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Tetrahedral nuclei
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More than half a century after the fundamental, spherical shell structure in nuclei had been established,
theoretical predictions indicated that the shell gaps comparable or even stronger than those at spherical
shapes may exist. Group-theoretical analysis supported by realistic mean-field calculations indicate that
the corresponding nuclei are characterized by the TF (“double-tetrahedral”) symmetry group. Strong
shell-gap structure is enhanced by the existence of the four-dimensional irreducible representations of
T2 it can be seen as a geometrical effect that does not depend on a particular realization of the mean
field. Possibilities of discovering the T} symmetry in experiment are discussed.

DOI: 10.1103/PhysRevLett.88.252502

A possibility that atomic nuclei exhibit tetrahedral
symmetry —in quantum physics, it is discussed mainly as
a property of certain molecules, metal clusters, or fuller-
ines—has a definite interest for all the related domains of
physics. While in the above-mentioned objects the under-
lying interactions are electromagnetic, the nuclear tetrahe-
dra (pyramidlike nuclei with “rounded edges and corners”)
are expected to be stabilized primarily bv the strone in-

PACS numbers: 21.10.-k, 21.60.Fw

glected a3, deformation. Using the Hartree-Fock approach
in their symmetry-unconstrained variant, Takami et al.,
Ref. [3], obtain in some light Z = N nuclei an a3
instability. In Ref. [4] this and other exotic octupole
deformations were studied in the 32§ nucleus while, in
[5], a similar hypothesis has been advanced theoretically
for a group of nuclei around A ~ 70.
The experimental verification of the discussed phenomid-2



Surface collective variables

In the following the surface collective variables will be used as an
example of collective variables.

The equation of nuclear surface in the laboratory frame is:

R(6, ) = <1+Za’f:3 *Yau(6, ¢)>

a2 are spherical tensors in respect to SO(3).

SO(3) denotes rotation group in the laboratory frame. J




Intrinsic frame
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An idea of quantum rotating frame

Definition of rotating intrinsic frame for collective variables {a,,, }:

1. Let {a3?} = laboratory nuclear collective variables.
and {ay,} thelr counterparts (defined below).

2. Let SO(3) > T(g) = rotation group acting in the space {a5’}.

The group parameters g = g(Q2) = g(Q1, 22, 3) are intended to be
used as a part of intrinsic variables.

3. The transformation formula from the lab. to int.
(rotating) frame:




An idea of quantum rotating frame

The intrinsic variables «, are invariant in respect simultaneous
action T(h) x T¢(h), Tg(h) acts on the group manifold of the
group SO(3) by left shift operation

T(h) x Tg(h)a®® = T(h(h'g))a® = T(g)a"* = .

T(h) x Tg(h) = a simultaneous rotation of the intrinsic frame and
the corresponding laboratory variables by the same angles.

4. Required constraints:

Fi(a,Q2) =0, wherei=1,23.




Classical versus quantum rotation

A2

;‘ N7
§\\§\\\\\W/

;;,,m g
"t’!!

Figure: (left) Motion of a mass as a function of time, (right) The spin

orientation probability for a rotating system: 1 ~ D}3(Q) — Dy, _3(9).
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Intrinsic groups G

Jin-Quan Chen, Jialun Ping & Fan Wang: Group Representation
Theory for Physicists, World Scientific, 2002.

Def. For each element g of the group G, one can define a
corresponding operator g in the group linear space L as:

gS = Sg, forall S € Lg.

The group formed by the collection of the operators g is called the
intrinsic group of G.

IMPORTANT PROPERTY:
[G.G] =0

The groups G and G are antyisomorphic.
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Example: Intrinsic group SO(3)

The action of the rotation intrinsic group g € SO(3).

Transformations of coordinates:

lab’ lab lab
Oé)xu - g Ap T O‘//\u

g
=8y, = E , Dy(g )

Q' —gQ—Qg.

The action in the space of functions of intrinsic variables

gU(, Q) = ¥(ge, Qg Y)
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Uniqueness of quantum states 1/4

In practice, the transformation to intrinsic frame is not a one-to-one
function.

Laboratory Intrinsic

Figure: A one-to-many transformation from laboratory to intrinsic
variables.
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Uniqueness of quantum states 2/4

To have physical interpretation of some quantities in both laboratory
and intrinsic frames one cannot restrict domains of required
observables.

Uniqueness achieved by choosing an appropriate subspace of
physical states written in intrinsic frame

The construction by making use of a group of transformations
h e Gg:

(0, Q) 2 (o, Q) ]

which the corresponding laboratory coordinates leave invariant:

Oélab(O/, Q/) _ O'//ab(a/’ Q) J
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Uniqueness of quantum states 3/4

For an arbitrary function in intrinsic frame usually
V(a, Q) # V(a/,Q),

but

V(a, Q) = V(o)
(o, Q) = W(aP).

CONTRADICTION.

The group G; is called the SYMMETRIZATION GROUP.
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Uniqueness of quantum states 4/4

REQUIRED !

The symmetrization condition for states. For all h € G:
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Example: Symmetrization group

Let us consider the standard choice of collective quadrupole
variables (agg, a, Q):

F1’2(Oé, Q) = Qo1 — 0 and F3(Oé, Q) = Qp_2 — Qlpp = 0
= Gs = 6;,

Another choice of intrinsic variables (axg, a1, Q):

F]_,Q(Oé, Q) = (o492 — 0 and F3(Oé, Q) =Qp1 +Qp_1 = 0
= Gs = E2h
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Symmetry operations in the intrinsic frame

The operations allowed in the intrinsic variables space:
All operations which fulfil the conditions:

Fi({on,}, ) =0, i=1,2,3.

save the structure of intrinsic variables space.

EXAMPLES: (
rot

e Ex.1.: O(3) ! which acts only on the rotational degrees of
fredom.

o Ex.2.: SO(B)(quad) acting only on quadrupole variables:
gy = Z D (€)ozy
w

fulfil the required conditions.
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Intrinsic Symmetries of schematic
vibration-rotation model



Hamiltonian = oscillator + rotor
The variables (g1 = V2022, g2 = ai, Q) with standard constraints.

The quadrupole+rotor model Hamiltonian:
7:2 = 7:Zvib + 7:Zroh
where

N 2 [ 0?2 H? 1
R _ B 2( 2 2.
Hoi o5 (aqf + aqg) + 5Bw (g1 + 95)

7:Zrot — ’Flrot(Jm Jya Jz)

and [H,or, SO(3)] =0
No vib-rot coupling terms = the eigenfunctions:

Vraomw (o, ) = éra(a) R (2)




Symmetry group chain

S

H +
|
G

_|<—8CD|<—ﬁ >
~

=

g,
g

Q «— N

vib
l
= Gup X
l
0 I,

s

The symmetrization group G is NOT a PHYSICAL SYMMETRY
group of H.

The physical symmetry of H should be constructed from the formal
symmetry Gy after “subtracting” of the symmetrization group Gs.
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Transitions

The SO(3)-reduced matrix elements of the multipole

transition operator:

(Vo | QN Vo) = Y (Prva | Quuldra) (R | |D Ry )

i

The reduced probability:

B(EX; (Ta; Jv) — (Ma; J'V)) = (I"d; JV||@2P||Ta; Jv)|? /(204 1)

Partial symmetries of H can be responsible for some selection rules !
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Vibrational Hamiltonian

Boson creation-anihilation operators

[\/Bw \/Bhw( 5’qk)]

be = (b

The vibrational Hamiltonian can be rewritten:

A

Hop = hw(N + 1),

where N = b by + b} by.

The formal symmetry group G, = U(2)(Vib)
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: . ——(vib)
Vibrational U(2)
The 2-dim i.r. g, (v, a, b) € U(Q)(Vib
degrees of freedom:

) acts only on vibrational

2
_ Ul
g.(0.a,b)bg,(9,2,b) " =Y AL (9. a,b)b],
k'=1
g/(V,a, )W () = ¥(Q),

where
AWD(9, a,b) = exp(h?)( S a‘l ) ,

where |a|? + |b|> = 1.

The vibrational octahedral group G(Vib) C w(""b) J
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(rot)

Rotational SO(3)

gr(0 = (01,62,63)) € SO(3)(mt) acts only on rotational degrees of

freedom:

gr(0)bfgr(0) " = b
gr(0)V(Q) = W(Q01).

The rotational octahedral group 0 = SO( )

NOTE:
(vib)

The symmetrization group G = O Cc O

x O
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Hidden intrinsic symmetries of H

formal symmetry group) which do not belong to G4 (symmetrization

One needs to find the symmetry operations h € G, (Hamiltonian
group).

Consider the single-phonon function:

IN =1, M) =

5 1 (A2 * 2 * + N2 &
2 (501 (ORala)" + D (") + 65 Dfo(@)' ) 10

This state is G, invariant.
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Hidden intrinsic symmetries of H

The additional operations h € Gy and h & G, which leave the
vector [N = 1, JM) in the same 1-Dim subspace are

(exp(i)eg, Co), where | = x,y, z.

Hidden symmetries of H,N=1and J =2

—(rot)

Gopys = U(1)"®) x Dy € G

Hidden symmetries of H for other N and J

OPEN PROBLEM !!!
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A few conclusions

One can choose different kinds of rotating intrinsic frames.

Usually the transformation to intrinsic frame is not unique.
Because of physical reasons, instead of cutting domains of
intrinsic variables, one needs to introduce

the symmetrization group Gs.

The physical space consists of G.-scalar functions of intrinsic
variables.

The physical symmetries of the intrinsic Hamiltonian are hidden
and should be obtained after subtraction the symmetrization
group G, from the formal symmetry group Gy.
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SUMMARY
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