PECULIARITIES OF CLUSTERS FORMATION IN TRUE TERNARY FISSION OF ²⁵²Cf AND ²³⁶U*

A.K. Nasirov^{1,2}, W. von Oertzen^{3,4}, A.I. Muminov², and R.B. Tashkhodjaev^{2,5}

¹Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia

²Institute of Nuclear Physics, 100214 Tashkent, Uzbekistan

³Helmholtz-Zentrum Berlin, Hahn-Meitner Platz, 14109 Berlin, Germany

⁵ National University of Uzbekistan, 100174, Tashkent, Uzbekistan

Experimental results demonstrating the existence of a new type of cluster decay called "collinear cluster tri-partition" (CCT) has been presented in Refs. [1-2]. The results are based on two different experiments with binary coincidences of fission fragments and measurements of the masses and energies of the two fragments [1]. In two other experiments [2] for the study of spontaneous ternary fission of 252 Cf, events in coincidence with neutrons are reported. The relatively high yield of the CCT-effect (more than 10^{-3} /binary fission) is likely due to the collective motion through very elongated (hyper-deformed) pre-scission shapes and a large phase space covering a larger number of mass partitions with high Q-values [3]. The formation of the third cluster occurs in the neck region between main binary fragments during pre-scission stage of the splitting. The case of alpha-cluster formation has been well studied both experimentally and theoretically. Based on this concept we have calculated potential energy surface (PES) for the ternary system – a chain of three clusters arranged collinearly along the fission axis. The PES has been calculated as a sum of the nuclear interactions between neighboring clusters, the Coulomb interactions between all of them and the binding energies of clusters:

 $V(R_1, R_2, Z, Z_1, A, A_1) = V_1(R_1, Z, Z_1, A, A_1) + V_2(R_2, Z, Z_2, A, A_2) + V_{12}^{Cou}(Z_1, Z_2, R_1 + R_2) + Q_{ggg}$. The distances R_1 and R_2 are defined between the middle cluster and two clusters placed on the left and right sides, respectively. Favored decays correspond to the minima of the potential PES-wells in the nucleus-nucleus interactions connecting the ternary system, here $Q_{ggg}=B_1+B_2+B-B_{CN}$ is the balance energy for the ternary fission.

Results of the PES for the ternary fission of ²⁵²Cf are presented as a binary correlation function of the charge numbers of the middle cluster Z and one, Z₁, the fragment on the side, they showed a valley corresponding to the formation of the cluster ¹³²Sn for different values of Z and Z₁. This fact reflects the long tail in the mass-mass distributions of the experimentally registered products demonstrating the persistence of shell structure in double magic nucleus ¹³²Sn. On the contour map of the PES there are local minima showing the favored population of the cluster configurations ¹³²Sn+⁵⁰Ca+⁷⁰Ni, ¹³²Sn+³⁸S+⁸²Ge, ¹³²Sn+³⁶Si+⁸⁴Se, ¹⁵⁰Ba+²²O+⁸⁰Ge, and others. We found that the middle cluster is more neutron rich than edge fragments. A much smaller energy minimum in the PES (by 10 MeV) for the alternative configuration, the ¹³²Sn+⁷²Ni+⁴⁸Ca channel, gives for this reaction a much smaller probability, the difference is due to the changed Coulomb repulsion forces. This effect is observed in the yields observed in the experiment [1]. The main aim of our work is to interpret the experimental yields of the CCT products and to find reasons causing interesting peculiarities of the mass-mass distributions.

- 1. Yu.V. Pyatkov et al., Eur. Phys. J. A 45 (2010) 29.
- 2. Yu.V. Pyatkov et al., Eur. Phys. J. A 48 (2012) 94.
- 3. K.R. Vijayaraghavan, W. von Oertzen, and M. Balasubramaniam, Eur. Phys. J. A 48 (2012) 27.

⁴ Fachbereich Physik, Freie Universität, Berlin