TRANSPORT COEFFICIENTS FOR A SLOW

FERMI-PARTICLE MOTION

J.P. Blocki¹ and A.G. Magner²

¹National Center for Nuclear Research, Otwock 05-400, Poland

²Institute for Nuclear Research, Kyiv, Ukraine

19th Nuclear Physics Workshop "Marie and Pierre Curie" Kazimierz Dolny, Poland, 26.09-30.09, 2012 Plan of talk

1. INTRODUCTION. Quantum-classical correspondence in the nuclear collective dynamics

- 2. RESPONSE THEORY AND TRANSPORT COEFFICIENTS
- **3. SEMICLASSICAL FRICTION AND INERTIA**
- 4. DISCUSSIONS OF THE RESULTS
- 5. CONCLUSIONS

$$1) \quad rac{dE}{dt} =
ho \overline{v} \oint \dot{n}^2 d\sigma$$

WALL FORMULA, Swiatecki et al. 1977,78

2)ORDER-CHAOS, POINCARE SECTIONS LYAPUNOV EXPONENTS, Swiatecki, Blocki et al. 1995-1999

3) QUANTUM AND CLASSICAL RESULTS FOR EXCITATION ENERGY, Swiatecki, Blocki, Skalski et al. 1995-2007;

Blocki, Yatsyshyn, Magner, 2010-11, FOR 10-20 OSC. PERIODS:

 $dE/dt = M\dot{lpha}\ddot{lpha} + \gamma\dot{lpha}^2 \qquad \Rightarrow \qquad < dE/dt > = \gamma\omega^2lpha^2/2$

4)SEMICLASSICAL FRICTION AND INERTIA OF ONE-BODY COLLECTIVE DYNAMICS, Koonin, Randrup Gutzwiller POT: Gzhebinsky, Magner, Fedotkin, 2007 SMOOTH FRICTION: LOCAL WALL FORMULA)

5) QUANTUM AND SEMICLASSICAL FRICTION AND INERTIA, NONLOCAL TRAJECTORY CORRECTIONS WITHIN POT

2. RESPONSE THEORY AND TRANSPORT COEFFICIENTS

COLLECTIVE RESPONSE to $V_{\text{ext}}(t) = \hat{F} \alpha_{\text{ext}}^{\omega} e^{-i\omega t}$

$$\delta \langle \hat{F} \rangle_{\omega} = -\chi_{
m coll}(\omega) \alpha_{
m ext}^{\omega}, \ \ \hat{F}(\mathbf{r}) = \left(rac{\partial V}{\partial lpha}
ight)_{lpha=0} = -V_0 R \, \delta(r-R) \, Y_{L0}(heta)$$

DYNAMICAL NUCLEAR SURFACE VIBRATIONS

 $\delta R(heta, lpha) \propto R lpha(t) Y_{L0}(heta), \qquad \qquad lpha(t) = lpha_\omega e^{-i\omega t}$

SELFCONSISTENCY CONDITION, Bohr & Mottelson (1975)

 $\delta \langle \hat{F} \rangle_{\omega} = \kappa \, \delta \alpha_{\omega}$ with the coupling constant κ $\chi_{coll}(\omega) = \kappa \frac{\chi(\omega)}{\chi(\omega) + \kappa}, \qquad \left[\delta \langle \hat{F} \rangle_{\omega} = -\chi(\omega) \left(\delta \alpha_{\omega} + \alpha_{ext}^{\omega} \right) \right]$ STRENGTH FUNCTION $S(\omega) = \frac{1}{\pi} \operatorname{Im}\chi_{coll}(\omega)$ **TRANSPORT COEFFICIENTS**, Hofmann et al. (1997,2008)

$$\begin{aligned} \frac{1}{\chi_{\text{coll}}(\omega)} &= \frac{1}{\chi_{\alpha\alpha}^{\text{osc}}(\omega)} = \frac{1}{\chi_{\alpha\alpha}(\omega)} + \kappa = -M\omega^2 - i\gamma\omega + C \\ \text{INTRINSIC TRANSPORT COEFFICIENTS in the limit } \omega \to 0 \\ \chi(\omega) &= \chi(0) - i\gamma(0)\omega - M(0)\omega^2 + ..., \qquad \chi(0) = -\kappa - C(0) \\ C &= [1 + C(0)/\chi(0)]C(0), \quad \gamma = [1 + C(0)/\chi(0)]^2\gamma(0) \\ M &= [1 + C(0)/\chi(0)]^2 \left[M(0) + \gamma^2(0)/\chi(0)\right] \\ \text{INTRINSIC RESPONSE} \iff \text{GREEN'S FUNCTION} \\ \chi(\omega) &\propto \int_{0}^{\infty} d\varepsilon n(\varepsilon) \int dr_1 \int dr_2 \hat{F}(r_1) \hat{F}(r_2) \operatorname{Im} G(r_1, r_2; \varepsilon) \\ \times \left[G^* (r_1, r_2; \varepsilon - \hbar\omega) + G (r_1, r_2; \varepsilon + \hbar\omega) \right], \quad G &= \sum_i \frac{\psi_i(r_1) \overline{\psi_i(r_2)}}{\varepsilon - \varepsilon_i + i\epsilon} \\ \gamma(0) &= (\partial \chi(\omega)/\partial \omega)_{\omega = 0}, \quad M(0) = (1/2) \left(\partial^2 \chi(\omega)/\partial \omega^2 \right)_{\omega = 0} \end{aligned}$$

4. SEMICLASSICAL FRICTION AND INERTIA (sph. box)

 $\Delta S/\hbar = \pi k_F R_0 \cos \phi_{PO} \sin \psi$, $\phi_{PO} = \pi w/v$, uniform approximation by M.Brack, R.K.Bhaduri, Semiclassical physics, 2003

$k_F R \setminus n$	2	3	4	5	6	7	8	9	10
10.0	0.73	1.15	0.92	1.05	0.97	1.02	0.99	1.01	0.99
20.0	0.69	1.20	0.82	1.12	0.82	1.07	0.95	1.04	0.97
30.0	0.84	1.16	0.80	1.14	0.87	1.10	0.91	1.07	0.95
40.0	0.95	1.10	0.86	1.13	0.86	1.11	0.89	1.08	0.93
50.0	0.97	1.06	0.93	1.09	0.88	1.10	0.89	1.09	0.91
∞	1.11	0.92	1.06	0.95	1.08	0.96	1.03	0.97	1.03
K&R	0.00	0.85	0.45	0.90	0.62	0.93	0.71	0.94	0.76

Table: Friction coefficients γ/γ_{wf} vs multipolarity n for small slow. vibrations; K&R is Koonin&Randrup,1977, Abrosimov et al., 1999.

NERTIA: $M(\psi) = M_{ETF}(\psi) + M_{corr}(\psi), \phi = \phi_{PO} - \frac{\psi}{2v}$											
$M_{corr}(\psi) \propto -\sum_{v,w} rac{\sin^3 \phi \cos \phi \sin \phi }{\sin \psi} \left[1 - J_0 \left(\sqrt{rac{\Delta S}{\hbar}} ight) ight]$											
$k_F^{}R\setminus n$	2	3	4	5	6	7	8	9	10		
5	1.4	2.0	2.5	3.6	3.9	5.0	5.3	6.4	6.6		
6	1.1	1.5	1.9	2.8	2.9	3.8	4.0	4.8	5.0		
7	0.9	1.2	1.5	2.2	2.4	3.1	3.2	3.9	4.0		
8	0.8	1.0	1.3	1.9	2.0	2.6	2.7	3.3	3.4		
9	0.7	0.9	1.1	1.7	1.7	2.3	2.3	2.9	2.9		
10	0.4	0.8	1.0	1.5	1.5	2.0	2.0	2.6	2.6		
∞	-1.6	1.9	2.2	-2.2	2.3	-2.3	11	8.8	2.7		
K&R		0.05		0.025		0.02		0.015			

Table 1: Inertia M in units of the irrotational flow inertia M_{irr} vs multipolarity n and $k_F R_0$.

- Within the response function theory, we derived semiclassically by using the POT the smooth friction and inertia coefficients for slow small-amplitude vibrations near the spherical shape accounting for the nonlocal trajectory corrections.
- It was important to solve the fundamental problem of the symmetry breaking related to an appearance of the periodic-orbit families at a spherical equilibrium shape.
- The transport coefficients depend essentially on the particle numbers, especially for smaller multipolarities, in contrast to earlier results.
- As perspectives, our semiclassical results might be helpful for better understanding the one-body friction and inertia of the nuclear collective dynamics within the Microscopic -Macroscopic Model like in fission and heavy ion collisions.

THANKS!

Fig. 11. Mean time derivatives $\langle dE/dt \rangle$ in the w.f. units (top) and shell corrections δE (bottom) vs. particle numbers, $N^{1/3}$.

SHELL CORRECTIONS

$$\delta E = \sum_{PO} \left(\frac{\hbar}{t_{PO}}\right)^2 \mathcal{B}_{PO} \cos\left[\frac{1}{\hbar} S_{PO}(\varepsilon_F) - \frac{\pi}{2}\mu_{PO}\right], \text{ (Strutinsky \& M., 1975, 76)}$$

$$\delta\gamma\propto\sum_{CT,CT'}\Upsilon_{CT,CT'}\cos\left\{rac{1}{\hbar}\left[S_{CT}(arepsilon_F)\pm S_{CT'}(arepsilon_F)
ight]
ight\},\ \hbar\Omega=2\pi\hbar/t_{CT}$$

$egin{array}{c} m{k}_{m{F}}m{R} \ ackslash$	0	1	2	3	4	5	6	7	8	9	10
5.0	0.00	1.31	0.92	1.07	0.98	1.02	0.99	1.01	1.00	1.00	1.00
10.0	0.20	1.35	0.73	1.15	0.92	1.05	0.97	1.02	0.99	1.01	0.99
15.0	0.60	1.29	0.67	1.19	0.86	1.09	0.88	1.04	0.97	1.02	0.99
20.0	0.86	1.22	0.69	1.20	0.82	1.12	0.82	1.07	0.95	1.04	0.97
25.0	0.96	1.16	0.76	1.19	0.80	1.14	0.77	1.08	0.94	1.05	0.97
30.0	0.93	1.19	0.84	1.16	0.80	1.14	0.87	1.10	0.91	1.07	0.95
35.0	0.86	1.10	0.91	1.13	0.83	1.14	0.86	1.11	0.90	1.07	0.94
40.0	0.80	1.09	0.95	1.10	0.86	1.13	0.86	1.11	0.89	1.08	0.93
45.0	0.75	1.09	0.97	1.08	0.89	1.11	0.87	1.11	0.89	1.09	0.92
50.0	0.75	1.09	0.97	1.06	0.93	1.09	0.88	1.10	0.89	1.09	0.91
∞	1.59	0.83	1.11	0.92	1.06	0.95	1.08	0.96	1.03	0.97	1.03
K&R	0.00	0.00	0.00	0.85	0.45	0.90	0.62	0.93	0.71	0.94	0.76

Table: Friction coefficients γ/γ_{wf} vs multipolarity n for small slow.

vibrations; K&R is Koonin&Randrup,1977, Abrosimov et al., 1999.

Fig. 2. Low-lying quadrupole vibration energies $\hbar \omega_{2^+}$ vs particle number A; frequent dots are TF; thin solid is ETF; thick dashed is ETFA; dash-dotted shows HD. Heavy full dots are the experimental data [Raman, 2001] for nearly spherical nuclei with $q_2 < 0.05$; $\rho = 0.16$ fm⁻³, $b_v = 16$ MeV, $b_s = 18$ MeV, K = 220 MeV, $b_{sym} = 60$ MeV.

$egin{array}{c} k_F R \setminus n \end{array}$	0	1	2	3	4	5	6	7	8	9	10
5		2.7	1.4	2.0	2.5	3.6	3.9	5.0	5.3	6.4	6.6
6		2.5	1.1	1.5	1.9	2.8	2.9	3.8	4.0	4.8	5.0
7		2.4	0.9	1.2	1.5	2.2	2.4	3.1	3.2	3.9	4.0
8		2.3	0.8	1.0	1.3	1.9	2.0	2.6	2.7	3.3	3.4
9		2.3	0.7	0.9	1.1	1.7	1.7	2.3	2.3	2.9	2.9
10		2.3	0.4	0.8	1.0	1.5	1.5	2.0	2.0	2.6	2.6
∞		2.0	-1.6	1.9	2.2	-2.2	2.3	-2.3	11	8.8	2.7
K&R		1.00		0.05		0.025		0.02		0.015	

Table 2: Inertia M in units of the irrotational flow inertia M_{irr} vs multipolarity n and $k_F R_0$.

Fig. 3. The same for the low-lying octupole vibration energies $\hbar \omega_{3^-}$; the experimental data are taken from [Kibedi, 2005].

Fig. 4. The reduced probabilities B(E2) in units of $e^2 b^2$; full heavy points are experimental data [Raman, 2001]; frequent dashed is semiclassical B(E2) with (solid) and without (dashed) account for the η dependence; other notations are the same as in Fig. 2.

Fig. 5. The reduced transition probabilities B(E3) in units of $e^2 b^3$; full heavy points are experimental data [Kibedi, 2005]; other notations are the same as in Fig. 4.

Fig.4. Poincare sections for six shapes at the deformation $\alpha = 0.05$ (two lower rows) and deformation $\alpha = 0.4$ (two upper rows) for the projections of the angular momentum on the symmetry axis K = 0.5 with respect to the maximal value

Fig.6. The classical dynamical excitations ΔE in units of the wall formula value $\Delta E_{wf}(t = 20T)$ as functions of the time t in units of the period $T = 2\pi \alpha / \eta$ for vibrations near the spherical ($\alpha_{st} = 0$, left) and deformed ($\alpha_{st} = 0.3$, right) shapes of the cavity