THEORETICAL ANALYSIS OF DECAY CHAINS OF THE ELEMENT 115

A. Sobiczewski^{1,2}

¹ National Centre for Nuclear Research, Hoża 69, 00-681 Warsaw, Poland ² GSI-Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany

There is a continuing progress in collecting data on the properties of heaviest nuclei. Recently, a rich data has been obtained on the decay chains of the element 115 [1,2]. For example, the Dubna experimental studies [1] resulted in the observation of 28 decay chains of the odd-odd isotope ²⁸⁸115. In the GSI experiment [2], 22 decay chains of the nucleus ²⁸⁸115 have been observed.

The objective of the present paper is a theoretical description of these chains. The α -transition energies Q_a^t and α -decay half-lives T_{α} are calculated. Two models, which well reproduce masses of heaviest nuclei, are used for the description of Q_a^t and the phenomenological model of Ref, [3] is taken to describe half-lives T_{α} . Rather good, realistic descriptions of both quantities are obtained.

- [1] Yu.Ts.Oganessian et al., Phys. Rev C 87, 014302 (2013).
- [2] D. Rudolph et al., Phys. Rev Lett. (2013), in press.
- [3] A. Parkhomenko and A. Sobiczewski, Acta Phys. Pol. B 36, 3095 (2005).