New Skyrme energy density functional for a better description of charge-exchange resonances

Xavier Roca-Maza¹, Gianluca Colò^{1,2}, and Hiroyuki Sagawa^{3,4}

¹INFN, Sezione di Milano, Via Celoria 16, I-20133, Milano Italy ²Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, I-20133 Milano, Italy ³Center for Mathematics and Physics, University of Aizu, Aizu-Wakamatsu, Fukushima 965-8560, Japan ⁴Nishina Center, Wako, Saitama 351-0198, Japan

Phys. Rev. C 86 031306(R) 2012

19th Nuclear Physics Workshop "Marie & Pierre Curie" Kazimierz 2012

Table of contents:

- Motivation: charge exchange resonances, spin-isospin Landau-Migdal parameters, Spin-Orbit splittings, and Skyrme-EDFs.
- Skyrme Interaction: standard form with J² terms and two Spin-Orbit parameters.
- Fitting Protocol: experimental data and pseudo-data used in the fit.
- **► Results:** EoS, B/A, r_c , ΔE_{SO} , GMR, GDR, SDR and GTR.
- Conclusions

Spin-isospin properties

- Skyrme HF+RPA enables an effective description of the nuclear many-body problem
- Open problems need to be understood and eventually solved
 - ► Accurate determination of the spin-isospin properties of the Skyrme effective interaction ⇒ accurate description of charge exchange excitations such as the Gamow Teller Resonance

Gamow Teller

- transitions govern electron capture during the core-colapse of supernovæ
- matrix el. are necessary for the study of double-β decay (in neutrinoless double-β decay is crucial for a precise determination of the neutrino mass).
- matrix el. may be useful in the calibration of detectors used to measure electron-neutrinos coming from the Sun

Gamow Teller Resonance I Neither the strength nor the E_x properly described in HF+RPA

- SGII^a ⇒ earliest attempt to give a quantitative description of the GTR
- SkO'^b ⇒ accurate in ground state finite nuclear properties and improves the GTR
- Relativistic MF and Relativistic HF (PKO1^c) calculations are also available

^aN. Giai and H. Sagawa, Phys. Lett. B 106, 379 (1981), ^bP.-G. Reinhard et al., Phys. Rev. C 60, 014316 (1999),

^cH. Liang, N. Van Giai, and J. Meng, Phys. Rev. Lett. 101, 122502 (2008), SLy5 – E. Chabanat et al., Nucl.

Phys. A 635, 231 (1998); E. Chabanat et al., ibid. 643, 441 (1998)

Gamow Teller Resonance II: quenching of the strength

- ► Experimentally, the GTR exhausts 60–70% of the lkeda sum rule: $\int [R_{GT^-}(E) R_{GT^+}(E)] dE = 3(N Z)$
- To explain the problem, two possibilities that go beyond RPA correlations have been drawn:
 - the effects of the second-order configuration mixing: 2p-2h correlations
 - within the quark model, a n(p) can become a p(n) or a Δ⁺(Δ⁺⁺) under the action of the GT[−] operator and since there is no Pauli blocking for Δ−h excitations ⇒ it may contribute to the GTR.
- ► The experimental analysis of ⁹⁰Zr ⇒ quenching (2/3) has to be mainly attributed to 2p-2h coupling and not to Δ-isobar effects much smaller [T. Wakasa et. al., Phys. Rev. C 55, 2909 (1997)].
- E_x GTR in nuclei mainly in the region of several tens of MeV and the Δ−h states are hundreds of MeV above the GT ⇒ hard to excite the Δ in the nuclear medium.

Which gs properties are important for describing the E_x^{GTR} ? A recent study^a on the GTR and the spin-isospin Landau-Migdal parameter G'_0 using several Skyrme sets,

- concluded that G'₀ is not the only important quantity in determining the excitation energy of the GTR in nuclei
- spin-orbit splittings also influences the GTR
- Empirical indications^b
 suggest that G'_0 > G_0 > 0
- Not a very common feature within available Skyrme forces^c

^aM. Bender, J. Dobaczewski, J. Engel, and W. Nazarewicz, Phys. Rev. C **65**, 054322 (2002); ^bT. Wakasa, M. Ichimura, and H. Sakai, Phys. Rev. C **72**, 067303 (2005); T. Suzuki and H. Sakai, Phys. Lett. B **455**, 25 (1999),^cLi-Gang Cao, G. Colo, and H. Sagawa, Phys. Rev. C **81**, 044302 (2010)

Why spin-orbit splittings are important?

p n

Schematic picture of single-particle transitions involved in the Gamow Teller Resonance of $^{90}{\rm Zr}.$ Transitions excited by $\sigma\tau_-$ operator.

F. Osterfeld, Rev. Mod. Phys. 64, 491 (1992)

Skyrme Model

Hamiltonian^a

Includes **central tensor terms** (J^2 **terms**) due to the coupling of tensor and spin and gradients terms and **two spin-orbit parameters** (same as SkO and some SkI forces)

$$\mathcal{H} = \mathcal{K} + \mathcal{H}_0 + \mathcal{H}_3 + \mathcal{H}_{\rm eff} + \mathcal{H}_{\rm fin} + \mathcal{H}_{\rm SO} + \mathcal{H}_{\rm sg} + \mathcal{H}_{\rm Coul}$$

$$\begin{split} \mathcal{K} &= \hbar^{2} \tau / 2m \\ \mathcal{H}_{0} &= (1/4) t_{0} [(2+x_{0})\rho^{2} - (2x_{0}+1)(\rho_{n}^{2}+\rho_{p}^{2})] \\ \mathcal{H}_{3} &= (1/24) t_{3} \rho^{\alpha} [(2+x_{3})\rho^{2} - (2x_{3}+1)(\rho_{n}^{2}+\rho_{p}^{2})] \\ \mathcal{H}_{\mathrm{eff}} &= (1/8) [t_{1}(2+x_{1}) + t_{2}(2+x_{2})] \tau \rho \\ &+ (1/8) [t_{2}(2x_{2}+1) - t_{1}(2x_{1}+1)] (\tau_{n}\rho_{n} + \tau_{p}\rho_{p}) \\ \mathcal{H}_{\mathrm{fin}} &= (1/32) [3t_{1}(2+x_{1}) - t_{2}(2+x_{2})] (\nabla \rho)^{2} \\ &- (1/32) [3t_{1}(2x_{1}+1) + t_{2}(2x_{2}+1)] [(\nabla \rho_{n})^{2} + (\nabla \rho_{p})^{2}] \\ \mathcal{H}_{\mathrm{SO}} &= (1/2) W_{0} \mathbf{J} \cdot \nabla \rho + (1/2) W_{0}' (\mathbf{J} \cdot_{\mathbf{n}} \nabla \rho_{n} + \mathbf{J}_{\mathbf{p}} \cdot \nabla \rho_{p}) \\ \mathcal{H}_{\mathrm{sg}} &= -(1/16) (t_{1}x_{1} + t_{2}x_{2}) \mathbf{J}^{2} + (1/16) (t_{1} - t_{2}) (\mathbf{J}_{n}^{2} + \mathbf{J}_{p}^{2}) \end{split}$$

^aE. Chabanat et al., Nucl. Phys. A 635, 231 (1998); E. Chabanat et al., ibid. 643, 441 (1998)

Fitting Protocol

$$\chi^2$$
 definition: $\chi^2 = \frac{1}{N_{\text{data}}} \sum_i^{N_{\text{data}}} \frac{(\mathcal{O}_i^{\text{theo.}} - \mathcal{O}_i^{\text{data}})^2}{(\Delta \mathcal{O}_i^{\text{data}})^2}$

Landau-Migdal parameters in infinite nuclear matter G_0 and G'_0 fixed to **0.15** and **0.35**, respectively, at ρ_0 .

Table: Data and *pseudo*-data \mathcal{O}_i , adopted errors for the fit $\Delta \mathcal{O}_i$ and selected finite nuclei and EoS.

\mathcal{O}_i	ΔO_i	
В	1.00 MeV	^{40,48} Ca, ⁹⁰ Zr, ¹³² Sn and ²⁰⁸ Pb
r _c	0.01 fm	40,48 Ca, 90 Zr and 208 Pb
$\Delta E_{\rm SO}$	$0.04 \times O_i$	$\pi 1g$ in 90 Zr and $\pi 2f$ in 208 Pb
$e_n(\rho)$	$0.20 imes \mathcal{O}_i$	R. B. Wiringa et al., PRC 38, 1010 (1988)

Skyrme Aizu Milano interaction: SAMi

Parameter set and nuclear matter properties:

Table: SAMi parameter set and saturation properties with the estimated standard deviations inside parenthesis

	$value(\sigma)$			$value(\sigma)$	
t ₀	-1877.75(75)	MeV fm ³	$ ho_{\infty}$	0.159(1)	fm ⁻³
t_1	475.6(1.4)	MeV fm ⁵	e_∞	-15.93(9)	MeV
t_2	-85.2(1.0)	MeV fm ⁵	$m_{ m IS}^*$	0.6752(3)	
t ₃	10219.6(7.6)	MeV fm $^{3+3lpha}$	$m_{\rm IV}^*$	0.664(13)	
<i>x</i> 0	0.320(16)		J	28(1)	MeV
x_1	-0.532(70)		L	44(7)	MeV
<i>x</i> ₂	-0.014(15)		K_∞	245(1)	MeV
X ₃	0.688(30)		G_0	0.15	(fixed)
W_0	137(11)		G'_0	0.35	(fixed)
W_0'	42(22)		-		
α	0.25614(37)				

SAMi: spin and spin-isospin instabilities in NM

Imposing that spin and isospin dof at the Fermi surface are stable under generalized deformations [S.-O. Bäckman *et al.*, Nucl. Phys. A **321**, 10 (1979)]

$$1 + G_0 > 0$$
 $1 + G'_0 > 0$

Results

Equation of State: SAMi vs *ab*-initio calculations

Figure: Neutron and symmetric matter EoS as predicted by the HF SAMi (dashed line) and SLy5 (solid line) interactions and by the benchmark microscopic calculations of R. B. Wiringa *et al.*, PRC **38**, 1010 (1988) (circles). State-of-the-art BHF calculations are shown by diamonds I. Vidaña, private communication, triangles Z. H. Li *et al.*, Phys. Rev. C **77**, 034316 (2008) and squares M. Baldo *et al.*, Nucl. Phys. A **736**, 241 (2004).

Results Finite Nulcei: spherical double-magic nuclei

Figure: Finite nuclei properties as predicted by the HF SAMi (black circles) and some predictions (blue circles) for spherical double-magic nuclei. Experimental data taken from Refs. G. Audi *et al.*, NPA **729**, 337 (2003), I. Angeli, ADNDT **87**, 185 (2004), M. Zalewski *et al.*, PRC **77**, 024316 (2008)

Results Giant Monopole and Dipole Resonances in ²⁰⁸Pb

Figure: Strength function at the relevant excitation energies in ²⁰⁸Pb as predicted by SLy5 and the SAMi interaction for GMR and GDR. A Lorentzian smearing parameter equal to 1 MeV is used. Experimental data for the centroid energies are also shown: $E_c(GMR) = 14.24 \pm 0.11$ MeV [D. H. Youngblood, et al., Phys. Rev. Lett. **82**, 691 (1999)] and $E_c(GDR) = 13.25 \pm 0.10$ MeV [N. Ryezayeva et al., Phys. Rev. Lett. **89**, 272502 (2002)].

Results Gamow Teller Resonance in ⁴⁸Ca, ⁹⁰Zr and ²⁰⁸Pb

Operator: $\sum_{i=1}^{A} \sigma(i) \tau_{\pm}(i)$

Figure: Gamow Teller strength distributions in ⁴⁸Ca (upper panel), ⁹⁰Zr (middle panel) and ²⁰⁸Pb (lower panel) as measured in the experiment [T. Wakasa et al., Phys. Rev. C 55, 2909 (1997), K. Yako et al., Phys. Rev. Lett. 103, 012503 (2009), A. Krasznaborkay et al., Phys. Rev. C 64, 067302 (2001), H. Akimune et al., Phys. Rev. C 52, 604 (1995) and T. Wakasa et al., Phys. Rev. C 55, 064606 (2012)] and predicted by SLy5, SkO', SGII and SAMi forces.

Results

Spin Dipole Resonances in ⁹⁰Zr and ²⁰⁸Pb

Operator: $\sum_{i=1}^{A} \sum_{M} \tau_{\pm}(i) r_{i}^{L} [Y_{L}(\hat{r}_{i}) \otimes \sigma(i)]_{JM}$ Sum Rule:

$$\frac{\int [R_{\rm SD^-}(E) - R_{\rm SD^+}(E)] dE}{\frac{9}{4\pi} (N \langle r_n^2 \rangle - Z \langle r_p^2 \rangle)}$$

Figure: Spin Dipole strength distributions in 90 Zr as a function of the excitation energy E_x in the τ_- channel (upper panel) and τ_+ channel (lower panel) measured in the experiment [K. Yako et al., Phys. Rev. C 74, 051303(R) (2006)] and predicted by SAMi. Multipole decomposition is also shown. A Lorentzian smearing parameter equal to 2 MeV is used.

Figure: SDR strength distributions for ²⁰⁸Pb in the τ_{-} channel from experiment [T. Wakasa *et al.*, Phys. Rev. C **85**, 064606 (2012)] and SAMi calculations. Total and multipole decomposition of the SDR strength are shown: total (upper panel), $J^{\pi} = 0^{-}$ (middle-upper panel), $J^{\pi} = 1^{-}$ (middle-lower panel) and $J^{\pi} = 2^{-}$ (lower panel). A Lorentzian smearing parameter equal to 2 MeV is used.

Conclusions:

- we have successfully determined a new Skyrme energy density functional which accounts for the most relevant quantities in order to improve the description of charge-exchange nuclear resonances:
 - ▶ the hierarchy and positive values of the spin and spin-isospin Landau-Migdal parameters G₀ and G'₀
 - the proton spin-orbit splittings of different high angular momenta single-particle levels
- the GTR in ⁴⁸Ca and the GTR, IAR, and SDR in ⁹⁰Zr and ²⁰⁸Pb are predicted with good accuracy by SAMi
- SAMi does not deteriorate the description of other nuclear observables
- applicability in nuclear physics and astrophysics

Thank you for your attention!

Extra Material

Landau-Migdal vs Skyrme parameters

- ► Within LDA, at each density of the nucleus, V_{ph} ≈ V nuclear matter having the same density
- ► Bulk properties of nuclear matter ⇒ two-body interaction at the Fermi surface.

 $\langle \mathbf{k_1}\mathbf{k_2}|V|\mathbf{k_1}\mathbf{k_2} \rangle = \dots$ (1)

The p-h interaction at the Fermi surface is derived as the second functional derivative of the total energy with respect to density at the Fermi surface.

► Comparing Eqs. 1 and 2 one finds the relation between the Landau-Migdal and the Skyrme parameters: $G_0 N_0 = -\frac{1}{4}t_0 + \frac{1}{2}t_0x_0 - \frac{1}{8}t_1k_F^2 + \frac{1}{4}t_1x_1k_F^2 + \frac{1}{8}t_2k_F^2 + \frac{1}{4}t_2x_2k_F^2 - \frac{1}{24}t_3\rho^{\alpha} + \frac{1}{12}t_3x_3\rho^{\alpha}$ $G'_0 N_0 = -\frac{1}{4}t_0 - \frac{1}{8}t_1k_F^2 + \frac{1}{8}t_2k_F^2 - \frac{1}{24}t_3\rho^{\alpha}$ $N_0 = 2k_F m^*/h^2\pi^2$ is the density of states

Note: k_1 and k_2 are taken at the Fermi surface and, therefore, in homogeneous nuclear matter the Landau parameters are only functions of the angle between them and the Fermi momentum.

Empirical constraints on G_0 and G'_0

 Gamow-Teller Resonance using RPA based on the Woods-Saxon potential have been studied and the Landau-Migdal parameters estimated by comparing experiment with theoretical calculations in Refs. [T. Wakasa, M.

```
Ichimura, and H. Sakai, Phys. Rev. C 72, 067303 (2005) and T. Suzuki and H. Sakai, Phys. Lett. B 455, 25 (1999)].
```

- Landau-Migdal parameter G'₀(N-N) dominates the excitation energy in the GTR as compared the contribution of to G'₀(N-Δ).
- $G'_0(N-\Delta)$ influences more the quenching
- In our fit, we do not use the obtained values as pseudodata because our theoretical framework is different and the results are associated to different m* (our sp energies are based on HF calculations instead of a Wood-Saxon potential).
- ► We use the empirical result in which an hierarchy between spin and spin-isospin parameters is suggested:

 $G_0' > G_0 > 0$

Covariance analysis: χ^2 test

Observables \mathcal{O} are used to calibrate the parameters **p** of a given model. The optimum parametrization \mathbf{p}_0 is determined by a least-squares fit with the global quality measure,

$$\chi^{2}(\mathbf{p}) = \sum_{i=1}^{m} \left(\frac{\mathcal{O}_{i}^{\text{theo.}} - \mathcal{O}_{i}^{\text{ref.}}}{\Delta \mathcal{O}_{i}^{\text{ref.}}} \right)^{2}$$

Assuming that the χ^2 is a well behaved (analytical) function in the vicinity of the minimum and that can be approximated by an hyper-parabola,

$$\chi^2(\mathbf{p}) - \chi^2(\mathbf{p}_0) \approx rac{1}{2} \sum_{i,j}^n (p_i - p_{0i}) \partial_{p_i} \partial_{p_j} \chi^2(p_j - p_{0j})$$

 $\equiv \sum_{i,j}^n (p_i - p_{0i}) \mathcal{M}_{ij}(p_j - p_{0j})$

where \mathcal{M} is the curvature matrix.

Covariance analysis: χ^2 test

 \mathcal{M} provides us access to estimate the errors between predicted observables ($A(\mathbf{p})$),

$$\Delta \mathcal{A} = \sqrt{\sum_{i}^{n} \partial_{p_{i}} A \mathcal{E}_{ii} \partial_{p_{i}} A}$$
(1)

 $\mathcal{E}=\mathcal{M}^{-1}$ and the correlations between predicted observables,

$$c_{AB} \equiv \frac{C_{AB}}{\sqrt{C_{AA}C_{BB}}} \tag{2}$$

where,

$$C_{AB} = \overline{(A(\mathbf{p}) - \overline{A})(B(\mathbf{p}) - \overline{B})} \approx \sum_{ij}^{n} \partial_{p_i} A \mathcal{E}_{ij} \partial_{p_j} B$$

Covariance analysis: SLy5-min as an example

Covariance analysis: SLy5-min as an example

Figure: Pearson product-moment correlation coefficient for the IVGDR (left panel), IVPDR (middle panel) and m_{-1} (IVGDR) (right panel) with all other studied properties as predicted by the covariance analysis of SLy5.