass is often
called the maximum mass of the object and was briefly mentioned in the
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discussion at the end of Sec. 2.2 and that relating to Fig. 6. In what
follows, we outline the general argument.

The thermal component of the pressure in cold stars is by definition
negligible. Thus, variations in both the energy density and pressure are
only caused by changes in the density. Given this simple observation, let
us examine why we expect a maximum mass in the Newtonian case.

Here, an increase in the density results in a proportional increase in the
energy density. This results in a corresponding increase in the gravitational
attraction. To balance this, we require that the increment in pressure is
large enough. However, the rate of change of pressure with respect to
energy density is related to the speed of sound (see Sec. 6.3). In a purely
Newtonian world, this is in principle unbounded. However, the speed of
all propagating signals cannot exceed the speed of light. This then puts a
bound on the pressure increment associated with changes in density.

Once we accept this bound, we can safely conclude that all cold com-
pact objects will eventually run into the situation in which any increase in
density will result in an additional gravitational attraction that cannot be
compensated for by the corresponding increment in pressure. This leads
naturally to the existence of a limiting mass for the star.

When we include general relativistic corrections, as discussed in Sec. 2.2
earlier, they act to “amplify” gravity. Thus we can expect the maximum
mass to occur at a somewhat lower mass than in the Newtonian case.

2.5 Neutron Stars with Protons and Electrons, Fermi
Gas EoS

As mentioned at the beginning of the last section, neutron stars are not
made only of neutrons. There must also be a small fraction of protons and
electrons present. The reason for this is that a free neutron will undergo
a weak decay,

n—pt+e +., (48)

with a lifetime of about 15 minutes. So, there must be something that
prevents this decay in the case of the star, and that is the presence of the
protons and electrons.

The decay products have low energies (m, — m, —m. = 0.778 MeV),
with most of that energy being carried away by the light electron and
(nearly massless) neutrino [21]. If all the available low-energy levels for
the decay proton are already filled by the protons already present, then
the Pauli exclusion principle takes over and prevents the decay from taking
place.

The same might be said about the presence of the electrons, but in any
case the electrons must be present within the star to cancel the positive
charge of the protons. A neutron star is electrically neutral. We saw
earlier that the number density of a particle species is fixed in terms of
that particle’s Fermi momentum [see Eq. (7)]. Thus equal numbers of
electrons and protons implies that

[ (49)

In addition to charge neutrality, we also require weak interaction equi-
librium, i.e., as many neutron decays [Eq. (48)] taking place as electron
capture reactions, p + e~ — n + v.. This equilibrium can be expressed in
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terms of the chemical potentials for the three particle species,

fin = pp + e - (50)

We already defined the chemical equilibrium for a particle in Sec. 3.2 after
Eq. (13),
de

wilkr:) = et (k:?;Z +m?)1/2, i=mn,p,e. (51)
n !

where, for the time being, we have set ¢ = 1 to simplify the equations
somewhat. (The student is urged to prove the right-hand equality.) From
Egs. (49), (50), and (51) we can find a constraint determining kg, for a
given kp

(K +mi) 2 = (K +mp) 2 — (K, +m)2 =0, (52)

While an ambitious algebraist can probably solve this equation for kr,
as a function of kr,, we were somewhat lazy and let Mathematica do it,
finding

(K%, +mip —m?)? = 2mp(kE,, +mi +m?) +my]'/2
kpp(kpn) = 2(k%, +m2)1/2 53)

k2 1+ m2 — m2
~  Lm ~ P for Me _, 0. (54)
2(k%, +m2)t/? kpn

The total energy density is the sum of the individual energy densities,

Etot = Z €, (55)

i=n.p,e
where s
€i(kri) = /o , (k% +m) 2K dk = e & (i, y3) (56)
and, as before [22],
c = mi/3mh3, (57)
(i, yi) = /“ (w? + y}) " udu, (58)
T = k;i/mz‘, Yi = mi/my, . (59)

The corresponding total pressure is

Dtot = Z Di, (60)

1=n,p,e
kr;

pilkrs) = / (K + my) " V2hdk = eopi(an i), (61)
0

ploww) = [ i) Vi (62)
0

Using Mathematica the (dimensionless) integrals can be expressed in
terms of log and sinh™' functions of z; and y;. One can then generate a
table of € versus pior values for an appropriate range of kr,’s. This, in
turn, can be fitted to the same form of two terms as before in Eq. (43).
We found, this time, the coefficients to be

Ang = 2572, Agr =2.891. (63)
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These coefficients are not much changed from those in Eq. (45) for the
pure neutron star. Therefore, we expect that the M versus R diagram for
this more realistic Fermi gas model would not be much different from that
in Fig. 6.

2.6 Introducing Nuclear Interactions

Nucleon-nucleon interactions can be included in the EoS (they are im-
portant) by constructing a simple model for the nuclear potential that
reproduces the general features of (normal) nuclear matter. In doing so
we were much guided by the lectures of Prakash [6].

We will use MeV and fm (1072 cm) as our energy and distance units
for much of this section, converting back to My and km later. We will
also continue setting ¢ = 1 for now. In this regard, the important number
to remember for making conversions is fic = 197.3 MeV-fm. We will also
neglect the mass difference between protons and neutrons, labeling their
masses as my.

The Bethe-Weizédcker mass formula [23] for the binding energy of nu-
clides with Z protons and N neutrons (mass number A = N + Z) reads

(N—-2)* 32Z(Z-1)e?
A 5 47T€0RA

BE = EVOIA - ESurfA2/3 - ESym + EPaira (64)
where the volume contribution to the binding energy pro nucleon is the
dominant one in the limit of infinite nuclear matter lim 4o Evol = (E/A—
MN)|n, = 16 MeV. The suface energy is Fgus = 17 MeV, the symmetry
energy is Fgym = 30 MeV and for the pairing energy there are three pos-
sibilities Fpair = {A,0, —A} for {even-even, even-odd, odd-odd} nuclei,
respectively. The pairing energy gap is A = 25 A~! MeV. The remaining
term in (64) is the Coulomb energy, which depends on the nuclear charge
number Z and the nuclear radius R4 = 1.24 A'/3 fm. For normal sym-
metric nuclear matter (N = Z), an equilibrium number density ng of 0.16
nucleons/fm? is obtained. For this value of ng the Fermi momentum is
k% =263 MeV/c [see Eq. (7)]. This momentum is small enough compared
with my = 939 MeV/c? to allow a non-relativistic treatment of normal
nuclear matter. At this density, the average binding energy per nucleon,
BE = E/A—my, is —16 MeV. These are two physical quantities we def-
initely want our nuclear potential to respect, but there are two more that
we’ll need to fix the parameters of the model.

We chose one of these as the nuclear compressibility, Ky, to be defined
below. This is a quantity which is not all that well established but is in
the range of 200 to 400 MeV. The other is the so-called symmetry energy
term, which, when Z = 0, contributes about 30 MeV of energy above the
symmetric matter minimum at ng. (This quantity might really be better
described as an asymmetry parameter, since it accounts for the energy
that comes in when N # Z.)

2.6.1 Symmetric Nuclear Matter

We defer the case when N # Z, which is our main interest in this paper, to
the next sub-section. Here we concentrate on getting a good (enough) EoS
for nuclear matter when N = Z, or, equivalently, when the proton and
neutron number densities are equal, n, = n,. The total nucleon density
n =Ny + Ny.
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We need to relate the first three nuclear quantities, ng, BE, and Ky
to the energy density for symmetric nuclear matter, e(n). Here n = n(kp)
is the nuclear density (at and away from ng). We will not worry in this
section about the electrons that are present, since, as was seen in the last
section, its contribution is small. The energy density now will include the
nuclear potential, V' (n), which we will model below in terms of two simple
functions with three parameters that are fitted to reproduce the above
three nuclear quantities. [The fourth quantity, the symmetry energy, will
be used in the next sub-section to fix a term in the potential which is
proportional to (N — Z)/A.]

First, the average energy per nucleon, E/A, for symmetric nuclear
matter is related to € by

E(n)/A =e(n)/n, (65)

which includes the rest mass energy, my and has dimensions of MeV. As
a function of n, F(n)/A — my has a minimum at n = ny with a depth
BE = —16 MeV. This minimum occurs when

%(#):%(?):Oa‘cn:no. (66)

This is one constraint of the parameters of V(n). Another, of course, is
the binding energy,
@—mN:BE at n=ng. (67)
n
The positive curvature at the bottom of this valley is related to the nuclear
(in)compressibility by [24]

K(n) =921 _g {nQ & (£)+ ond (5)} , (68)

dn dn2 \n dn \n

using Eq. (13), which defines the pressure in terms of the energy density.
At n = ng this quantity equals K. (The factor of 9 is a historical artifact
from the convention originally defining Kj.)
(Question: why does one not have to calculate the pressure at n = ng?)
The N = Z potential in €(n) we will model as [6]
212
€(n) — 3r°kn A

+ + B_ o (69)
5omy 20 T a1t

where u = n/ng and o are dimensionless and A and B have dimensions of
MeV. The first term represents the rest mass energy and the second the
average kinetic energy per nucleon. [These two terms are leading in the
non-relativistic limit of the nucleonic version of Eq. (10).] For kr(ng) = k%
we will abbreviate the kinetic energy term as <E%>, which evaluates to
22.1 MeV. The kinetic energy term in Eq. (69) can be better written as
()l

From the above three constraints, Eqgs. (66)-(68), and noting that u = 1
at n = ng, we get three equations for the parameters A, B, and o:

A B
EWN+=4+— = BE
(Bp)+ 5+ 07 , (70)
2 A Bo
Z(E® al = 1
3< F>+2+0+1 0, (71)
10 K
5 (Ep)+A+Bo = ?". (72)
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Figure 7: The average energy per nucleon, less its rest mass, as a function of
u = n/ng (in MeV). The position of the minimum is at n = ng = 0.16 fm~3,
its depth there is BE = —16 MeV, and its curvature (second derivative) there
corresponds to nuclear compressibility Ko = 400 MeV.

Solving these equations (which we found easier to do by hand than with
Mathematica), one finds

Ko +2(EY
0 . < F> ’ (73)
3(E}) —9BE
c+1 |1 0
B = —(En)— BE 4
e - nn). )
5
A = BE—§<E%>—B. (75)
Numerically, for Ky = 400 MeV (which is perhaps a high value),
A=-122.2MeV, B =06539MeV, o=2112. (76)

Note that ¢ > 1, a point we will come back to below, since it violates a
basic principle of physics called “causality.”

The student can try other values of K to see how the parameters A,
B, and o change. More interesting is to see how the interplay between the
A- and B-terms gives the valley at n = ng. Figure 7 shows E/A — my
as a function of n using the parameters of Eq. (76). We would hope the
student notices the funny little positive bump in this plot near n = 0 and
sorts out the reason for its occurrence.

Given €(n) from Eq. (69) one can find the pressure using Eq. (13),

ut . (T7)

€ 2 A Bo
p(n) =n"— (—) =no [g <E%>U5/3+5u2+ —
For the parameters of Eq. (76) its dependence on n is shown in Fig. 8. On
first seeing this graph, the student should wonder why p(u = 1) = p(ng) =
0. And, what is the meaning of the negative values for pressure below
u =17 (Hint: what is “cavitation”?)
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Figure 8: The pressure for symmetric nuclear matter as a function of u = n/ny.
The student should ask what it means when the pressure is negative and why
itisOat u=1.

So, if this N = Z case were all we had for the nuclear EoS, a plot
of e(n) versus p(n) would only make sense for n > ng. Such a plot looks
much like a parabola opening to the right for the range 0 < u < 3. At very
large values of u, however, € ~ p/3, as it should for a relativistic nucleon
gas (see Section 4.2). We don’t pursue this symmetric nuclear matter EoS
further since our interest is in the case when N > Z [25].

2.6.2 Non-Symmetric Nuclear Matter

We continue following Prakash’s notes [6] closely. Let us represent the
neutron and proton densities in terms of a parameter o as
1+« l1-«a
= n y np =
2 2

np n. (78)
This « is not to be confused with the constant defined in Eq. (23). For
pure neutron matter & = 1. Note that
Np—np N—-Z
a= = , 79
- T (79)
so we can expect that the isospin-symmetry-breaking interaction is pro-
portional to « (or some power of it). An alternative notation is in terms
of the fraction of protons in the star,

np 11—«
=—==—. 80
z=— 5 (80)
We now consider how the energy density changes from the symmetric case
discussed above, where oo = 0 (or x = 1/2).
First, there are contributions to the kinetic energy part of € from both
neutrons and protons,

exp(n,a) = = Np + —=——n,
N
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_ n<EF>%[(1+a)5/3+(1fa)5/3 : (81)

By = B <37T2n>2/3 (52)

where

is the mean kinetic energy of symmetric nuclear matter at density n. For
n = ng we note that (Ep) = 3 (E%) /5 [see Eq. (69)]. For non-symmetric
matter, o # 0, the excess kinetic energy is

Aegp(n,a) = exgp(n,a)—exg(n,0)
= n(Epﬁ{% [(1+0¢)5/3+(1a)5/3}1}
= n(EF) {22/3 [(1 —z)*? +x5/3} - 1} . (83)

For pure neutron matter, o = 1,
Aexp(n,a) =n(Er) (22/3 — 1) . (84)

It is also useful to expand to leading order in «,

2
Aegp(n,a) = n(EF>ga2 <1+(;—7+...> (85)
a? o

Keeping terms to order a? is evidently good enough for most purposes.
For pure neutron matter, the energy per particle (which, recall, is ¢/n) at
normal density is Aexg(ng,1)/no ~ 13 MeV, more than a third of the
total bulk symmetry energy of 30 MeV, our fourth nuclear parameter.

Thus the potential energy contribution to the bulk symmetry energy
must be 20 MeV or so. Let us assume the quadratic approximation in «
also works well enough for this potential contribution and write the total
energy per particle as

E(n,a) = E(n,0) 4+ a?S(n), (87)

The isospin-symmetry breaking is proportional to o, which reflects (roughly)
the pair-wise nature of the nuclear interactions.
We will assume S(u), u = n/ng, has the form

Stw) = (22~ 1) (B2 (v~ F(w) + SoF(w).  (89)

Here Sy = 30 MeV is the bulk symmetry energy parameter. The function
F(u) must satisfy F(1) =1 [so that S(u=1) = Sp] and F(0) = 0 [so that
S(u = 0) = 0; no matter means no energy|. Besides these two constraints
there is, from what we presently know, a lot of freedom in what one chooses
for F(u). We will make the simplest possible choice here, namely,

Fu)=u, (89)

but we encourage the student to try other forms satisfying the conditions
on F(u), such as \/u, to see what difference it makes.
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Figure 9: The average energy per neutron (less its rest mass), in MeV, for pure
neutron matter, as a function of u = n/ng. The parameters for this curve are
for a nuclear compressibility Ky of 400 MeV.

Figure 9 shows the energy per particle for pure neutron matter, E(n, 1)—
mpy, as a function of u for the parameters of Eq. (76) and Sy = 30 MeV.
In contrast with the & = 0 plot in Fig. 7, F(n,1) > 0 and is monotonically
increasing. The plot looks almost quadratic as a function of u. The domi-
nant term at large u goes like u?, and o = 2.112 (for this case). However,
one might have expected a linear increase instead. We will return to this
point in Sec. 6.3.

Given the energy density, e¢(n,«) = nouFE(n,a), the corresponding
pressure is, from Eq. (13),

p(n,z) = uie(n,a)fe(n,a)

du
22/3 — 1
p(n,0) + noa® {T (E%) <2u5/3 — 3u2) + Sou2:| (90)

where p(n,0) is defined by Eq. (77). Figure 10 shows the dependence
of the pure neutron p(n,1) and €(n,1) on u = n/ng, ranging from 0 to
10 times normal nuclear density. Both functions increase smoothly and
monotonically from v = 0. We hope the student would wonder why the
pressure becomes greater than the energy density around v = 6. Why
doesn’t it go like a relativistic nucleon gas, p = ¢/37 (Hint: check the
assumptions.)

One can now look at the EoS, i.e., the dependance of p on € (the points
in Fig. 11). The pressure is smooth, non-negative, and monotonically
increasing as a function of e. In fact it looks almost quadratic over this
energy range (0 < uw < 5). This suggests that it might be reasonable to
see if one can make a simple, polytropic fit. If we try that using a form

ple) = ko€, (91)
we find the fit shown in Fig. 11 as the solid curve with
Ko =3.548 x 107%, ~y=2.1, (92)
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Figure 10: The pressure (dashed curve) and energy density (solid) for pure
neutron matter, as a function of u = n/ng. Units for the y-axis are MeV /fm?.
This curve uses parameters based on a nuclear compressibility Ky = 400 MeV.
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Figure 11: The equation of state for pure neutron matter (o = 1), i.e., the
dependence of pressure (y-axis) versus energy density (z-axis). Units for both
axes are MeV/fm3, and the nuclear compressibility in this case is Kq = 400
MeV. The points are values calculated directly from Eq. (87), multiplied by n,
and Eq. (90), while the solid curve is a fit to these points given in Egs. (91) and
(92).
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where 1o has appropriate units so that p and e are in MeV/fm3. (We
simply guessed and set 7 to that value.)

This polytrope can now be used in solving the TOV equation for a pure
neutron star with nuclear interactions. Alternatively, one might solve for
the structure by using the functional forms from Eq. (87), multiplied by
n, and Eq. (90) directly. We defer that for a bit, since it would be a good
idea to first find an EoS which doesn’t violate causality, a basic tenet of
special relativity.

2.6.3 Does the Speed of Sound Exceed That of Light?

What is the speed of sound in nuclear matter? Starting from the elemen-
tary formula for the square of the speed of sound in terms of the bulk
modulus [26], one can show that

(E)2:%—@—dp/dn (93)

c ~de  de/dn’
To satisfy relativistic causality we must require that the sound speed does
not exceed that of light. This can happen when the density becomes very
large, i.e., when u — oo. For the simple model of nuclear interactions

presented in the last section, the dominant terms at large w in p and € are
those going like u !, Thus, from Eq. (87), multiplied by n, and Eq. (90),

we see that > dp/d
cs) p/dn
i =211 94

( c de/dn -7 (94)
for the parameters of Eq. (76), and indeed for any set of parameters with
Ky greater than about 180 MeV.

One can recover causality (i.e., speeds of sound less than light) by
assuring that both e(u) and p(u) grow no faster than 2. There must still
be an interplay between the A- and B-terms in the nuclear potential, but
one simple way of doing this is to modify the B-term by introducing a
fourth parameter C' so that, for symmetric nuclear matter (o = 0),

A B u’
Wue(u, 0) = S+ c+1 1+ Cuo-1"

(95)

One can choose C small enough so that the effect of the denominator only
becomes appreciable for very large u. The presence of the denominator
would modify and complicate the constraint equations for A, B, and o
from those given in Eqs. (70)—(72). However, for small C, which can be
chosen as one wishes, the values for the other parameters should not be
much changed from those, say, in Eq. (76). Thus, with a little bit of trial
and error, one can simply readjust the A, B, and ¢ values to put the
minimum of £/A —my at the right position (ng) and depth (BE), hoping
that the resulting value of the (poorly known) compressibility Ky remains
sensible.

In our calculations we chose C' = 0.2 and started the hand search with
the Ky = 400 MeV parameters in Eq. (76). We found that, by fiddling
only with B and o, we could re-fit ng and B with only small changes,

B =6539—83.8MeV, o¢=211— 237, (96)

somewhat larger than before. For these new values of B and o, A changes
from -122.2 MeV to -136.7 MeV, and K from 400 to 363.2 MeV. That is,

it remains a reasonable nuclear model.
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One can now proceed as in the last section to get ¢(n, «), p(n,«), and
the EoS, p(e, ). The results are not much different from those shown in
the figures of the previous sub-section. This time we decided to live with
a quadratic fit for the EoS for pure neutron matter, finding

ple,1) = rkoe?, Ko =4.012x 107%. (97)

This is not much different from before, Eq. (92). Somewhat more useful
for solving the TOV equation is to express € in terms of p,

e(p) = (p/r0))"* . (98)

2.6.4 Pure Neutron Star with Nuclear Interactions

Having laid all this groundwork, the student can now proceed to solve the
TOV equations as before for a pure neutron star, using the fit for e(p)
found in the previous sub-section. It is, once again, useful to convert from
the units of MeV/fm? to ergs/cm?® to Mg /km?® and dimensionless p and
€. By now the student has undoubtedly grown quite accustomed to that
procedure.

é(p) = (koeo) " Y2p"? = Agpt/?, Ay = 0.8642, (99)
where this time we defined

4 5
_ Myt
3n2h3

With this, the constant a that occurs on the right-hand side of the TOV
equation, Eq. (22), is & = AgRp = 1.276 km. The constant for the mass
equation, Eq. (25), is 8 = 0.03265, again in units of 1/km?3.

Now proceeding as before, one can solve the coupled TOV equations
for p(r) and M(r) for various initial central pressures, p(0). We don’t
exhibit here plots of the solutions, as they look very similar to those for
the Fermi gas EoS, Fig. 5.

More interesting is to solve for a range of initial 5(0)’s, generating, as
before, a mass M versus radius R plot which now includes nucleon-nucleon
interactions (Fig. 12). The effect of the nuclear potential is enormous, on
comparing with the Fermi gas model predictions for M vs. R shown in
Fig. 6. The maximum star mass this time is about 2.3 My, rather than 0.8
Mg. The radius for this maximum mass star is about 13.5 km, somewhat
larger than the Fermi gas model radius of 11 km. The large value of
maximum M is a reflection of the large value of nuclear (in)compressibility
Ky = 363 MeV. The more incompressible something is, the more mass it
can support. Had we fit to a smaller value of Ky we would have gotten a
smaller maximum mass.

€ (100)

2.6.5 What About a Cosmological Constant?

We do not know (either) if there is one, but there are definite indica-
tions that a great part of the make-up of our universe is something called
“Dark Energy” [27]. This conclusion comes about because we have re-
cently learned that something, at the present time, is causing the universe
to be accelerating, instead of slowing down (as would be expected after
the Big Bang).
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Figure 12: The mass M and radius R for pure neutron stars using an EoS
which contains nucleon-nucleon interactions. Only those stars to the right of
the maximum are stable against gravitational collapse. Compare this graph
with that in Fig. 6 which is based on a non-interacting Fermi gas model for the

EoS.

One way (of several) to interpret this dark energy is as Einstein’s cos-
mological constant, which contributes a term Ag,,, to the right-hand side
of Einstein’s field equation, the basic equation of general relativity. The
most natural value for A would be zero, but that may not be the way the
world is. If A is non-zero, it is nonetheless surprisingly small.

What would the effect of a non-zero cosmological constant be for the
structure of a neutron star? It turns out that the only modification to the
TOV equation is in the correction factor

47r3p(r) . 47r3p(r) B Ar3
[1+ ./\/1(7")02] {14_ M(r)e2 2GM(r)]| (101)

So, we encourage the student to, first, understand the units of A and then
to see what values for it might affect the structure of a typical neutron
star.

2.7 Conclusions

The materials we have described in this paper would be quite suitable as
an undergraduate thesis or special topics course accessible to a junior or
senior physics major. It is a topic rich in the subjects the student will have
covered in his or her courses, ranging from thermodynamics to quantum
statistics to nuclear physics.

The major emphasis in such a project is on constructing a (simple)
equation of state. This is needed to be able to solve the non-linear structure
equations. Solving those equations numerically, of course, develops the
student’s computational skills. Along the way, however, he or she will
also learn some of the lore regarding degenerate stars, e.g., white dwarfs
and neutron stars. And, in the latter case, the student will also come to
appreciate the relative importance of special and general relativity.
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