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@ Results: Electric transitions in 1*°Gd
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Group chains for the 32 crystalographic point groups.

Figure: Koster et al. Thirty Two Point Groups, 1963
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Degeneracy of energetical levels

Let the Hamiltonian A be Op—symmetric.
Irreducible representations (briefly irreps) for the octahedral O/ Ty—groups

are:
A1, Ao — 1-D irreps., E — 2-D irrep., T1, To — 3-D irreps.

Schematic degenerated spectrum of H
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Octahedral collective quadrupole+octupole model in the

intrinsic frame

We construct our deformed collective model already in the intrinsic

frame—contrarly to the usual procedure which starts from the spherical
Hamiltonian expressed in laboratory coordinates.

The set of collective variables in the intrinsic coordinate system:
0, @22, {3, }, Q

Q— is the set of Euler angles between laboratory and intrinsic frame.

Nuclear surface in the intrinsic coordinate system:
R(97 (10) = RO[]' + axo Y20(97 (10) + 0422(Y22(0’ SD) + Y2,*2(‘9a QO)) +

3
+ Z a§VY3V(07 SD)]

v=-3
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Collective solutions

We construct the collective space for a schematic octahedrally-symmetric
Hamiltonian invariant also with respect to the symmetrization group O:

'ﬁl = I:Ivib;Z + I:Ivib;3 + /:Irot

In case of no coupling between the 3 components of H its eigensolutions
are the product of the eigensolutions of individual Hamiltonians

Y(a2, a3, Q) = Uik 5 (@2) by, 5(@3)dree()

Each of these 3 functions belongs to only one irrep.l'; of the O—group. )

Construction of the collective space consists in determining basis

vectors corresponding to he quadr., oct. and rot. motions

Yyib2(a2) - basis in the space of eigensolutions of I:IV,-b;z,
vin3(a3) - basis in the space of eigensolutions of Hyip3,
Yrot(Q2) - basis in the space of eigensolutions of H,ot.
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Selection rules for electromagnetic transitions

Suppose that the initial and final states of H, |1 M;), |lM,) belong to the
representations ', ' respectively and the tensor operator, Q/’\"’Vb
transforms with respect to the irrep. 9.

The matrix element (/,M,|Q/?|/;M;) can be non-zero than and only

than

Mnxr?-r?

Let | M1), |hMsy), C)éayb belong respectively to irreps. Ty, To, E of the
O—group.

The Kronecker product T; x E decomposes into the simple sum of two
irreps. T1 and T».

Since |l,Ma) belongs to irrep. Tp, then such a matrix element can be
non-zero

If |l,M,) does not belong to irrep. T; or T, then such transition is
forbidden.
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Collective electric transition operators

(Eisenberg, Greiner, Nuclear theory, 1970).
The collective transition operator up to the second order in the laboratory

frame:
Iab Z /’\’L", where
N 3ZR2 )\—1—2 201 +1)(2\2 + 1)
intr __ 0
Q' =7 { Z \/ 22+ 1 .

()\10)\20|)\0)(O[)\1 ® akz)u }
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Collective electric transition operators — examples

The intrinsic frame is chosen to fix quadrupoles in the principal axes

frame. There are no extra conditions for octupole variables. The intrinsic
part of the dipole transition operator:

3v3ZRy /2
intr — 12 B
Q 167Tf {\fa22a3 2 — 35421031
18

2 6
+Eazoa30 — 124/ £a2_1a31 + \770422043—2}

The quadrupole intrinsic operator:
antr _ 3ZR§ {OQO

47
+1 <10 20 +4 5 +10 )
—— | —apg — —an_sx — 30030 — 200311 —Qa3_30
\/5—%72020 7222233030 3-1Q31 33333

g(t)ladr(lst) + Qquadf(znd) Qggt(2nd)
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Selection rules — other examples

© Forbidden quadrupole transitions

(b My; Ar| QP My; Ar) = 0
(b My; Ar| Q2P| 1, My; Ay) = 0
(Il Mo; As|QEP|I My; Ay) = 0

© Forbidden dipole transitions

(Il My; Ar| Q2|1 My; Ar) = 0
(Il My; Ar| Q2|1 My; Ay) = 0
(b My; Az| Q2P| 1, My; Ay) = 0

Since (¢ V%2A2)|Qq”adr(15t)|¢é,}) '242)> = 0 then B(E2) comes only from
quadrupole and octupole 2”d—order operator
Qgyadr (2nd) 4 Qgst(2n?) (dynamical deformation effect)
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Relation between intrinsic and laboratory frame

The relation between collective laboratory and intrinsic shape variables

I b A
a)?p, OO\V) - Z D ; a)\lf
v=—2\
with additional 3 conditions:

fi(ary, ) =0, {k=1,2,3},

Above conditions determine the orientation of both intrinsic vs laboratory
frame.
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Intrinsic frame

The transformation from the laboratory to intrinsic coordinate system is,
in general, non-reversible.

It means that, for one given set of laboratory variables {af\"’f} usualy may
correspond several sets of intrinsic variables {a,, 2}, (well known

problem e.g. for the so called Bohr Hamiltonian)

!

!
o (o, Q) = afy(ay,, Q

)
where (ay,, Q) # (o/AV,Q/)

How to omit this disadvantage? J
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Symmetrization group

It is possible to find the intrinsic transformation group of the intrinsic
variables which does not change the transformation relation between
intrinsic and laboratory variables

Oéff(é’(a)\w Q)) = O/)\az?(a)\l/: Q)

The set of all transformations g forms the so called symmetrization
group Gs.
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Symmetrization - applications

@ Suppose that in the laboratory frame we have both the quadrupole
{akP} and octupole variables {a/2P
Three standard conditions determining the intrinsic frame:
ao41 = 0,a0 = an_».
Intrinsic variables: {ag0, a2, a3, Q}.
Relation between the laboratory and intrinsic frames:

asy = D (Q) azo + [DF*5 () + DZ5 (Q)]aze
v=0 41,42
okt =33 D3 (Q)as,
v=0,+1,42, 43

Solving this set of equations one gets the symmetrization group, Gs = O J

0 September 29, 2012 14 / 47



Four possible types of solutions of the ATDHF 2-D

quadr.+oct. Hamiltonian (15MP E, vol 20, 2011, p. 500-505)

|W,ip|? as function of apg and o' 35 for 1%°Dy.
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Quadrupole basis states

More realistic multidimensional collective quadrupole+octupole
Hamiltonian can be diagonalized in a "symmetrized” basis which can be
constructed as shown in the following.

The vibrational quadrupole functions of a given O-group irrep. are
obtained using the projecting onto a given irrep. method applied for the
"shifted” zero- and one-phonon H.O. eigensolutions

F (12, 20, 22) = (12, Qtao— 20 ) tm(V/ 272, 22— Gp)

where 8[20, 8422, 72 are parameters denoting respectively the position of the
wave-function peak in app and app direction and its "width”.

Now we consider only 3 lowest basis states: {n =0, m = 0} or
{n=1,m=0}or {n=0,m=1}.

Resulting (projected) quadrupole functions belong to irreps. A, Az, E
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Quadrupole basis states — example

Quadrupole (A;) state projected out from wug(a0— &2o)uo(oz22— &22)

W a1 (a0, a22) = Na, X

1

{Uo (772: a0 + 5 ( aoo +V/6 a2 )Uo <\f772 ax + o ( 6 o —2 Oézz
1

+up (772 o0 + ( Q20 +V6 a 0422 )Uo (\@772, Q2 — *(\[ Qoo —2 az

+Uo(772;a20+ (&20— 6a22 uo(V2m2; ap + = (6a20+2a2

2 :))
; )
5 2
1 1

+U0<772;0420 + 5( a0 —V6 a ))U0<\@772; 2 — Z( 6 iap +2 iz > +

bo (772; 20— Oézo) up <\/§772; Q22— 00422)+U0 (772: 20— a20> 700] <\ﬁ772; Qo+ 8422) }

Important features: A A
(A1|dao]A1) = (A1]d22|A1) =0

(A1|a50|A1) # 0, (A1]63,]A1) #0 o A*(azy) o 1/7
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Plots of the quadrupole 14, state

14, state as function of apg and 22

alfa20

Left panel: 8420: 0.26, 8422: 0.02, 7 = 0.5
Right panel: aoo= 0.26, aop= 0.02, 1 = 15
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Octupole basis states

The projected vibrational octupole one-phonon functions are the linear
combinations of 7-D oscillator solutions

f(n3, {azu}) = un, (03, 50) Uny (113, 31 ) tny (13, ¥52) Uy (113, O¥33)

. . ® f .
un5(7737 O‘él)uns (773a al32:l: «Q 32)”"7(7737 0433)

(r-real, i-imaginary parts of a3,), nx =0,1and ) n, = 1.

The resulting projected functions belong to the following irreps.
(a) A1, T1, T2 — positive parity functions
(b) Az, T1, T2 — negative parity functions

No E irreducible representation in ocupoles
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Example: T; negative-parity octupole state

Triplet transforming with respect to irrep. T3
U4 (a3n) = Nui(ns; azo) uo(V20s; oy )uo(V203; o/s,)

uo(V2m3; a3 uo(V213; @' 31) g (V2135 " 33)
{uo(V213; 0 30— @ " 30) + up(V2m3; & 30+ @ "32)}

U, (asy) = N ug(ns; avzo) uo(V20s; o) uo (V203 o 31 ) uo(V2n3; o' 33)

{uo(V2n3; @ 30— @ " 30) + o (V213; @ 30+ @ " 3)}
{V/5u0(v2n3; sy ) un (V2n3; of33) — V3ur(vV2n3; oy )uo(V2713; 033) }

U, (asw) = N uo(3; aso) uo(V2113; oy ) uo(V2n3; oy ) uo(V/2n3; clss)

{uo(V2n3; & 30— @ " 30) + o (V213; @ 30+ @ " 3)}
{V3u1(V2n3; " 31) uo(V2n3; o 33) + VBuo(V273; o 31) un (V2ns3; o 33) }
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Example: T, negative-parity octupole state

Triplet transforming with respect to irrep. To
U, (030) = Nuo(ns; aso) uo(V/2n3; oy )ur (V2ns; o)
uo(V23; g3 ) uo(V213; " 31) o (V2773; ' 33)
{uo(V2113; 0" 30— @ " 32) + (V2113 0" 30+ @ " 32) }

V1,,(a3,) = N uo(n3; 30)to(V213; a0 ) o (V2135 o' 31 ) o (V213; o' 33)

{uo(V2n3; 0" 32— @ "32) + tp(V213; @ 30+ @ " 32) }
{V5ur(V2n3; 041 ) uo(V2n3; 043) + V/3uo(V2n3; oy )us (V2ns; ag3)}

U, (asv) = N uo(3; aso) uo(V2113; gy ) uo(V2n3; oy ) uo(V/2n3; clss)

{uo(V2n3; & 30— @ " 30) + o (V213; @ 30+ @ " 3)}
{(V3uo(V2n3; o 31)u1(V2n3; @ 33) — V5ur(V2n3; a” 31)uo(V2n3; ' 33) }
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IMPORTANT:

For the octupole T; state (with possible spins J = 1,3,4,5,...) the axial
octupole mode a3 is excited.

while

For the octupole T, state (with possible spins J = 2,3,4,5,...) the
tetrahedral mode a3, is excited.

CONCLUSION:
If T; states are preferable as vibrational band-heads, the octupole band
should start from J = 17, otherwise, J = 37 is the lowest octupole state

v
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Rotational basis

Rotational functions of given J are obtained by projecting linear
combinations of the Wigner functions Dl{j(Q) onto the irreps. of the
O-group

Resulting functions can belong to all possible irreps. of the O—group
A1, Az, E, T1 or T, depending on the spin J.
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Basis of O—group built of rotational functions

Example of rotational functions for J = 0,1

rim(Q) = V2J+ 1Dj(Q)*
(+)4 1 J J
r Q = — |\ + pg_ ,K 2 0
@) = s+ k)
_ 1
’/ﬁ//K)J(Q) = E(r/{/m —rip_x), K >0

R M(Q), A- irrep. of O—group, B-irrep. of Da—group.
J=0, RIAMEQ) = rid (@)

— 1
REHlcol® = '
St ) REH @) = (@)
REH(2) = iy (@)

0 September 29, 2012 24 / 47



Collective motions vs O—group irreps.

Each of above discussed basis functions describing the corresponding
collective motion belongs to only one irrep. of O—group

(i) quadrupole vibrations:
possible irrep. A1, A, E

(ii) octupole vibrations:

(a) positive parity states
possible irrep. A1, T1, To
(b) negative parity states
possible irrep. As, T1, To
(iii) rotational motion:

J = 0: possible irrep. Ay

J =1: possible irrep. Ty

J = 2: possible irrep. E, T,

J = 3: possible irrep. Ay, T1, T>
J=4: irrep. A, E, T1, T,
J=>5:irrep. E, Ty 1, T12, T
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Quadrupole+octupole model with quadrupole deformation

of the octupole band equal to zero

Let us discuss two rotational bands: the GS band and the lowest octupole
negative-parity band (with zero quadrupole deformation)
Full symmetrized wave functions of these octupole states are:

V= wwb 2¢v1b 3 rot

The only possibility for 2 in this case is ¢W.})72 function (' = Az)

GS band negative-parity band
+ o
8+ 7-
6+ 5-
4 3-
2+ o o
ot a0, 2= 0
) o o a327é 0
20, @227 0, a3,= 0 T4/ O—group
D>p—group
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Symmetrized basis functions

Possible products of the basis functions 1/15},3721/15,?,3731/1;& giving the
symmetrized functions with respect to the symmetrization group O
(i) positive parity quadrupole GS functions, (2 cases)
M =A,l=A,l3=A J=0,4
MM=ET,=A,3=E J=24

(ii) negative parity octupole functions, (3 cases)
M =A1,l=AT3=Ay J=3(noEltransitions)
M=A,lT,=T,I3=T1 J=1,3,4,5
M=A,Ta=Tyl3=T, J=23/45

For octupole states exp. B(E1)’s and B(E2)'s in 1%°Gd are well

reproduced within the scheme:

I'1 = Al, I'2 = Tl, I'3 = Tl, (available J= 1,3,4,5).
For the above 3 states, due to mentioned selection rules, B(E2)'s are
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Quadrupole GS vibrational band-heads obtained out of the 2-D zero- and
one-phonon H.O. solutions:

0" — projected out from ug(c0— 8420)U0(0422— 00422)
2t — projected out from wup(ap— &zo)ul(azz— 8&22)

4t — projected out from wup(ap— &zo)ul(azg— 8&22)

Octupole negative-parity vibrational band-heads are projected out from
one-phonon 7-D H.O. solution of the following form:

f(773> {a3u}) = Un1(773v agO)unz (773’ agl)uns (7737 a§2)un4(7737 a§3)
. . oi .
un5(7737 0/31)””6 (7737 al32:t «Q 32)”"7(7737 0/33)

(r-real, i-imaginary parts of a3,), nx =0,1and ) n, = 1.
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Reproducing B(E1) and B(E2) probabilities in 1°°Gd

B(E1)=7.5x10"*Wu(exp.8.5x10~* Wu)

\ B(ER)=293Wu(exp.293Wu)

B(E1)=6.3x10~*Wu(exp.7.7x 104 Wu)

(EALE) 4+

B(E2)=279Wu(exp.263Wu)

3~ (Al T1 Tl)
B(E1)=1.1x10"3Wu(exp.9.8x10~*Wu)

(EALE) 2+

B(E2)=159Wu(exp.187 Wu)

A1A1A)) 0T ———————
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Results — parameters of the quadrupole and octupole states

The parameters of the quadrupole and octupole functions are obtained by
adjusting the B(E1) and B(E2) probabilities calculated within the above
quadrupole and octupole states to its experimental values for 1%6Gd

(M. Jentschel et al., Phys. Rev. Lett. 222502, (2010))

Byw)
m=\—
1 = 12.67
n3 = 1.00
rp = 1.41 fm
o= 1075
voo= 0.34

Quadrupole deformation > = 0.34.
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Quadrupole+octupole model with non-zero quadrupole

deformation of the octupole band

GS band negative-parity band
+ >
4 3=
2+ o o 0
o+ 0430, QF
o o a7 0
a0, a227# 0,03, =0 T,/0

Dsp,

IMPORTANT: Symmetrized octupole tetrahedral/octahedral states
can have non — zero quadrupole deformation J
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Symmetrized basis functions

Possible products of the basis functions

V= wwb 2wv1b 3 fOt
giving the O—symmetrized states

For the quadrupole GS one has 2 possibilities:
M =Al,=A,T3=A J=0,4
MM=ETy=A;,I3=E J=24

and for the negative parity octupole states built on 'y = E, with the static
deformation (G2,,) # 0 one has 5 possibilities:

M=ETy=A,3=E J=245

MM=ET,=T,I3=T1 J=1,3,4,5
MM=ET,=T1,T3=T, J=2,3,4,5
MM=ETy=TyI3=T1 J=1,3,4,5
MM=ETy=Tyl3=Ty J=2345
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Symmetrized negative-parity basis functions

For the negative-parity octupole states built on I'; = A;/A,, with static
deformation (&,) = 0 we have following 6 possibilities:

M =A;,l=AI3=A J=3
M=A,l="T,I3=T1 J=1,3,4,5
M=A,Ty=Tyl3=T, J=23,4,5
M =A,l=AT3=A; J=0,4

M =A,Ty=T,I3=T, J=23,4,5
M =ATy=Tyl3=T1 J=1,3,4,5

One should study all the 11 combinations of representations '1,2,'3 to
find the best reproducing of experimental BE(1)'s and BE(2)'s
IMPORTANT:

Because of mentioned selection rules a hypothetical band based on
above 6 states could have intra-band B(E2)’s only due to

” dynamical deformation” effects.

0 September 29, 2012 33 / 47



Results — parameters of the quadrupole and octupole states

As before, the parameters of the quadrupole and octupole states are
adjusted to experimental values of B(E1)’s and B(E2)'s for 15°Gd:
(M. Jentschel et al., Phys. Rev. Lett. 222502, (2010))

o = 12.67
13 = 11.60
ro=1.41fm
agp=10"°

oquadr ooct

Quadrupole deformation G = 0.34.
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4+

2+

0+

156Gd

4-
5. ET2T2
ET1T1, A1T1T1
EA1E
2.
3- ET2T2
ET1T1, A1T1T1
EA1E
ATA1A1
GS Odd spin Even spin
negative. parity positive parity

B(E2,4- -->2-)=69.6 W.U.

B(E2,ET1T1,5- ->ET1T1,3-)=176.4 W.U.
B(E2,ET1T1,5- — A1T1T1,3-)=342.8 W.U.
B(E2,A1T1T1,5- HET1T1,3-)=342.8 W.U.
B(E1,3- -->2+)/B(E1,4- —>4+) ¢ (4,8)
B(E1,3- -->4+)/B(E1,4- —>4+) € (2,4)
B(E1,5- -->4+)/B(E1,4- —>4+) € (2,3)
B(E1,3- -->2+)/B(E1,2- ->2+) € (1,2)
B(E1,3- -->4+)/B(E1,2- ->2+) € (0.6,1)
B(E1,5- -->4+)/B(E1,2- ->2+) € (0.5,1)
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4+

2+

0+

156Gd 4-

5. ET2T2

ET1T1,A1T1T1

EA1E

2.

3- A1T2T2
ET1T1,A1T1T1

EA1E

ATA1A1
GS Odd spin Even spin

negative. parity positive parity

B(E2,4- -->2-)=134.7 W.U.

B(E2,ET1T1,5- ->ET1T1,3-)=176.4 W.U.
B(E2,ET1T1,5- — A1T1T1,3-)=342.8 W.U.
B(E2,A1T1T1,5- HET1T1,3-)=342.8 W.U.
B(E1,3- -->2+)/B(E1,4- —>4+) ¢ (4,8)
B(E1,3- -->4+)/B(E1,4- —>4+) € (2,4)
B(E1,5- -->4+)/B(E1,4- —>4+) € (2,3)
B(E1,3- -->2+)/B(E1,2- ->2+) € (0.6,1)
B(E1,3- -->4+)/B(E1,2- ->2+) € (0.3,0.7)
B(E1,5- -->4+)/B(E1,2- -->2+) € (0.3,0.5)
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B(E1,5- -->4+)/B(E1,4- —->4+) € (1,2)
B(E1,3- -->2+)/B(E1,2- -->2+) € (1,2)
B(E1,3- -->4+)/B(E1,2- ->2+) € (0.6,1)
B(E1,5- -->4+)/B(E1,2- ->2+) € (0.5,1)
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Symmetrized functions—examples

Examples of symmetrized functions:
QO N = A1, T2 = A;, '3 = A; (Ground state)

e e U
vib,2;x24y2 422 7 vib,3;x24-y2 422 ¥ rot;x2 4+ y2 4+ 72

@ i = E,Ty= Ty, '3 =T, (the most complicated case)

T2 T2
2wwb 2; \f(Xz wvib 3; yzwrot B74 2"<wa 2. \[(XZ )wvib 3:xzVrot;xz

V3
wwb 2; 222—x2—y2¢v1b 3; yz,l’DfOt vz wwb 2,222 —x2 —yquwb 3;xz rot xz

3
3 ¢v1b 2;2z2—x2— 2wv:b ,3; Xy¢r0t Xy
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@ In the following we have discussed a schematic Hamiltonian with no
coupling between quadrupole, octupole and rotational modes,

@ Starting from the shifted H.O. eigensolutions we have constructed by
the projecting method the symmetrized quadrupole and octupole
octahedral /tetrahedral basis states for nuclear spins J =0,1,2,3,4,5,

@ Using carefully selected only two lowest basis states as vibrational
band-heads for quadrupole and octupole bands we are able to
reproduce with a reasonable accuracy the experimental B(E1)’s and
B(E2)'s in 15°Gd up to J=5,

@ The above presented model reasonably predicts the experimental
ratios B(E1,5~ — 41)/B(E1,4~ — 4") and
B(E1,3~ — 2%)/B(E1,2= — 2%) in 1%°Gd,
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Point group

is a transformation group which keeps at least one point of a figure
unchanged.

Translation by vector v —
does not belong to a point

group

Rotation about %71', around the
perpendicular to the triangle edge
axis does not move the point O.
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Grupy punktowe-przyktad

Point group as symmetries of Platon figures

@ tetraedron
@ heksaedron
© oktaedron

© dodekaedron

@ ikosaedron
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Symmetry Group of Hamiltonian

Symmetry Group G of Hamiltonian H is the set of transformations which
do not change its shape

With each element of the symmetry group g € G one can uniquely assign
the operator g

gHe ™ = H

The eigen-problem of the Hamiltonian H

Hpnk = enthnk

where ¥, and €, are respectively sets of eigenfunctions and eigenenergies
of H

Let G be the symmetry group of Hamiltonian H and g € G.

Function g« fulfills the Schrodinger equation for the same
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Classifications of the eigenfunctions

Each function g1, can be written as the linear combination of v, as:

Bmkc =Y T (8) e
kl

where '(g) is the matrix corresponding to g € G.

Set of matrices [(g) for g € G is called the group representation while
vectors ,x— basis of this representation.
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Irreducible representations

For unitary representations one can always find such a special
transformation of 1, basis which transform '(g) matrices to the
block-diagonal form

Matrix [(g), i = 1,2, ..., k, is called irreducible representation when it is
no longer possible to decompose it into block-diagonal form
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Kronecker product of reprezentations

Let M(g),M%(g) be the reprezentations of group G of v, i dimensions
respectively.

Kronecker product of reprezentations '(g), (g) is the following matrix
of dimension vpu:
e e e
g« - | A0 T
L2 e . T )
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Selection rules for electric transitions

Selection rules for electromagnetic transitions.

Transition probability of E2 is proportional to the reduced probability
B(E?2) given as

B(E2;h — ) =Y [{lbM|M(E2,v)|l M)
Mo ,v

where |l My), |l My) are the initial and final states respectively, M(E2,v)
is the quadrupole electric transitions operator (tensor)
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Symmetrization - applications

(i) Conditions determining the intrinsic frame: ap1o = 0,01 = —an_1.
Intrinsic variables: {ag0, @21, Q}.
Relation between the laboratory and intrinsic frames:

ag? = D25 (Q) a0 + [-DZ 1 () + D2} ()]erzr
v =0,41,+2

Symmetrization group Gs = Dy,

0 September 29, 2012 47 / 47



	Basis functions in the intrinsic frame 20, 22, 3, 
	Intrinsic frame
	intrinsic frame and symmetrization procedure
	Intrinsic symmetrization group
	Point group
	Symmetry Group of Hamiltonian


