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IF UMCS, Lublin, Poland

Agnieszka Szulerecka,
IF UMCS, Lublin, Poland

Artur Dobrowolski,
IF UMCS, Lublin, Poland

TETRANUC
Jerzy Dudek

IPHC, Strasbourg, France

Katarzyna Mazurek
IFJ, Kraków, Poland

3 / 28



Tetrahedral nuclei
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1Institut de Recherches Subatomiques, IN2P3 -CNRS/Université Louis Pasteur, F-67037 Strasbourg Cedex 2, France
2Katedra Fizyki Teoretycznej, Uniwersytet Marii Curie-Skłodowskiej, PL-20031 Lublin, Poland

(Received 16 November 2001; published 11 June 2002)

More than half a century after the fundamental, spherical shell structure in nuclei had been established,
theoretical predictions indicated that the shell gaps comparable or even stronger than those at spherical
shapes may exist. Group-theoretical analysis supported by realistic mean-field calculations indicate that
the corresponding nuclei are characterized by the TD

d (“double-tetrahedral”) symmetry group. Strong
shell-gap structure is enhanced by the existence of the four-dimensional irreducible representations of
TD

d ; it can be seen as a geometrical effect that does not depend on a particular realization of the mean
field. Possibilities of discovering the TD

d symmetry in experiment are discussed.

DOI: 10.1103/PhysRevLett.88.252502 PACS numbers: 21.10.–k, 21.60.Fw

A possibility that atomic nuclei exhibit tetrahedral
symmetry —in quantum physics, it is discussed mainly as
a property of certain molecules, metal clusters, or fuller-
ines —has a definite interest for all the related domains of
physics. While in the above-mentioned objects the under-
lying interactions are electromagnetic, the nuclear tetrahe-
dra (pyramidlike nuclei with “rounded edges and corners”)
are expected to be stabilized primarily by the strong in-
teractions. Within the nuclear mean-field theories, a
convenient framework for discussing this phenomenon is
provided by the spontaneous symmetry breaking mecha-
nism. It is analogous to the one associated with the
existence in nature of numerous deformed nuclei, e.g., el-
lipsoidal ones. According to such a mechanism, all nuclei
are governed by rotationally invariant elementary nucleon-
nucleon interactions, yet, for some specific low energy
configurations their total energy becomes lower when
the corresponding mean fields take nonspherical shapes.
The mathematically different but physically analogous
mechanism of spontaneous symmetry breaking is related
to a discrete symmetry: the inversion. The underlying
elementary interactions, although inversion invariant, do
not guarantee that all the resulting low energy nuclear
configurations lead to stable inversion-invariant shapes,
and there is growing experimental evidence of the ex-
istence in nature of the octupole deformations, usually
pear-shape type, cf., e.g., Ref. [1]. It turns out that
the tetrahedral nuclei do break spontaneously both the
spherical symmetry and the symmetry by inversion (see
below).

In the past, there have been a number of studies
published that address the question of the nonaxially
symmetric octupole deformations. Using the Strutin-
sky method and considering a space composed of
2 �quadrupole� 1 4 �octupole� 1 5 �hexadehapole� 1
6 �multipolarity 5� � 17 deformations, the authors of
Ref. [2] have suggested that an ensemble of isomeric states
of tetrahedral symmetry may exist in the region of light
radium nuclei pointing to the importance of the thus far ne-

glected a32 deformation. Using the Hartree-Fock approach
in their symmetry-unconstrained variant, Takami et al.,
Ref. [3], obtain in some light Z � N nuclei an a32
instability. In Ref. [4] this and other exotic octupole
deformations were studied in the 32S nucleus while, in
[5], a similar hypothesis has been advanced theoretically
for a group of nuclei around A � 70.

The experimental verification of the discussed phenome-
non does not exist thus far. We believe that the mechanism
related to a32 deformations is just a “visible part of an
iceberg”: a phenomenon whose physical consequences are
much richer than what has been discussed thus far. First
of all, the corresponding TD

d symmetry is nearly unique:
Only TD

d and the octahedral OD
h point-group symmetries

produce in deformed nuclei the nucleonic level degen-
eracies higher that 2. More precisely, some states must
carry twofold and some fourfold degeneracies. The corre-
sponding nuclear Hamiltonians are invariant with respect
to the very large number of 48 different symmetry ele-
ments (in the case of the OD

h , this number would be 96).
The depth of the nuclear mean-field potential and the num-
ber of its bound states depend only very weakly on defor-
mation: The fourfold degeneracy mechanism at nonzero
a32 implies larger interspacing and helps in producing very
large shell gaps that are comparable to or larger than at
least some of the gaps at spherical shapes. Moreover,
since the argument is geometrical in nature, the predicted
strong shell gaps propagate all over the periodic table in
a repetitive fashion independently of a particular realiza-
tion of the mean-field approach. This mechanism is far
from being an exoticity of a few nuclei here and there. Its
presence is predicted in dozens if not hundreds of nuclei.
Among unique quantum features, the prediction should be
noted that some nucleonic orbitals should have the ex-
pectation value of parity close to zero—nearly complete
disappearance of the quantum characteristic that is other-
wise dominating in the microworld of nuclear interactions.
Another unique element foreseen concerns the collective
(especially low spin) rotation of the quantum tetrahedra:
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Surface collective variables

In the following the surface collective variables will be used as an
example of collective variables.

The equation of nuclear surface in the laboratory frame is:

R(θ, φ) = R0

(
1 +

∑
λµ

(αlab
λµ) ?Yλµ(θ, φ)

)

αlab
λµ are spherical tensors in respect to SO(3).

SO(3) denotes rotation group in the laboratory frame.
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Intrinsic frame
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An idea of quantum rotating frame

Definition of rotating intrinsic frame for collective variables {αλµ}:

1. Let {αlab
λµ} = laboratory nuclear collective variables.

and {αλµ} their counterparts (defined below).

2. Let SO(3) 3 T (g) = rotation group acting in the space {αlab
λµ}.

The group parameters g = g(Ω) = g(Ω1,Ω2,Ω3) are intended to be
used as a part of intrinsic variables.

3. The transformation formula from the lab. to int.
(rotating) frame:

αλ = T (g)αlab
λ .
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An idea of quantum rotating frame

The intrinsic variables αλ are invariant in respect simultaneous
action T (h)× TG (h), TG (h) acts on the group manifold of the
group SO(3) by left shift operation

T (h)× TG (h)αlab = T (h(h−1g))αlab = T (g)αlab = αlab.

T (h)× TG (h) = a simultaneous rotation of the intrinsic frame and
the corresponding laboratory variables by the same angles.

4. Required constraints:

Fi(α,Ω) = 0, where i = 1, 2, 3.
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Classical versus quantum rotation

Figure: (left) Motion of a mass as a function of time, (right) The spin
orientation probability for a rotating system: ψ ∼ D5

M3(Ω)− D5
M,−3(Ω).
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Intrinsic groups G

Jin-Quan Chen, Jialun Ping & Fan Wang: Group Representation
Theory for Physicists, World Scientific, 2002.

Def. For each element g of the group G, one can define a
corresponding operator g in the group linear space LG as:

gS = Sg , for all S ∈ LG .

The group formed by the collection of the operators g is called the
intrinsic group of G.

IMPORTANT PROPERTY:

[G ,G] = 0

The groups G and G are antyisomorphic.
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Example: Intrinsic group SO(3)

The action of the rotation intrinsic group ḡ ∈ SO(3).

Transformations of coordinates:

αlab
λµ

′
= ḡαlab

λµ = αlab
λµ

α′λµ = ḡαλµ =
∑
µ′

Dµ′µ(g−1)αλµ′

Ω′ = ḡΩ = Ωg .

The action in the space of functions of intrinsic variables

ḡψ(α,Ω) = ψ(ḡα,Ωg−1)
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Uniqueness of quantum states 1/4
In practice, the transformation to intrinsic frame is not a one-to-one
function.

Laboratory
Intrinsic

x

y

y

y

3

2

1
1

2

31

Figure: A one-to-many transformation from laboratory to intrinsic
variables.
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Uniqueness of quantum states 2/4

To have physical interpretation of some quantities in both laboratory
and intrinsic frames one cannot restrict domains of required
observables.

Uniqueness achieved by choosing an appropriate subspace of
physical states written in intrinsic frame

The construction by making use of a group of transformations
h ∈ Gs :

(α,Ω)
h−→ (α′,Ω′)

which the corresponding laboratory coordinates leave invariant:

αlab(α′,Ω′) = αlab(α,Ω)
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Uniqueness of quantum states 3/4

For an arbitrary function in intrinsic frame usually

Ψ(α,Ω) 6= Ψ(α′,Ω′),

but

Ψ(α,Ω) = Ψ(αlab)

Ψ(α′,Ω′) = Ψ(αlab).

CONTRADICTION.

The group Gs is called the SYMMETRIZATION GROUP.
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Uniqueness of quantum states 4/4

REQUIRED !

The symmetrization condition for states. For all h̄ ∈ Gs :

h̄Ψ(α,Ω) = Ψ(α,Ω)
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Example: Symmetrization group

Let us consider the standard choice of collective quadrupole
variables (α20, α22,Ω):

F1,2(α,Ω) = α2±1 = 0 and F3(α,Ω) = α2−2 − α22 = 0

⇒ Gs = Oh

Another choice of intrinsic variables (α20, α21,Ω):

F1,2(α,Ω) = α2±2 = 0 and F3(α,Ω) = α21 + α2−1 = 0

⇒ Gs = D2h
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Symmetry operations in the intrinsic frame

The operations allowed in the intrinsic variables space:
All operations which fulfil the conditions:

Fi({αλµ},Ω) = 0, i = 1, 2, 3.

save the structure of intrinsic variables space.

EXAMPLES:

• Ex.1.: O(3)
(rot)

which acts only on the rotational degrees of
fredom.

• Ex.2.: SO(3)
(quad)

acting only on quadrupole variables:

α′2µ =
∑
µ′

D2
µ′µ(ξ)α2µ′

fulfil the required conditions.
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Intrinsic Symmetries of schematic
vibration+rotation model
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Hamiltonian = oscillator + rotor
The variables (q1 =

√
2α22, q2 = α20,Ω) with standard constraints.

The quadrupole+rotor model Hamiltonian:

Ĥ = Ĥvib + Ĥrot ,

where

Ĥvib = − ~2

2B

(
∂2

∂q2
1

+
∂2

∂q2
2

)
+

1

2
Bω2(q2

1 + q2
2).

Ĥrot = Ĥrot(Jx , Jy , Jz)

and [Ĥrot , SO(3)
r
] = 0

No vib-rot coupling terms ⇒ the eigenfunctions:

ΨΓa;JMν(α,Ω) = φΓa(α)RJMν(Ω)
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Symmetry group chain

Ĥ = Ĥvib + Ĥrot

↓ ↓ ↓
Gs ⊂ GH = Gvib × Grot

↓ ↓ ↓ ↓
Γs = 0 σ Γv Γr

The symmetrization group Gs is NOT a PHYSICAL SYMMETRY
group of Ĥ.

The physical symmetry of Ĥ should be constructed from the formal
symmetry GH after “subtracting” of the symmetrization group Gs .
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Transitions

The SO(3)–reduced matrix elements of the multipole
transition operator:

〈ΨΓ′a′;J′ν′||Q lab
λ ||ΨΓa;Jν〉 =

∑
µ

〈φΓ′a′|Qλµ|φΓa〉〈RJ′ν′ ||Dλ?
·µ ||RJν〉

The reduced probability:

B(Eλ; (Γa; Jν)→ (Γ′a′; J ′ν ′)) = |〈Γ′a′; J ′ν ′||Q lab
λ ||Γa; Jν〉|2/(2J +1)

Partial symmetries of Ĥ can be responsible for some selection rules !
Still, an OPEN PROBLEM
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Vibrational Hamiltonian
Boson creation-anihilation operators

b+
k =

1√
2

[√
Bω

~
− i

√
1

B~ω

(
−i

∂

∂qk

)]
bk = (b+

k )†

The vibrational Hamiltonian can be rewritten:

Ĥvib = ~ω(N̂ + 1),

where N̂ = b+
1 b1 + b+

2 b2.

The formal symmetry group Gvib = U(2)
(vib)
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Vibrational U(2)
(vib)

The 2-dim i.r. gv (ϑ, a, b) ∈ U(2)
(vib)

acts only on vibrational
degrees of freedom:

gv (ϑ, a, b)b+
k gv (ϑ, a, b)−1 =

2∑
k ′=1

∆
(U, 1

2
)

k ′k (ϑ, a, b)b+
k ′

gv (ϑ, a, b)Ψ(Ω) = Ψ(Ω),

where

∆(U, 1
2

)(ϑ, a, b) = exp(iϑ)

(
a b
−b? a?

)
,

where |a|2 + |b|2 = 1.

The vibrational octahedral group O
(vib) ⊂ U(2)

(vib)
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Rotational SO(3)
(rot)

gR(θ = (θ1, θ2, θ3)) ∈ SO(3)
(rot)

acts only on rotational degrees of
freedom:

gR(θ)b+
k gR(θ)−1 = b+

k

gR(θ)Ψ(Ω) = Ψ(Ωθ−1).

The rotational octahedral group O
(rot) ⊂ SO(3)

(rot)
.

NOTE:

The symmetrization group Gs = O ⊂ O
(vib) ×O

(rot)
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Hidden intrinsic symmetries of Ĥ

One needs to find the symmetry operations h ∈ GH (Hamiltonian
formal symmetry group) which do not belong to Gs (symmetrization
group).

Consider the single-phonon function:

|N = 1, JM〉 =√
5

2

(
1√
2
b+

1 (D2
M2(Ω)

?
+ D2

M,−2(Ω)
?
) + b+

2 D2
M0(Ω)

?
)
|0〉.

This state is Gs invariant.
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Hidden intrinsic symmetries of Ĥ
The additional operations h ∈ GH and h 6∈ Gs which leave the
vector |N = 1, JM〉 in the same 1-Dim subspace are

(exp(iϑ)eG , C̄2l), where l = x , y , z .

Hidden symmetries of Ĥ, N = 1 and J = 2

Gphys = U(1)(vib) ×D
(rot)

2 ⊂ GH

Hidden symmetries of Ĥ for other N and J

Gphys =?????

OPEN PROBLEM !!!
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A few conclusions

• One can choose different kinds of rotating intrinsic frames.

• Usually the transformation to intrinsic frame is not unique.
Because of physical reasons, instead of cutting domains of
intrinsic variables, one needs to introduce
the symmetrization group Gs .

• The physical space consists of Gs-scalar functions of intrinsic
variables.

• The physical symmetries of the intrinsic Hamiltonian are hidden
and should be obtained after subtraction the symmetrization
group Gs from the formal symmetry group GH .
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SUMMARY

???
?????????

?????????????????
???????????????????????????

????????????????????????????????????
??????????????????????????????????????????
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