Skyrme-HFB description of shape phase transitions in even-even SHN

A. Staszczak, L. Próchniak

Natura non facit saltus

19th Nuclear Physics Workshop "Marie & Pierre Curie" Kazimierz 2012

The Segre Chart of the SHN

Fig. J. Dvořák (2007)

The Segre Chart of the SHN

Fig. J. Dvořák (2007)

Model

The ground states properties of even-even super heavy nuclei (SHN), with $108 \le Z \le 126$ and $148 \le N \le 188$, were studied within Hartree-Fock-Bogoliubov (HFB) model with a zero-range Skyrme effective interaction.

Model

The symmetry unrestricted code HFODD [1] and **an augmented Lagrangian method** [2] were used to solve constrained HFB equations with **SkM* Skyrme force** [3] in the particle-hole channel and **a density dependent mixed pairing** [4] interaction in the particle-particle channel.

To truncate the quasiparticle space of HFB, we adapted the quasiparticle cut-off value of 60 MeV in the equivalent energy spectrum. The pairing strengths were adjusted to reproduce the neutron and proton pairing gaps in ²⁵²Fm [5]; the resulting values are $V_{n0} = -268.9$ MeV fm³ and $V_{p0} = -332.5$ MeV fm³.

The stretched harmonic oscillator basis of HFODD was composed of states having not more than $N_0 = 26$ quanta in either of the Cartesian directions, and not more than 1140 states in total.

- [1] J. Dobaczewski and J. Dudek, Comput. Phys. Commun. 102, 166 (1997); 102, 183 (1997); 131, 164 (2000);
 J. Dobaczewski and P. Olbratowski, 158, 158 (2004); 167, 214 (2005); J. Dobaczewski *et al.*, 180, 2361 (2009);
 "HFODD (v2.40h) User's Guide", (2009), arXiv:0909.3626; N. Schunck *et al.*, 183, 166 (2012).
- [2] A. Staszczak, M. Stoitsov, A. Baran, and W. Nazarewicz, Eur. J. Phys. A 46, 85 (2010).
- [3] J. Bartel et al., Nucl. Phys. A 386, 79 (1982).
- [4] J. Dobaczewski, W. Nazarewicz, and M. V. Stoitsov, Eur. J. Phys. A 15, 21 (2002).
- [5] A. Staszczak, A. Baran, J. Dobaczewski, and W. Nazarewicz, Phys. Rev. C 80, 014309 (2009).

Groud state deformations

The e-e SHN form three regions:

- 1) a prolate-deformed (for N < 172),
- 2) spherical (N>180),
- 3) the transitional region (between the former two).

Ground state pairing properties of e-e SHN

<u>Proton *drip line*</u>: Fermi energy $\lambda^{p} \leq 2$ MeV.

Geometric sizes

Alpha emission

Q_{α} -values

Geometric collective model (GCM) - A. Bohr (1952)

 $A = A_c (B \neq 0)$ and A < 0 (B = 0): *first-order* phase transition lines

A = B = 0: *second-order* phase transition point (*triple-point*)

Interacting boson approximation (IBA-1) – Arima, lachello

 $U(6) \supset U(5) \supset O(5) \supset O(3)$ $U(6) \supset SU(3) \supset O(3)$ $U(6) \supset O(6) \supset O(5) \supset O(3)$

 $U(6) \supset SU(3) \supset O(3)$ $U(6) \supset O(6) \supset O(5) \supset O(3)$

Critical-point solutions:

$$V(\beta, \gamma) = A\beta^{2} + B\beta^{3} \cos 3\gamma + C\beta^{4}$$

$$V(\beta, \gamma) \approx V_{1}(\beta) + V_{2}(\gamma)$$

$$X(5): \quad V_{1} = V_{well}(\beta), \quad V_{2} = c(\gamma - \gamma_{o})^{2}, (c > 0)$$

$$E(5): \quad V_{1} = V_{well}(\beta), \quad V_{2} \equiv 0$$

F. lachello, PRL 85, 3580 (2000); **87**, 052502 (2001).

Dynamical symmetries:

U(5)(vibrational)

SU(3), SU(3)

(rotational) $O(6), \overline{O(6)}$ (γ -soft)

(Fig. Casten)

Nuclear shape phase transitions

Energy E (MeV)

Energy E (MeV)

Critical (triple) point E(5)

Energy E (MeV)

^{*}P. Jachimowicz, M. Kowal, J. Skalski, Phys. Rev. C **83**, 054302 (2011) Próchniak, A. ZAKOPANE 2012

Prolate-oblate phase transition SU(3) - O(6) - SU(3)

Prolate-oblate phase transition SU(3) - O(6) - SU(3)

Natura non facit saltus

Conclusions

- The e-e SHN form three regions: the prolate-deformed SU(3) (for N < 172), spherical U(5) (for N>180), and transitional region (γ-soft) O(6) between the former two.
- ✓ On the border between the O(6) and U(5) regions (for N = 180) nuclei exhibit a rather flat potential bottom and acquire the triple-point solutions E(5).
- ✓ The existence of superdeformed oblate (SDO) nuclei $\overline{SU(3)}$ for N ≤ 166 and Z ≥ 120 was validated.
- ✓ The heaviest even-even nuclei produced by ⁴⁸Ca induced reactions on actinide targets fall into the class of O(6) γ-soft nuclei.

Thank you!

Ehrenfest classification, 1933:

The phase transition is of the *k*-th order if the *k*-th derivative of the thermodynamic free energy with respect to some thermodynamic variable changes discontinuously at the critical point.