

Introduction 000000	Pseudo-potential 000000	Implications 00	Appendices
Outline			
 Introduction Nuclear EDF Model the en Pathologies Challenges 	ergy kernel		
 2 Skyrme pseudo- Energy kernel Two-body case Three-body case Four-body case 	potential from Skyrme pseudo-potential se ase se		
 Implications Parameterizat Results 	tions		

Introduction 000000	Pseudo-potential	Implications 00	Appendices
Outline			
 Introduction Nuclear EDF Model the ener Pathologies Challenges 	gy kernel		
 2 Skyrme pseudo-pa e Energy kernel f Two-body case Three-body case Four-body case 	otential rom Skyrme pseudo-potential se		
ImplicationsParameterizationResults	ons		
J. Sadoudi	Kazimiers 2012	28/09/2012	3 / 32 (3)

• Addresses both ground-state (SR-EDF) and spectroscopic properties (MR-EDF)

EDF method has matured into a spectroscopy-oriented method

Advantages

- Tool of choice for the description of medium- and heavy-mass nuclei
- Two step approach : SR-EDF (sym. breaking) and MR-EDF (sym. restoration)
- Addresses both ground-state (SR-EDF) and spectroscopic properties (MR-EDF)
 - ➡ EDF method has matured into a spectroscopy-oriented method

- EDF method has matured into a spectroscopy-oriented method

Disadvantage

• Existing param. (Gogny, Skyrme, ...) successful but lack predictive power

Challenges

- Towards EDF parameterizations with enhanced predictive power
 - ➡ EDF is meant to strongly overlap with *ab-initio* methods in the next 10 years
- Extend the reach of EDF calculations, e.g. odd-even and odd-odd nuclei

New : Current EDF parameterizations contain spurious contributions

- EDF method has matured into a spectroscopy-oriented method

Disadvantage

• Existing param. (Gogny, Skyrme, ...) successful but lack predictive power

Challenges

- Towards EDF parameterizations with enhanced predictive power
 - ➡ EDF is meant to strongly overlap with *ab-initio* methods in the next 10 years
- Extend the reach of EDF calculations, e.g. odd-even and odd-odd nuclei

✓ New : Current EDF parameterizations contain spurious contributions

Introduction		Pseudo-potential	Implications	Appendices
000000		000000	00	
a second s	_			

The nuclear Energy Density Functional (EDF) method : Basic ingredients

• The key object is the off-diagonal energy kernel

$$E[g',g] \equiv E[\langle \Phi(g')|; |\Phi(g)\rangle] \equiv E[\rho_{ij}^{g'g}, \kappa_{ij}^{g'g}, \kappa_{ij}^{gg'} *]$$

which is a functional of one-body transition density matrices

$$\rho_{ij}^{g'g} \equiv \frac{\langle \Phi(g') | a_j^{\dagger} a_i | \Phi(g) \rangle}{\langle \Phi(g') | \Phi(g) \rangle} \quad ; \quad \kappa_{ij}^{g'g} \equiv \frac{\langle \Phi(g') | a_j a_i | \Phi(g) \rangle}{\langle \Phi(g') | \Phi(g) \rangle}$$

• E[g',g] not necessarily related to an (effective) Hamiltonian

$$E_{H}^{\rm ex}[g',g] = \int d\vec{r} \, \left\{ A^{\rho\rho} \rho^{g'g}(\vec{r}) \rho^{g'g}(\vec{r}) + A^{ss} \vec{s}^{g'g}(\vec{r}) \cdot \vec{s}^{g'g}(\vec{r}) \right\}$$

• $A^{
ho
ho}$ and A^{ss} are related through a single parameter $t_0 \Rightarrow$ ensures Pauli principle

$$E^{\text{ex}}[g',g] \equiv \int d\vec{r} \, \left\{ A^{\rho\rho}[\rho^{g'g}(\vec{r})]\rho^{g'g}(\vec{r})\rho^{g'g}(\vec{r}) + A^{ss}[\rho^{g'g}(\vec{r})]\vec{s}^{g'g}(\vec{r}) \cdot \vec{s}^{g'g}(\vec{r}) \right\}$$

• EDF method with density-dependent interaction is not a pseudo-potential-based EDF

Empirical density dependence breaks the Pauli principle = self-interaction

- Divergencies and finite steps [J. Dobaczewski et al., PRC76 (2007) 054315]
- Using general approach to E[g,g'] unsafe a priori [D. Lacroix et al., PRC79 (2009) 044318]
- Originates from self interaction in the EDF kernel [D. Lacroix et al., PRC79 (2009) 044318]

Particle number restoration pathologies

- Divergencies and finite steps [J. Dobaczewski et al., PRC76 (2007) 054315]
- Using general approach to E[g,g'] unsafe a priori [D. Lacroix et al., PRC79 (2009) 044318]
- Originates from self interaction in the EDF kernel [D. Lacroix et al., PRC79 (2009) 044318]

Introduction	Pseudo-potential	Implications	Appendices
000000	000000	00	
Motivations : (General-EDF vs pseudo	-potential-based-EDF	

- **x** General-EDF formulation breaks Pauli principle a priori
- Pseudo-potential-based EDF denotes one case free from such a problem
 - \blacktriangleright The pseudo-potential must not depend on the density
- **x** Symmetry restoration for general-EDF \Rightarrow problematic *a priori*
 - ← Can design regularization method but non trivial and insufficient
- ✓ Pseudo-potential-based-EDF ⇒ free from any problem

Introduction	Pseudo-potential	Implications OO	Appendices
Challenges			

General-EDF

• General-EDF formulation provides good phenomenology at the SR level

Pseudo-potential-based EDF

- * How to get high-quality EDF parameterizations in such a restricted formulation?
- ➡ According to previous (limited) attempt, it is a challenge
- ► Develop rich enough pseudo-potential to provide good phenomenology
- ➡ Develop simple enough pseudo-potential whose fitting remains bearable
- **x** The analytical derivation of the energy kernel can be tedious

Introduction 000000	Pseudo-potential 000000	Implications 00	Appendices
Outline			
 Introduction Nuclear EDF Model the er Pathologies Challenges 	ergy kernel		
 Skyrme pseudo Energy kerne Two-body ca Three-body ca Four-body ca 	-potential I from Skyrme pseudo-potenti Ise case Ise	ial	
ImplicationsParameterizaResults	tions		

_

Introduction	Pseudo-potential	Implications OO	Appendices
A new Skyrme pseudo	-potential		

- **Two-body** Skyrme pseudo-potential without density dependence
- ▶ Replace density dependence by gradient-less three-body Skyrme pseudo-potential
 - ➡ Known as unsufficient
- ▶ Add three-body (central) Skyrme pseudo-potential up to second order in gradients
- ► Add four-body gradient-less Skyrme pseudo-potential
- The same pseudo-potential should be used in the normal and pairing channel

Implications Introduction Pseudo-potential Appendices 000000 00000 Energy kernel from Skyrme pseudo-potential Skyrme pseudo-Hamiltonian : 2+3+4-body $H_{\rm pseudo} \equiv +\frac{1}{2!} \sum_{i} \langle \hat{v}_{12} \rangle_{ijkl} \; a_i^{\dagger} a_j^{\dagger} a_l a_k$ $+\frac{1}{3!}\sum \langle \hat{v}_{123} \rangle_{ijklmn} a_i^{\dagger} a_j^{\dagger} a_k^{\dagger} a_n a_m a_l$ iiklmn $+\frac{1}{4!} \sum \langle \hat{v}_{1234} \rangle_{ijklmnop} a_i^{\dagger} a_j^{\dagger} a_k^{\dagger} a_l^{\dagger} a_p a_o a_n a_m$ iiklmnor

Energy kernel

• Energy kernel through $\langle \Phi(g)|H_{\rm pseudo}(\{t_i\})|\Phi(g)\rangle$ and Standard Wick Theorem

$$E_{H}[\rho_{ij},\kappa_{ij},\kappa_{ij}^{*}] = E_{H}^{\rho\rho} + E_{H}^{\kappa\kappa} + E_{H}^{\rho\rho\rho} + E_{H}^{\kappa\kappa\rho} + E_{H}^{\rho\rho\rho\rho} + E_{H}^{\kappa\kappa\rho\rho} + E_{H}^{\kappa\kappa\kappa\rho}$$

where

$$\rho_{ij} \equiv \frac{\langle \Phi(g) | a_j^{\dagger} a_i | \Phi(g) \rangle}{\langle \Phi(g) | \Phi(g) \rangle} \quad ; \quad \kappa_{ij} \equiv \frac{\langle \Phi(g) | a_j a_i | \Phi(g) \rangle}{\langle \Phi(g) | \Phi(g) \rangle} \quad ; \quad \kappa_{ij}^* \equiv \frac{\langle \Phi(g) | a_i^* a_j^* | \Phi(g) \rangle}{\langle \Phi(g) | \Phi(g) \rangle}$$

Introduction 000000 Pseudo-potential

Implications 00 Appendices

Energy kernel from Skyrme pseudo-potential

$$\begin{split} E_{\mathbf{H}}^{\rho\rho} &= \frac{1}{2} \sum_{ijkl} \langle \hat{v}_{12} \mathcal{A}_{12} \rangle_{ijkl} \rho_{ki} \rho_{lj} \\ E_{\mathbf{H}}^{\kappa\kappa} &= \frac{1}{2} \sum_{ijkl} \langle \hat{v}_{12} \rangle_{ijkl} \kappa_{ij}^{\dagger} \kappa_{kl} \\ E_{\mathbf{H}}^{\rho\rho\rho} &= \frac{1}{6} \sum_{ijklmn} \langle \hat{v}_{123} \mathcal{A}_{123} \rangle_{ijklmn} \rho_{li} \rho_{mj} \rho_{nk} \\ E_{\mathbf{H}}^{\kappa\kappa\rho} &= \frac{1}{6} \sum_{ijklmn} \langle \mathcal{A}_{123}^{12} \hat{v}_{123} \mathcal{A}_{123}^{12} \rangle_{ijklmn} \kappa_{ij}^{\dagger} \kappa_{lm} \rho_{nk} \\ E_{\mathbf{H}}^{\rho\rho\rho\rho} &= \frac{1}{24} \sum_{ijklmnop} \langle \hat{v}_{1234} \mathcal{A}_{1234} \rangle_{ijklmnop} \rho_{mi} \rho_{nj} \rho_{ok} \rho_{pl} \\ E_{\mathbf{H}}^{\kappa\kappa\kappa\rho} &= \frac{1}{24} \sum_{ijklmnop} \langle \mathcal{A}_{123}^{122} \hat{v}_{1234} \mathcal{A}_{1234}^{12} \rangle_{ijklmnop} \kappa_{ij}^{\dagger} \kappa_{mn} \rho_{ok} \rho_{pl} \\ E_{\mathbf{H}}^{\kappa\kappa\kappa\kappa} &= \frac{1}{24} \sum_{ijklmnop} \langle \mathcal{A}_{123}^{122} \hat{v}_{1234} \mathcal{A}_{123}^{12} \rangle_{ijklmnop} \kappa_{ij}^{\dagger} \kappa_{kl}^{\dagger} \kappa_{mn} \kappa_{op} \end{split}$$

• Pauli principle \Rightarrow antisymmetrizers, exchange operators

Introduction	Pseudo-potential	Implications	Appendices
000000	00000	00	
Construction of the S	kyrme pseudo-potentia	1	

Skyrme pseudo-potential ingredients

• Aim : Construct the most general \hat{v}_{12} , \hat{v}_{123} and \hat{v}_{1234} Skyrme pseudo-potentials

- ➡ i.e. identify all 2-, 3- and 4-body operators providing independent EDF terms
- Kronecker, gradients and exchange operators

$$\Rightarrow \ \hat{\delta}_{r_i r_j}, \ \vec{k}_{ij} = -\frac{i}{2} (\vec{\nabla}_i - \vec{\nabla}_j), \ P_{ij}^r, \ P_{ij}^\sigma, \ P_{ij}^\tau \text{ with } i \neq j \in \{1, 2, 3, 4\}^2$$

Energy functional derivation

- Two- and three-body central potential up to second order in gradients
- Two-body spin-orbit and four-body gradient-less potentials
 - ➡ Generates around 120 parameters/different terms a priori
- Derivation straightforward but almost impossible by hand for 120 terms
- Development of a formal computation code
- Identification of correlated terms via Singular Value Decomposition

$$\begin{aligned} & \underset{\text{coco}}{\text{Invo-body case (known)}} \\ & \text{Skyrme pseudo-potential} \\ & \bullet \text{ Two-body Skyrme operators providing independent terms in } E_H^{\rho\rho} \text{ and } E_H^{\kappa\kappa} \\ & \hat{v}_{12} = t_0 \left(1 + x_0 P_{12}^{\sigma} \right) \hat{\delta}_{r_1 r_2} + \frac{t_1}{2} \left(1 + x_1 P_{12}^{\sigma} \right) \left(\hat{k}_{12}^{\prime 2} + \hat{k}_{12}^{2} \right) \hat{\delta}_{r_1 r_2} \\ & + t_2 \left(1 + x_2 P_{12}^{\sigma} \right) \hat{k}_{12}^{\prime} \cdot \hat{k}_{12} \hat{\delta}_{r_1 r_2} + iW_0 \left(\vec{\sigma}_1 + \vec{\sigma}_2 \right) \hat{k}_{12}^{\prime} \wedge \hat{k}_{12} \end{aligned} \\ \\ & \text{Bilinear Skyrme functional (energy density)} \\ & \mathcal{E}_{H,\text{even}}^{\rho\rho}(\vec{r}) = \sum_{t=0,1} A_t^{\rho} \rho_t^2 + A_t^{\tau} \rho_t \tau_t + A_t^{\nabla\rho} \vec{\nabla} \rho_t \cdot \vec{\nabla} \rho_t + \sum_{\mu\nu} A_t^J J_{t,\mu\nu} J_{t,\mu\nu} + A_t^{\nabla J} \rho_t \vec{\nabla} \cdot \vec{J}_t \\ & \mathcal{E}_{H,\text{odd}}^{\rho\rho}(\vec{r}) = \sum_{t=0,1} A_t^{s} \hat{s}_t^2 + A_t^T \vec{s}_t \vec{T}_t + \sum_{\mu\nu} A_t^{\nabla s} \nabla_{\mu} s_{t,\nu} \nabla_{\mu} s_{t,\nu} + A_t^j \vec{J}_t \cdot \vec{J}_t + A_t^{\nabla j} \vec{s}_t \cdot \vec{\nabla} \times \vec{J}_t \\ & \mathcal{E}_{H}^{\kappa\kappa}(\vec{r}) = \sum_{t=0,1} A_t^{\tilde{\rho}} \hat{\rho}_t^2 + A_t^{\tilde{\tau}} \hat{\rho}_t \tilde{\tau}_t + A_t^{\nabla\rho} \vec{\nabla} \rho_t \cdot \vec{\nabla} \rho_t + \sum_{\mu\nu} A_t^{\tilde{J}} \tilde{J}_{t,\mu\nu} \tilde{J}_{t,\mu\nu} \\ & \mathcal{E}_{H}^{\kappa\kappa}(\vec{r}) = \sum_{t=0,1} A_t^{\tilde{\rho}} \hat{\rho}_t^2 + A_t^{\tilde{\tau}} \tilde{\rho}_t \tilde{\tau}_t + A_t^{\nabla\rho} \vec{\nabla} \rho_t \cdot \vec{\nabla} \rho_t + \sum_{\mu\nu} A_t^{\tilde{J}} \tilde{J}_{t,\mu\nu} \tilde{J}_{t,\mu\nu} \\ & + \sum_{\mu\nu} A_t^{\tilde{J}w} \left(\tilde{J}_{t,\mu\mu} \tilde{J}_{t,\nu\nu} - \tilde{J}_{t,\mu\nu} \tilde{J}_{t,\nu\mu} \right) \end{aligned}$$

Introduction	Pseudo-potential	Implications	Appendices
000000	000000	00	
Three-body case (new	v)		

í

• Final three-body Skyrme pseudo-potential

$$\begin{split} \hat{\psi}_{123} &= u_0 \left(\hat{\delta}_{r_1 r_3} \hat{\delta}_{r_2 r_3} + \hat{\delta}_{r_3 r_2} \hat{\delta}_{r_1 r_2} + \hat{\delta}_{r_2 r_1} \hat{\delta}_{r_3 r_1} \right) \\ &+ \frac{u_1}{2} \left[1 + y_1 P_{12}^{\sigma} \right] \left(\hat{\vec{k}}_{12} \cdot \hat{\vec{k}}_{12} + \hat{\vec{k}}_{12}' \cdot \hat{\vec{k}}_{12} \right) \hat{\delta}_{r_1 r_3} \hat{\delta}_{r_2 r_3} \\ &+ \frac{u_1}{2} \left[1 + y_1 P_{31}^{\sigma} \right] \left(\hat{\vec{k}}_{31} \cdot \hat{\vec{k}}_{31} + \hat{\vec{k}}_{31}' \cdot \hat{\vec{k}}_{31}' \right) \hat{\delta}_{r_3 r_2} \hat{\delta}_{r_1 r_2} \\ &+ \frac{u_1}{2} \left[1 + y_1 P_{23}^{\sigma} \right] \left(\hat{\vec{k}}_{23} \cdot \hat{\vec{k}}_{23} + \hat{\vec{k}}_{23}' \cdot \hat{\vec{k}}_{23}' \right) \hat{\delta}_{r_2 r_1} \hat{\delta}_{r_3 r_1} \\ &+ u_2 \left[1 + y_{21} P_{12}^{\sigma} + y_{22} (P_{13}^{\sigma} + P_{23}^{\sigma}) \right] \left(\hat{\vec{k}}_{12} \cdot \hat{\vec{k}}_{12}' \right) \hat{\delta}_{r_1 r_3} \hat{\delta}_{r_2 r_3} \\ &+ u_2 \left[1 + y_{21} P_{31}^{\sigma} + y_{22} (P_{32}^{\sigma} + P_{12}^{\sigma}) \right] \left(\hat{\vec{k}}_{31} \cdot \hat{\vec{k}}_{31}' \right) \hat{\delta}_{r_3 r_2} \hat{\delta}_{r_1 r_2} \\ &+ u_2 \left[1 + y_{21} P_{23}^{\sigma} + y_{22} (P_{21}^{\sigma} + P_{31}^{\sigma}) \right] \left(\hat{\vec{k}}_{23} \cdot \hat{\vec{k}}_{23}' \right) \hat{\delta}_{r_2 r_1} \hat{\delta}_{r_3 r_1} \end{split}$$

Introduction 000000	Pseudo-potential	Implications OO	Appendices
Three-body cas	se (new)		
Skyrme pseudo-po	otential		
Trilinear Skyrme f	functional (energy density) :	Normal part	
$\mathcal{E}_{H, ext{even}}^{ ho ho ho}=\sum_{t=0}$	$\sum_{j=1}^{n} \left\{ B_t^{\rho} \rho_0 \rho_t^2 + B_t^{\tau} \rho_0 \rho_t \tau_t + B_t^{\tau} \rho_0 \rho_t + B_t^{\tau} \rho_0 \rho_t$	$B_t^{\nabla\rho}\rho_0\vec{\nabla}\rho_t\cdot\vec{\nabla}\rho_t+\sum_{\mu\nu}B_t^J\rho$	$_{0}J_{t,\mu\nu}J_{t,\mu\nu}$
	$+ B_{10}^{\tau} \rho_1 \rho_1 \tau_0 + B_{10}^{\nabla \rho} \rho_1$	$\vec{\nabla}\rho_1 \cdot \vec{\nabla}\rho_0 + \sum_{\mu\nu} \frac{B_{10}^J \rho_1 J_{1,\mu}}{B_{10}^J \rho_1 J_{1,\mu}}$	$_{\nu}J_{0,\mu u}$
$\mathcal{E}_{H,\mathrm{odd}}^{\rho\rho\rho} = \sum_{t=0,1}$	$\left\{ \frac{B_t^s \rho_0 \vec{s}_t^2 + B_t^T \rho_0 \vec{s}_t \cdot \vec{T}_t + \right.$	$\sum_{\mu\nu} B_t^{\nabla s} \rho_0 \nabla_\mu s_{t,\nu} \nabla_\mu s_{t,\nu} +$	$-\frac{B_t^j}{B_t^j} ho_0\vec{j}_t\cdot\vec{j}_t$
	$+ \frac{B_{t\bar{t}}^T}{t} \rho_1 \vec{s}_t \cdot \vec{T}_{\bar{t}} + \frac{B_t^{\tau s}}{s} \vec{s}_0 \vec{s}_t \tau_t$	$a + \sum_{\mu u} \left[\frac{B_t^{ abla ho s} s_{0, u} abla_\mu \rho_t abla_\mu s \right]$	t, u
	$+B^{\nabla\rho s}_{t\bar{t}}s_{1,\nu}\nabla_{\mu}\rho_{t}\nabla_{\mu}s_{\bar{t},\nu}+$	$B_t^{Js} s_{0,\nu} j_{t,\mu} J_{t,\mu\nu} + B_{t\bar{t}}^{Js} s_{1,\nu}$	$_{ u}j_{t,\mu}J_{ar{t},\mu u}\Big]$
	$+\sum_{\mu\nu\lambda k}\epsilon_{\nu\lambda k}\Big[B_t^{\nabla sJ}s_{0,k}\nabla_\mu$	$s_{t,\nu}J_{t,\mu\lambda} + B_{t\bar{t}}^{\nabla sJ}s_{1,k}\nabla_{\mu}s_{t,k}$	$_{\nu}J_{\bar{t},\mu\lambda}\Big]\Big\}$
	$+B_{10}^{s}\rho_{1}\vec{s}_{1}\cdot\vec{s}_{0}+B_{10}^{\nabla s}\rho_{1}\nabla_{s}$	$_{\mu}s_{1,\nu}\nabla_{\mu}s_{0,\nu} + \frac{B_{10}^{j}}{\rho_{1}}\vec{j_{1}}\cdot\vec{j_{0}}$	$+ B_{10}^{\tau s} \vec{s}_1 \vec{s}_1 \tau_0$

Introduction 000000	Pseudo-potential	Implications 00	Appendices
Three-body case	e (new)		
Skyrme pseudo-pot	ential		
Trilinear Skyrme fu	nctional (energy density) :	Pairing part	
$\mathcal{E}_{\boldsymbol{H}}^{\kappa\kappa\rho} = \sum_{t=0,1} \Big\{ \boldsymbol{H}_{t}^{\boldsymbol{\mu}} \Big\}$	$B_{tt}^{\tilde{\rho}} \rho_0 \tilde{\rho}_t^2 + B_{t\bar{t}}^{\tilde{\rho}} \rho_1 \tilde{\rho}_{\bar{t}} \tilde{\rho}_t + B_t^{\tau}$	${ar t_t^{ ilde ho}} au_0 { ilde ho}_t^2 + B_{tar t}^{ au ilde ho} au_1 { ilde ho}_{ar t} { ilde ho}_t$	
	$+ B_{tt}^{\nabla \tilde{\rho}} \rho_0 \vec{\nabla} \tilde{\rho}_t \cdot \vec{\nabla} \tilde{\rho}_t + B_{t\bar{t}}^{\nabla \tilde{\rho}}$	$\tilde{\rho} \rho_1 \vec{\nabla} \tilde{\rho}_{\bar{t}} \cdot \vec{\nabla} \tilde{\rho}_t + B_{tt}^{\tilde{ ho} \nabla \tilde{ ho}} \vec{\nabla} \rho_0$	$\cdot \vec{\nabla} \tilde{ ho}_t \tilde{ ho}_t$
	$+ B_{t\bar{t}}^{\tilde{\rho}\nabla\tilde{\rho}}\vec{\nabla}\rho_1\cdot\vec{\nabla}\tilde{\rho}_{\bar{t}}\tilde{\rho}_t + \sum_{\mu\nu}$	$\sum_{t=1}^{\tilde{J}} B_{tt}^{\tilde{J}} \rho_0 \tilde{J}_{t,\mu\nu} \tilde{J}_{t,\mu\nu} + \sum_{\mu\nu} B_{tt}^{\tilde{J}}$	${ ilde t_{\overline t}} ho_1 { ilde J_{\overline t,\mu u}} { ilde J_{t,\mu u}}$
	$+\sum_{\mu u} B_{tt}^{J\tilde{J}} J_{0,\mu u} \tilde{ ho}_t \tilde{J}_{t,\mu u} +$	$\sum_{\mu\nu} \frac{B_{t\bar{t}}^{J\tilde{J}}}{B_{t\bar{t}}^{J}} J_{1,\mu\nu} \tilde{\rho}_{\bar{t}} \tilde{J}_{t,\mu\nu} \Big\}$	

Introduction	Pseudo-potential	Implications	Appendices
000000	00000	00	
Four-body case (new)	88		

• Final three-body Skyrme pseudo-potential

$$\hat{v}_{1234} = v_0 \left(\hat{\delta}_{r_1 r_3} \hat{\delta}_{r_2 r_3} \hat{\delta}_{r_3 r_4} + \hat{\delta}_{r_1 r_2} \hat{\delta}_{r_3 r_2} \hat{\delta}_{r_2 r_4} + \hat{\delta}_{r_2 r_1} \hat{\delta}_{r_3 r_1} \hat{\delta}_{r_1 r_4} + \cdots \right)$$

Bilinear Skyrme functional (energy density) : normal and pairing part

$$\begin{split} \mathcal{E}_{H,\text{even}}^{\rho\rho\rho\rho}(\vec{r}) &= \sum_{t=0,1} C_{t}^{\rho} \rho_{t}^{4} + C_{01}^{\rho} \rho_{0}^{2} \rho_{1}^{2} \\ \mathcal{E}_{H,\text{odd}}^{\rho\rho\rho\rho}(\vec{r}) &= \sum_{t=0,1} \left\{ C_{t}^{s} \vec{s}_{t}^{4} + C_{tt}^{\rho s} \rho_{t}^{2} \vec{s}_{t}^{2} + C_{t\bar{t}}^{\rho s} \rho_{t}^{2} \vec{s}_{t}^{2} \right\} + C^{\rho\rho s s} \rho_{0} \rho_{1} \vec{s}_{0} \vec{s}_{1} + C_{01}^{s} \vec{s}_{0}^{2} \vec{s}_{1}^{2} \\ \mathcal{E}_{H}^{\kappa\kappa\rho\rho}(\vec{r}) &= \sum_{t=0,1} \left\{ C_{tt}^{\tilde{\rho}\rho} \rho_{t}^{2} \tilde{\rho}_{t}^{2} + C_{t\bar{t}}^{\tilde{\rho}\rho} \rho_{t}^{2} \tilde{\rho}_{t}^{2} \right\} + C^{\rho\rho\tilde{\rho}\tilde{\rho}} \rho_{0} \rho_{1} \tilde{\rho}_{0} \tilde{\rho}_{1} \\ \mathcal{E}_{H}^{\kappa\kappa\kappa\kappa}(\vec{r}) &= \sum_{t=0,1} \left\{ C_{tt}^{\tilde{\rho}\tilde{\rho}} \tilde{\rho}_{t}^{4} + C_{t\bar{t}}^{\tilde{\rho}\tilde{\rho}} \tilde{\rho}_{t}^{2} \tilde{\rho}_{t}^{2} \right\} \end{split}$$

Introduction 000000	Pseudo-potential	Implications 00	Appendices
Outline			
 Introduction Nuclear EDF Model the energy Pathologies Challenges 	sy kernel		
 2 Skyrme pseudo-po e Energy kernel fr e Two-body case e Three-body case e Four-body case 	tential om Skyrme pseudo-potential e		
 Implications Parameterization Results 	ns		

Introduction 000000	Pseudo-potential	Implications • O	Appendices
Parameterizations			

General-EDF : good-quality parameterizations

- \checkmark Quasi-bilinear functional (density-dependent interaction) : 7+2+1 param. \Rightarrow SLy4
 - ➡ Parameterization of reference

Pseudo-potential-based EDF : as good-quality as general-EDF parameterizations?

- ▶ Three-body pseudo-potential : 7+6+1 param. \Rightarrow S₃Ly⁷¹₂₆₀, S₃Ly⁷⁶₂₃₀, S₃Ly⁸¹₂₅₀
 - ➡ Not pseudo-potential-based : two-body contact for pairing part
- \checkmark Three and four-body gradient-less pseudo-potential : 7+2 param. \Rightarrow f44
 - ➡ pseudo-potential-based : same potential for normal and pairing part
 - Much more constrained : pairing and instabilities
 - ➡ Aim : safely usable for MR-EDF

		P	seudo-	potential DO		Implica O ●	itions		Appendices
5									
tric Nu	uclear Ma	tter	eq	uation o	of states				
Para	metrizatio	ons		$f4_4$	$S_3Ly_{260}^{71}$	$S_3 Ly_{230}^{76}$	$S_3Ly_{250}^{81}$	SLy4	
	E P	/A Psat	-15 (5.041).152	-16.088 0.157	-16.062 0.157	-16.079 0.157	-15.972 0.160	
f44 y ⁷¹ y ²⁶⁰ y ⁷⁶ y ²³⁰ y ⁸¹ y ²⁵⁰ SLy4	m_0^*/m 0.47 0.71 0.76 0.81 0.695	K 264 259 230 249 229	 √∞ 4.2 9,8 0.0 9.9 9.9 	a _{sym} 23 32 32 32 32 32	$\begin{array}{c} 1.0 \\ 0.9 \\ m \\ 0.8 \\ 0.7 \\ 0.6 \\ 0.5 \\ 0.6 \\ -10 \\ -5 \\ 0.0 \\ -15 \\ 0.0 \\ 0.0 \\ 0.0 \\ -15 \\ 0.0 \\ 0.$		0.2 ρ (fm ⁻³)		71 2200 70 8120 8120 4 4
J. Sadou	ıdi			Kazin	niers 2012		28/09/2012	2	19 / 32 (30)
	f44 9260 76 9230 9250 5Ly4	s tric Nuclear Ma Parametrizatio E P 1 1 1 1 1 1 1 1 1 1 1 1 1	s tric Nuclear Matter Parametrizations E/A ρ_{sat} p_{sat} m_0^*/m K f_{44} 0.47 264 y_{260}^{71} 0.71 259 y_{250}^{76} 0.76 230 y_{250}^{81} 0.81 249 5Ly4 0.695 229	model Konstant kick kick Parametrizations kick E/A -15 psat 0 kick kick kick kick kick kick kick 0.47 kick 0.71 kick 0.76 kick 0.81 kick 0.695 kick 0.695 kick 0.53doudi	Pseudo-potential OOOOOO S tric Nuclear Matter : equation of Parametrizations $f4_4$ E/A -15.041 ρ_{sat} 0.152 $\frac{m_0^*/m}{f4_4}$ -15.041 0.152 $\frac{m_0^*/m}{f4_4}$ -15.041 0.152 0.230 0.32 0.250 0.250 0.29.9 0.25 0.695 229.9 0.22 0.29.9 0.29.9 0.22 0.22	Pseudo-potential OOOOOO S tric Nuclear Matter : equation of states Parametrizations $f4_4$ $S_3Ly_{260}^{21}$ E/A -15.041 -16.088 ρ_{sat} 0.152 0.157 $\frac{m_0^*/m}{f4_4}$ -15.041 -16.088 0.152 0.157	Pseudo-potential 000000 S tric Nuclear Matter : equation of states Parametrizations $f4_4$ $S_3Ly^{71}_{260}$ $S_3Ly^{76}_{230}$ E/A -15.041 -16.088 -16.062 ρ_{sat} 0.152 0.157 0.157 $\frac{m_0^*/m}{f4_4}$ 0.47 264.2 23 y^{71}_{260} 0.71 259,8 32 y^{76}_{230} 0.76 230.0 32 y^{81}_{250} 0.81 249.9 32 S_{Ly4}^{81} 0.695 229.9 32 y^{10}_{250} 0.695 229.9 32	$\frac{Pseudo-potential}{000000}$ s tric Nuclear Matter : equation of states $\frac{Parametrizations}{E/A} = \frac{f4_4}{-15.041} = \frac{s_3 Ly_{260}^{71}}{0.157} = \frac{s_3 Ly_{230}^{72}}{0.157} = \frac{s_3 Ly_{250}^{81}}{0.157}$ $\frac{E/A}{0.152} = \frac{16.062}{0.157} = \frac{16.079}{0.157}$ $\frac{m_0^*/m}{0.152} = \frac{K_\infty}{0.157} = \frac{10}{0.157} = \frac{10}{0.157}$ $\frac{m_0^*/m}{1259,8} = \frac{10}{0.695} = \frac{10}{229.9} = \frac{10}{22}$ $\frac{m_0^*/m}{14} = \frac{10}{0.695} = \frac{10}{229.9} = \frac{10}{32}$ $\frac{m_0^*/m}{14} = \frac{10}{0.695} = \frac{10}{229.9} = \frac{10}{22}$	$\frac{p_{\text{seudo-potential}}{000000} \qquad $

Introduction	Pseudo-potential	Implications	Appendices
000000	000000	0•	
Results			

Symmetric Nuclear Matter

Landau parameters : infinite-wavelength instabilities

• Instabilities $F_l < -(2l+1)$, $G_l < -(2l+1)$

The weak point ⇒ known for gradient-less 3B potential [B. D. Chang, PLB56 (1975) 205]

Symmetric Nuclear Matter

Landau parameters : infinite-wavelength instabilities

• Instabilities $F_l < -(2l+1)$, $G_l < -(2l+1)$

The weak point ⇒ known for gradient-less 3B potential [B. D. Chang, PLB56 (1975) 205]

Introduction 000000	Psei OO	udo-potential 0000		Implica ⊖●	ations		Appendices
Results							
Spin insta	bilities						
Systemati	ics : binding energie	S					
	Parametrizations	f44	$S_3Ly_{260}^{71}$	$S_3Ly_{230}^{76}$	$S_3Ly_{250}^{81}$	SLy4	
			lso	otopic chair	าร		
	$ar{\Delta}_E$ (MeV)	4.52	1.97	1.62	1.06	0.21	
	$\Delta_{ E }$ (MeV)	17.54	2.64	2.36	2.02	2.48	
	$\sigma_E~({\sf MeV})$	21.67	2.44	2.32	2.12	3.02	
	E. H. (MeV)			, се с		71. 260 760 230 81. or	
		50 b	100 A	150 5	$-\diamond - SLy4$ 200 25	250 0	

Introduction 000000	Pse OO	udo-potential 0000		Implic:	ations		Appendices
Results							
Spin insta	abilities						
Systemat	ics : binding energie	:S					
	Parametrizations	$f4_4$	$S_3Ly_{260}^{71}$	$S_3Ly_{230}^{76}$	$S_3Ly_{250}^{81}$	SLy4	
			lso	otonic chair	าร		
	$ar{\Delta}_E$ (MeV)	-2.99	0.49	0.21	-0.03	-0.75	
	$ar{\Delta}_{ E }$ (MeV)	16.57	1.66	1.50	1.39	1.68	
	σ_E (MeV)	18.62	1.94	1.83	1.70	1.98	
	EthEexp. (MeV)	50	100 A			71 70 70 70 70 70 70 70 70 70 70 70 70 70	

Introduction 000000	Psei 00	udo-potential 0000		Impli ⊖●	cations		Appendices
Results							
Spin insta	bilities						
Systemati	cs : radii						
	Parametrizations	$f4_4$	$S_3Ly_{260}^{71}$	$S_3Ly^{76}_{230}$	$S_3Ly_{250}^{81}$	SLy4	
				sotopic chai	ins		
	$\bar{\Delta}_{r_c} (10^{-2} \text{ fm})$	-2.3	-0.8	-1.3	-1.6	1.9	
	$\bar{\Delta}_{ r_c } (10^{-2} \text{ fm})$	2.6	1.8	2.1	2.3	2.0	
	σ_{r_c} (10 ⁻² fm)	3.1	1.9	2.0	1.9	2.2	
	0.15 0.15 0.15 0.05 0.00 0.05 0.00 0.00 0.005 0.00 0.005 0.00 0.005 0.00 0.0			150		y_{260}^{η} y_{260}^{η} y_{7620}^{η} y_{7620}^{η} y_{7420}^{η} y_{7420}^{η} z_{50}^{η}	

А

Introduction 000000	Ps	eudo-potential		Impli ⊖●	cations		Appendices
Results							
Systematic	cs : radii						
	Parametrizations	f 44	$S_3Ly_{260}^{71}$	${\sf S}_3{\sf Ly}_{230}^{76}$	$S_3Ly_{250}^{81}$	SLy4	
			ls	sotonic cha	ins		
	$\bar{\Delta}_{r_c} \ (10^{-2} \ { m fm})$	-2.0	0.5	0.1	-0.2	3.6	
	$ar{\Delta}_{ r_c }~(10^{-2}~{ m fm})$	3.0	1.6	1.5	1.7	3.7	
	σ_{r_c} (10 ⁻² fm)	3.4	2.4	2.3	2.3	2.5	
	0.15 1.0 0.05 0.0 0.05 0.0 0.0 0.0 0.0		· · · · · · · · · · · · · · · · · · ·	150		r_{3200}^{T}	
			1	A			

Introduction 000000	Pseudo-potential	Implications O •	Appendices
Re <mark>sults</mark>			
Binding energies, ra	dii and gaps systematics		
Angular momentum	n and particule number res	storation	

 $\bullet\,$ Pseudo-potential-based MR-EDF computation possible using f4_4 parameterization

Introduction 000000	Pseudo-potential 000000	Implications O	Appendices
Results			
Conclusions			
• First viable pseud	lo-potential-based EC	PF parameterizations	
 Spurious free As good phe 	e spectroscopy calcula momenology as mode	t <mark>ion doable</mark> rn EDFs ?	

Outlooks

- Spin-orbit and tensor three-body pseudo-potential-based functional almost derived
- ✤ Post-analysis of the free parameters
- $\boldsymbol{\nsim}$ Make use of pseudo-potential-based parameterizations for deformed nuclei
- $\boldsymbol{\nsim}$ Make use of future good parameterizations in MR-EDF calculations

J. Sadoudi	Kazimiers 2012	28/09/2012	20 / 32 (40
Appendices			
Appondicos	000000	00	
Introduction	Pseudo-potential	Implications	Appendices

Introduction	Pseudo-potential	Implications	Appendices
000000	000000	00	
and the second			

Low-energy nuclear physics interests

- Spectrum of $H \left| \Psi_i^A \right\rangle = E_i^A \left| \Psi_i^A \right\rangle$ for all $A \!=\! N \!+\! Z$
- Observables for each state, e.g. $r^2\equiv \langle\Psi^A_i|\sum^A_k\hat{r}^2_k|\Psi^A_i
 angle/A$
- Decays between $|\Psi_i
 angle$, i.e. nuclear, electromagnetic, electro-weak

Introduction	Pseudo-potential	Implications	Appendices
000000	000000	00	
A Constant of Cons			

Low-energy nuclear physics interests

- Spectrum of $H \left| \Psi_i^A \right\rangle = E_i^A \left| \Psi_i^A \right\rangle$ for all $A \!=\! N \!+\! Z$
- Observables for each state, e.g. $r^2\equiv\langle\Psi^A_i|\sum_k^A\hat{r}_k^2|\Psi^A_i
 angle/A$
- Decays between $|\Psi_i
 angle$, i.e. nuclear, electromagnetic, electro-weak

Goals for low-energy nuclear theory

- $\bullet\,$ Model the unknown nuclear Hamiltonian H
- Solve A-body problem and describe properties of nuclei
- Understand states of nuclear matter in astrophysical environments

Introduction 000000	Pseudo-potential 000000	Implications OO	Appendices			
SR- and MR-EDI	- steps					
Single-Reference ED	F : Static collective corre	lations				
• Invokes single $ \Phi(g) \rangle$ can brea	• Invokes single $ \Phi(g)\rangle$ and diagonal energy kernel $E_q^{SR} \equiv Min_{ \Phi(g)\rangle} E[g,g]$ • $ \Phi(g)\rangle$ can break symmetries \Rightarrow deformation parameter $g = qe^{ir}$					
• Provides first a	oproximation to binding e	energies, $\langle r_{ch} \rangle$, $\rho(r)$, β_2	and ESPE $\{\epsilon_i\}$			
Multi-Reference : D	ynamical collective correl	ations				
 Mixes off-diagon E^{MR}_k ≡ Min_{{f}^d_q Restores broken Treats collective → Includes ass → Provides ass QRPA, Bohr-Hai 	al energy kernels $\sum_{g'g} f_g^{k*} f_{g'}^{k*} E[g',g] \langle \Phi[g',g] \rangle \langle \Phi[g',g$	$\frac{ \phi(g') \Phi(g)\rangle}{ \Phi(g)\rangle}$	ТЕ[р,к,к*; q]			

Kazimiers 2012

Introduction 000000	Pseudo-potential	Implications OO	Appendices
SR- and MR-ED	OF steps		
Single-Reference E	DF : Static collective correl	ations	
 Invokes single 	$ \Phi(g) angle$ and diagonal energy	, kernel $E_q^{\sf SR}\equiv {\sf Min}_{ \Phi(g) angle}E[$	[g,g]
• $ \Phi(g)\rangle$ can bro • Provides first	eak symmetries \Rightarrow deformat approximation to binding er	tion parameter $g = qe^{ir}$ nergies, $\langle r_{ch}^2 \rangle$, $\rho(\vec{r})$, β_2 and	ESPE $\{\epsilon_i\}$
	11 0		
Multi-Reference :	Dynamical collective correla	tions	
• Symmetry grou • Rotate symmetry • Projected energy $E^{\lambda} = \frac{1}{c_{1}^{2}}$	$\begin{array}{l} \text{pr} \ \mathcal{G} = \{R(r)\} \\ \text{ery breaking state} \\ \Phi(r)\rangle = R(r) \Phi(0)\rangle \\ \text{gy is obtained thanks to} \\ \frac{1}{{}^{*}_{\lambda b}c_{\lambda a}} \frac{d_{\lambda}}{v_{\mathcal{G}}} \int_{\mathcal{G}} dm(r) S^{\lambda *}_{ab}(r) E \end{array}$?[0, r]	TE[p,ĸ,ĸ*:q]
L Sadaudi	Karimiers 2012	28/00/2012	22 / 22 / 4

Introduction 000000	Pseudo-potential 000000	Implicatio 00	ons Appendices		
SR- and MR-EDF	steps				
Single-Reference EDI	= : Static collective correl	ations			
 Invokes single Φ(g)⟩ and diagonal energy kernel E^{SR}_q ≡ Min_{Φ(g)⟩}E[g,g] Φ(g)⟩ can break symmetries ⇒ deformation parameter g = qe^{ir} Provides first approximation to binding energies, ⟨r²_{ch}⟩, ρ(r), β₂ and ESPE {ε_i} 					
Multi-Reference : Dy	namical collective correla	tions			
 Symmetry group Rotate symmetry Projected energy E[0, r](Φ(0) 	$\mathcal{G} = \{R(r)\}$ breaking state $\Phi(r)\rangle = R(r) \Phi(0)\rangle$ is obtained thanks to $ \Phi(r)\rangle = \sum_{\lambda ab} c^*_{\lambda b} c_{\lambda a} E^{\lambda}S$	$\lambda^{\lambda*}_{ab}(r)$	E[p,ĸ,ĸ*;q]		
 Spurious contan 	ninations? Need to focus	on the strategy	followed to build $E[g',g]$		

		00	
000000	000000	00	
Introduction	Pseudo-potential	Implications	Appendices

Regularization of EDF kernel

[D. Lacroix et al., PRC79 (2009) 044318] [M. Bender et al. PRC79 (2009) 044319] [T. Duguet et al. PRC79 (2009) 044320]

Regularized MR calculations

$$E_{\mathsf{REG}} \equiv E[\rho^{g'g}, \kappa^{g'g}, \kappa^{gg'*}] - E_C[\langle \Phi_{g'} |; |\Phi_g \rangle]$$

- $\checkmark E^{\lambda}$ is free from divergencies/steps
- ✓ Does not change diagonal EDF kernel
- **X** Only for integer power of the density

Expansion on U(1) Irreps

$$E[\rho^{0\varphi}, \kappa^{0\varphi}, \kappa^{\varphi 0 *}] \langle \Phi_0 | \Phi_{\varphi} \rangle = \sum_{A \in \mathbb{Z}} c_A^2 E^A e^{iA(\varphi)}$$

- $c_A^2 E^A \neq 0$ for $A \leq 0 \Rightarrow$ general-EDF formulation
- Regularization restores $c_A^2 E^A = 0$ for $A \le 0$
- ***** Other corrections maybe necessary

Introduction	Pseudo-potential	Implications	Appendices
000000	000000	00	
Correction coming fro	m angular momentum re	storation	

Expansion on SO(3) Irreps

$$E[\rho^{0\Omega}, \kappa^{0\Omega}, \kappa^{\Omega\Omega} *] \langle \Phi(0) | \Phi(\Omega) \rangle = \sum_{lmk} c_{lm}^* c_{lk} \ E^l \ D_{mk}^l(\Omega)$$

Pseudo-potential-based EDF method

• Mathematical property of the angular-momentum-restored density potential energy

$$E_{H}^{l} = \frac{1}{2} \int d\vec{R} \, d\vec{r} \, V(r) \, \rho_{lmlm}^{[2]}(\vec{R},\vec{r}) = \int d\vec{R} \, \sum_{l'=0}^{2l} \, \mathcal{V}_{l}^{l'0}(R) \, C_{lml'0}^{lm} \mathcal{V}_{l'}^{0}(\hat{R})$$

[T. Duguet, J. Sadoudi, J.Phys.G 37 (2010) 064009]

General EDF method

• Correction on general EDF kernel to ensure such property still do be derived

Implications Introduction Pseudo-potential Appendices Energy kernel from Skyrme pseudo-potential Skyrme pseudo-Hamiltonian : 2+3+4-body $H_{\text{pseudo}} \equiv + \frac{1}{2!} \sum \langle \hat{v}_{12} \rangle_{ijkl} a_i^{\dagger} a_j^{\dagger} a_l a_k$ $+\frac{1}{3!} \sum \langle \hat{v}_{123} \rangle_{ijklmn} a_i^{\dagger} a_j^{\dagger} a_k^{\dagger} a_n a_m a_l$ iiklmn $+ \frac{1}{4!} \sum_{ijklmnop} \langle \hat{v}_{1234} \rangle_{ijklmnop} a_i^{\dagger} a_j^{\dagger} a_k^{\dagger} a_l^{\dagger} a_p a_o a_n a_m ,$ where $\langle \hat{O}_{12} \rangle_{ijkl} \equiv \langle ij | \hat{O}_{12} | kl \rangle$ $\langle \hat{O}_{123} \rangle_{ijklmn} \equiv \langle ijk | \hat{O}_{123} | lmn \rangle$ $\langle \hat{O}_{1234} \rangle_{ijklmnop} \equiv \langle ijkl | \hat{O}_{1234} | mnop \rangle$

Introduction 000000	Pseudo-potential 000000	Implications 00	Appendices
Energy kernel t	from Skyrme pseudo-pote	ential	
Skyrme pseudo-H	lamiltonian : 2+3+4-body		
Energy kernel			
 Energy kerne 	el through $\langle \Phi(g) H_{pseudo} \Phi(g)\rangle$) angle and Standard Wick Theorem	rem
Normal part			
E	$E_{H}^{\rho\rho} = \frac{1}{2} \sum_{ijkl} \langle \hat{v}_{12} \mathcal{A}_{12} \rangle_{ijkl} \rho_{I}$ $E_{H}^{\rho\rho\rho} = \frac{1}{6} \sum_{ijklmn} \langle \hat{v}_{123} \mathcal{A}_{123} \rangle_{ij}$ $e^{\rho\rho\rho} = \frac{1}{6} \sum_{ijklmn} \langle \hat{v}_{123} \mathcal{A}_{123} \rangle_{ij}$	xi $ρ_{lj}$ klmn $ρ_{li} ρ_{mj} ρ_{nk}$	
 Pauli princip 	$V_{H} = \frac{1}{24} \sum_{ijklmnop} \langle v_{1234} \mathcal{A}_{12} \rangle$ le \Rightarrow antisymmetrizers	234)ijklmnop ρmi ρnj ρok ρpi	!
	$A_{12} \equiv 1 - P_{12}$ $A_{123} \equiv (1 - P_{13} - P_{13})$	$P_{23})A_{12}$	

$$\mathcal{A}_{1234} \equiv (1 - P_{14} - P_{24} - P_{34})\mathcal{A}_{123}$$

Introduction 000000	Pseudo-potential 000000	Implications OO	Appendices
En <mark>ergy kerne</mark> l	from Skyrme pseudo-pote	ential	
Skyrme pseudo-H	Hamiltonian : 2+3+4-body		
Energy kernel			
 Energy kern 	el through $\langle \Phi(g) {m H}_{{\sf pseudo}} \Phi(g) $) angle and Standard Wick Theo	orem
Pairing part			
		、 †	
E _H	$F = \frac{1}{6} \sum_{ijklmn} \langle \mathcal{A}_{123} v_{123} \mathcal{A}_{123} \rangle$	$\lambda_{ijklmn} \kappa_{ij} \kappa_{lm} \rho_{nk}$	
$E_{H}^{\kappa\kappa}$	$^{pp} = \frac{1}{24} \sum_{ijklmnop} \langle \mathcal{A}_{1234}^{1234} \hat{v}_{1234} \rangle$	$_{1}\mathcal{A}_{1234}^{12}\rangle_{ijklmnop} \kappa_{ij}^{!}\kappa_{mn} ho_{ol}$	$_k ho_{pl}$
$E_{H}^{\kappa\kappa\mu}$	$^{\kappa\kappa} = \frac{1}{24} \sum_{ijklmnop} \langle \mathcal{A}_{123}^{12} \hat{v}_{1234}.$	$\langle \mathcal{A}_{123}^{12} \rangle_{ijklmnop} \kappa^{\dagger}_{ij} \kappa^{\dagger}_{kl} \kappa_{mn} \kappa^{\dagger}_{kl}$	op
 Pauli princip 	ble \Rightarrow exchange operators		

$$\mathcal{A}_{123}^{12} \equiv (1 - P_{13} - P_{23}) \qquad \mathcal{A}_{1234}^{12} \equiv (1 - P_{14} - P_{24} - P_{34}) \mathcal{A}_{123}^{12}$$
$$\mathcal{A}_{1234}^{12S} \equiv (1 - P_{13} - P_{23} - P_{14} - P_{24} - P_{34})$$

Introduction	Pseudo-potential	Implications	Appendices
000000	000000	00	
Construction of the	Skyrme pseudo-p	otential	

Symmetry under particles exchange

• Pseudo-potentials have to be symmetric under particles exchange, i.e.

$$\hat{v}_{12} = \hat{v}_{\overline{12}} = \hat{v}_{\overline{21}} \rightarrow \langle \hat{v}_{12} \rangle_{ijkl} = \langle \hat{v}_{12} \rangle_{jilk} \hat{v}_{123} = \hat{v}_{\overline{123}} = \hat{v}_{\overline{213}} = \hat{v}_{\overline{132}} = \hat{v}_{\overline{321}} = \hat{v}_{\overline{312}} = \hat{v}_{\overline{231}} \hat{v}_{1234} = \hat{v}_{\overline{1234}} = \hat{v}_{\overline{2134}} = \hat{v}_{\overline{1324}} = \hat{v}_{\overline{3214}} = \hat{v}_{\overline{3124}} = \hat{v}_{\overline{2314}} = \cdots$$

- We will make use of two-body symmetric operators $(\hat{\delta}_{r_i r_j}, \hat{ec{k}}_{ij}, \hat{ec{k}}_{ij}', \hat{P}_{ij}^{\sigma})$
- Three-body and four-body potential can be defined following

$$\begin{split} \hat{v}_{123} &\equiv \hat{v}_{\overline{123}} + \hat{v}_{\overline{132}} + \hat{v}_{\overline{231}} \\ \hat{v}_{1234} &\equiv \hat{v}_{\overline{1234}} + \hat{v}_{\overline{1243}} + \hat{v}_{\overline{1342}} + \hat{v}_{\overline{2341}} \\ &\equiv \hat{v}_{\overline{1234}} + \hat{v}_{\overline{1324}} + \hat{v}_{\overline{2314}} + \hat{v}_{\overline{1243}} + \hat{v}_{\overline{1423}} + \hat{v}_{\overline{2413}} \\ &\quad + \hat{v}_{\overline{1342}} + \hat{v}_{\overline{1432}} + \hat{v}_{\overline{3412}} + \hat{v}_{\overline{2341}} + \hat{v}_{\overline{2431}} + \hat{v}_{\overline{3421}} \end{split}$$

• One just have to define $\hat{v}_{\overline{12}}$, $\hat{v}_{\overline{12}3}$ and $\hat{v}_{\overline{12}34}$ to get \hat{v}_{12} , \hat{v}_{123} and \hat{v}_{1234}

Introduction	Pseudo-potential	Implications	Appendices
000000	000000	00	
Construction of	of the Skyrme pseudo-pot	ential	
construction c	in the onlythic pseudo por		
Symmetry under	particles exchange		
 One just have 	ve to define $\hat{v}_{\overline{12}}$, $\hat{v}_{\overline{123}}$ and $\hat{v}_{\overline{1}}$	$\overline{\overline{z_{34}}}$ to get \hat{v}_{12} , \hat{v}_{123} and \hat{v}_{123}	, 1234

Skyrme pseudo-potential ingredients

- Aim : Construct the most general $\hat{v}_{\overline{12}}$, $\hat{v}_{\overline{123}}$ and $\hat{v}_{\overline{12}34}$ Skyrme pseudo-potentials
 - ➡ i.e. identify all 2-, 3- and 4-body operators providing independent EDF terms
- Kronecker operators
 - $\hat{\delta}_{r_i r_j}$ with $i \neq j \in \{1, 2, 3, 4\}^2$
- Gradients operators

$$\Rightarrow \ \hat{\vec{k}}_{ij} = -\frac{i}{2} (\hat{\vec{\nabla}}_i - \hat{\vec{\nabla}}_j), \ \hat{\vec{k}}'_{ij} = \frac{i}{2} (\hat{\vec{\nabla}}'_i - \hat{\vec{\nabla}}'_j) \text{ with } i \neq j \in \{1, 2, 3, 4\}^2$$

- Exchange operators
 - \blacktriangleright P_{ij}^r , P_{ij}^σ , P_{ij}^τ with $i \neq j \in \{1, 2, 3, 4\}^2$
- Generates all possibilities which are hermitian

Introduction 000000	Pseudo-potential 000000	Implications 00	Appendices		
Construction of t	he Skyrme pseudo-p	otential			
Symmetry under par	rticles exchange				
• One just have to define $\hat{v}_{\overline{12}}$, $\hat{v}_{\overline{123}}$ and $\hat{v}_{\overline{1234}}$ to get \hat{v}_{12} , \hat{v}_{123} and \hat{v}_{1234}					
Skyrme pseudo-potential ingredients					
• Aim : Construc	t the most general $\hat{v}_{\overline{12}}$,	$\hat{v}_{\overline{12}3}$ and $\hat{v}_{\overline{12}34}$ Skyrme pseud	o-potentials		
 Using : Kronecker, gradients and exchange operators 					
• Generates all po	ossibilities which are her	mitian			

Energy functional derivation

- The third and fourth particle provides many possibilities a priori
- Two- and three-body central potential up to second order in gradients
- Two-body spin-orbit and four-body gradient-less potentials
 - ➡ Generates around 120 parameters/different terms a priori
- Derivation straightforward but almost impossible by hand for 120 terms
- Development of a formal computation code
- Identification of correlated terms via Singular Value Decomposition

Introduction	Pseudo-potential	Implications	Appendices
000000	000000	00	
Two-body case (know	wn)		

• Two-body Skyrme operators providing independent terms in $E_{H}^{
ho
ho}$ and $E_{H}^{\kappa\kappa}$

$$\begin{split} \hat{v}_{12} &= t_0 \left(1 + x_0 P_{12}^{\sigma} \right) \hat{\delta}_{r_1 r_2} \\ &+ \frac{t_1}{2} \left(1 + x_1 P_{12}^{\sigma} \right) \left(\hat{\vec{k}}_{12}^{\prime \, 2} + \hat{\vec{k}}_{12}^{\, 2} \right) \hat{\delta}_{r_1 r_2} \\ &+ t_2 \left(1 + x_2 P_{12}^{\sigma} \right) \hat{\vec{k}}_{12}^{\prime} \cdot \hat{\vec{k}}_{12} \hat{\delta}_{r_1 r_2} \\ &+ i W_0 \left(\hat{\vec{\sigma}}_1 + \hat{\vec{\sigma}}_2 \right) \hat{\vec{k}}_{12}^{\prime} \wedge \hat{\vec{k}}_{12} \end{split}$$

Bilinear Skyrme functional (energy density) : Normal part

$$\begin{aligned} \mathcal{E}_{H,\mathsf{even}}^{\rho\rho}(\vec{r}) &= \sum_{t=0,1} A_t^{\rho} \rho_t^2 + A_t^{\mathsf{T}} \rho_t \tau_t + A_t^{\nabla\rho} \vec{\nabla} \rho_t \cdot \vec{\nabla} \rho_t + \sum_{\mu\nu} A_t^J J_{t,\mu\nu} J_{t,\mu\nu} + A_t^{\nabla J} \rho_t \vec{\nabla} \cdot \vec{J}_t \\ \mathcal{E}_{H,\mathsf{odd}}^{\rho\rho}(\vec{r}) &= \sum_{t=0,1} A_t^s \vec{s}_t^2 + A_t^T \vec{s}_t \vec{T}_t + \sum_{\mu\nu} A_t^{\nabla s} \nabla_\mu s_{t,\nu} \nabla_\mu s_{t,\nu} + A_t^j \vec{j}_t \cdot \vec{j}_t + A_t^{\nabla j} \vec{s}_t \cdot \vec{\nabla} \times \vec{j}_t \end{aligned}$$

Introduction	Pseudo-potential	Implications	Appendices
000000	000000	00	
Two-body case (kn	own)		

• Two-body Skyrme operators providing independent terms in $E_H^{\rho\rho}$

$$\begin{split} \hat{v}_{12} &= t_0 \left(1 + x_0 P_{12}^{\sigma} \right) \hat{\delta}_{r_1 r_2} \\ &+ \frac{t_1}{2} \left(1 + x_1 P_{12}^{\sigma} \right) \left(\hat{\vec{k}}_{12}^{\prime \, 2} + \hat{\vec{k}}_{12}^{\, 2} \right) \hat{\delta}_{r_1 r_2} \\ &+ t_2 \left(1 + x_2 P_{12}^{\sigma} \right) \hat{\vec{k}}_{12}^{\prime} \cdot \hat{\vec{k}}_{12} \hat{\delta}_{r_1 r_2} \\ &+ i W_0 \left(\hat{\vec{\sigma}}_1 + \hat{\vec{\sigma}}_2 \right) \hat{\vec{k}}_{12}^{\prime \prime} \wedge \hat{\vec{k}}_{12} \end{split}$$

Bilinear Skyrme functional (energy density) : Pairing part

$$\begin{aligned} \mathcal{E}_{H}^{\kappa\kappa}(\vec{r}) &= \sum_{t=0,1} A_{t}^{\tilde{\rho}} \tilde{\rho}_{t}^{2} + A_{t}^{\tilde{\tau}} \tilde{\rho}_{t} \tilde{\tau}_{t} + A_{t}^{\nabla \tilde{\rho}} \vec{\nabla} \tilde{\rho}_{t} \cdot \vec{\nabla} \tilde{\rho}_{t} + \sum_{\mu\nu} A_{t}^{\tilde{J}} \tilde{J}_{t,\mu\nu} \tilde{J}_{t,\mu\nu} \\ &+ \sum_{\mu\nu} A_{t}^{\tilde{J}_{W}} \left(\tilde{J}_{t,\mu\mu} \tilde{J}_{t,\nu\nu} - \tilde{J}_{t,\mu\nu} \tilde{J}_{t,\nu\mu} \right) \end{aligned}$$

000000		0000	-potential OO			00	ons		Appendices
Two-body o	ase (know	vn)							
Bilinear functi	ional coeffic	cients	(derived	by cod	e)				
					<u></u>				
		t_0	$t_0 x_0$	t_1	$t_1 x_1$	t_2	$t_{2}x_{2}$	W_0	
	$A_0^{\rho} =$	$+\frac{3}{8}$	+0	+0	+0	+0	+0	+0	
	$A_1^{\rho} =$	$-\frac{1}{8}$	$-\frac{1}{4}$	+0	+0	+0	+0	+0	
	$A_0^{\tau} =$	+0	+0	$+\frac{3}{16}$	+0	$+\frac{5}{16}$	$+\frac{1}{4}$	+0	
	$A_1^{\tau} =$	+0	+0	$-\frac{1}{16}$	$-\frac{1}{8}$	$+\frac{1}{16}$	$+\frac{1}{8}$	+0	
	$A_0^{\nabla \rho} =$	+0	+0	$+\frac{9}{64}$	+0	$-\frac{5}{64}$	$-\frac{1}{16}$	+0	
	$A_1^{\nabla \rho} =$	+0	+0	$-\frac{3}{64}$	$-\frac{3}{32}$	$-\frac{1}{64}$	$-\frac{1}{32}$	+0	
	$A_{0}^{J} =$	+0	+0	$+\frac{1}{16}$	$-\frac{1}{8}$	$-\frac{1}{16}$	$-\frac{1}{8}$	+0	
	:	÷	÷	÷	÷	÷	÷	÷	

Introduction 000000	Pseudo-potential	Implications 00	Appendices
Three-body ca	se (new)		
Skyrme pseudo-p	otential		
• Final three-b	ody Skyrme pseudo-potentia	I	
\hat{v}_{123}	$\equiv \hat{v}_{\overline{123}} + \hat{v}_{\overline{132}} + \hat{v}_{\overline{231}}$		
$\hat{v}_{\overline{12}3}$	$= u_0 \ \hat{\delta}_{r_1r_3}\hat{\delta}_{r_2r_3}$		
	$+\frac{u_1}{2}\left[1+y_1P_{12}^{\sigma}\right]\left(\hat{\vec{k}}_{12}\cdot\hat{\vec{k}}_{12}\right)$	$_{2}+\hat{\vec{k}}_{12}^{\prime}\cdot\hat{\vec{k}}_{12}^{\prime})\hat{\delta}_{r_{1}r_{3}}\hat{\delta}_{r_{2}r_{3}}$	
	$+u_2\left[1+y_{21}P_{12}^{\sigma}+y_{22}(P_{13}^{\sigma}+y_{22})(P_{13}^{\sigma}+y_{22}(P_{13}^{\sigma}+y_{22})(P_{13}^{\sigma}+y_{22}(P_{13}^{\sigma}+y_{22})(P_{13}^{\sigma}+y_{22})(P_{13}^{\sigma}+y_{22})(P_{13}^{\sigma}+y_{22})(P_{13}^{\sigma}+y_{22})(P_{13}^{\sigma}+y_{22})(P_{13}^{\sigma}+y_{22})(P_{13}^{\sigma}+y_{22})(P_{13}^{\sigma}+y_{22})(P_{13}^{\sigma}+y_{22})(P_{13}^{\sigma}+y_{22})(P_{13}^{\sigma}+y_{22})(P_{13}^{\sigma}+y_{22})))))))))))))))))))))))))))))))))))$	$(\hat{\vec{k}}_{12} + P_{23}^{\sigma}) \left[\left(\hat{\vec{k}}_{12} \cdot \hat{\vec{k}}_{12}^{\prime} \right) \hat{\delta}_{r_1 r_3} \hat{\delta}_{r_2 r_3} \right]$	

Introduction	Pseudo-potential	Implications	Appendices
000000	000000	00	
Three-body case (new	N)		

• Final three-body Skyrme pseudo-potential

$$\begin{split} \hat{\psi}_{123} &= u_0 \left(\hat{\delta}_{r_1 r_3} \hat{\delta}_{r_2 r_3} + \hat{\delta}_{r_3 r_2} \hat{\delta}_{r_1 r_2} + \hat{\delta}_{r_2 r_1} \hat{\delta}_{r_3 r_1} \right) \\ &+ \frac{u_1}{2} \left[1 + y_1 P_{12}^{\sigma} \right] \left(\hat{\vec{k}}_{12} \cdot \hat{\vec{k}}_{12} + \hat{\vec{k}}_{12}' \cdot \hat{\vec{k}}_{12} \right) \hat{\delta}_{r_1 r_3} \hat{\delta}_{r_2 r_3} \\ &+ \frac{u_1}{2} \left[1 + y_1 P_{31}^{\sigma} \right] \left(\hat{\vec{k}}_{31} \cdot \hat{\vec{k}}_{31} + \hat{\vec{k}}_{31}' \cdot \hat{\vec{k}}_{31} \right) \hat{\delta}_{r_3 r_2} \hat{\delta}_{r_1 r_2} \\ &+ \frac{u_1}{2} \left[1 + y_1 P_{23}^{\sigma} \right] \left(\hat{\vec{k}}_{23} \cdot \hat{\vec{k}}_{23} + \hat{\vec{k}}_{23}' \cdot \hat{\vec{k}}_{23}' \right) \hat{\delta}_{r_2 r_1} \hat{\delta}_{r_3 r_1} \\ &+ u_2 \left[1 + y_{21} P_{12}^{\sigma} + y_{22} (P_{13}^{\sigma} + P_{23}^{\sigma}) \right] \left(\hat{\vec{k}}_{12} \cdot \hat{\vec{k}}_{12}' \right) \hat{\delta}_{r_1 r_3} \hat{\delta}_{r_2 r_3} \\ &+ u_2 \left[1 + y_{21} P_{31}^{\sigma} + y_{22} (P_{32}^{\sigma} + P_{12}^{\sigma}) \right] \left(\hat{\vec{k}}_{31} \cdot \hat{\vec{k}}_{31}' \right) \hat{\delta}_{r_3 r_2} \hat{\delta}_{r_1 r_2} \\ &+ u_2 \left[1 + y_{21} P_{23}^{\sigma} + y_{22} (P_{21}^{\sigma} + P_{31}^{\sigma}) \right] \left(\hat{\vec{k}}_{23} \cdot \hat{\vec{k}}_{23}' \right) \hat{\delta}_{r_2 r_1} \hat{\delta}_{r_3 r_1} \end{split}$$

$$\begin{aligned} & \text{Introduction} & \text{Pseudo-potential} & \text{Implications} & \text{OO} & \text{OO}$$

1

Introduction 000000	Pseudo-potential	Implications OO	Appendices
Three-body case (r	new)		
Skyrme pseudo-potent			
Trilinear Skyrme funct	ional (energy density) :	Pairing part	
$\mathcal{E}_{H}^{\kappa\kappa ho}=\sum_{t=0,1}\Big\{B_{tt}^{ ilde ho}$,	$ ho_0 ilde{ ho}_t^2 + B^{ ilde{ ho}}_{tar{t}} ho_1 ilde{ ho}_{ar{t}} ilde{ ho}_t + B^{ au}_{tar{t}}$	$\int_{t}^{\tilde{ ho}} au_{0} ilde{ ho}_{t}^{2} + B_{t\overline{t}}^{ au ilde{ ho}} au_{1} ilde{ ho}_{\overline{t}} ilde{ ho}_{t}$	
+ B	$B_{tt}^{\nabla\tilde{ ho}} ho_0 ec{ abla} ilde{ ho}_t \cdot ec{ abla} ilde{ ho}_t + B_{t\bar{t}}^{\nabla\hat{ ho}}$	$\tilde{\rho}_{0} ho_{1}ec{ abla} ilde{ ho}_{t}\cdotec{ abla}_{t} ho_{t}+B_{tt}^{ ilde{ ho} abla}ec{ ho}_{0}ec{ abla}_{t}ec{ abla} ho_{0}\cdotec{ ho}_{0}\cdotec{ ho}_{0}\cdotec{ ho}_{0} ightarrowec{ ho}_{t}$	$\vec{\nabla} \tilde{\rho}_t \tilde{\rho}_t$
+ B	$\frac{\rho\tilde{\rho}\nabla\tilde{\rho}}{t\bar{t}}\vec{\nabla}\rho_{1}\cdot\vec{\nabla}\tilde{\rho}_{\bar{t}}\tilde{\rho}_{t}+\sum_{\mu\nu}$	$\frac{B_{tt}^{\tilde{J}}\rho_{0}\tilde{J}_{t,\mu\nu}\tilde{J}_{t,\mu\nu} + \sum_{\mu\nu} B_{t\bar{t}}^{\tilde{J}}}{B_{t\bar{t}}}$	$ \rho_1 \tilde{J}_{\bar{t},\mu\nu} \tilde{J}_{t,\mu\nu} $
$+\sum_{\mu}$	$\sum_{\mu\nu} \frac{B_{tt}^{J\tilde{J}}}{B_{tt}} J_{0,\mu\nu} \tilde{\rho}_t \tilde{J}_{t,\mu\nu} + \int$	$\sum_{\mu\nu} \frac{B_{t\bar{t}}^{J\tilde{J}}}{B_{t\bar{t}}} J_{1,\mu\nu} \tilde{\rho}_{\bar{t}} \tilde{J}_{t,\mu\nu} \Big\}$	

Introduction	Pseudo-potential	Implications	Appendices		
000000	000000	00			
Three-body case	e (new)				
Trilinear functional coefficients (derived by code)					
			_		

	u_0	u_1	u_1y_1	u_2	$u_2 y_{21}$	$u_2 y_{22}$
$B_0^{\rho} =$	$+\frac{3}{16}$	+0	+0	+0	+0	+0
$B_1^{\rho} =$	$-\frac{3}{16}$	+0	+0	+0	+0	+0
$B_0^{\tau} =$	+0	$+\frac{3}{32}$	+0	$+\frac{15}{64}$	$+\frac{3}{16}$	$+\frac{3}{32}$
$B_{10}^{\tau} =$	+0	$-\frac{1}{32}$	$+\frac{1}{32}$	$-\frac{5}{64}$	$-\frac{1}{16}$	$-\frac{7}{32}$
$B_1^{\tau} =$	+0	$-\frac{1}{16}$	$-\frac{1}{32}$	$+\frac{1}{32}$	$+\frac{1}{16}$	$-\frac{1}{16}$
$B_0^{\nabla\rho} =$	+0	$+\frac{15}{128}$	+0	$-\frac{15}{256}$	$-\frac{3}{64}$	$-\frac{3}{128}$
$B_{10}^{\nabla\rho} =$	+0	$-\frac{5}{64}$	$+\frac{1}{32}$	$+\frac{5}{128}$	$+\frac{1}{32}$	$+\frac{7}{64}$
$B_1^{\nabla\rho} =$	+0	$-\frac{5}{128}$	$-\frac{1}{32}$	$-\frac{7}{256}$	$-\frac{1}{32}$	$-\frac{5}{128}$
:	:	:	:	:	÷	:

Introduction	Pseudo-potential	Implications	Appendices
000000	000000	00	
Four-body case (new))		

• Final three-body Skyrme pseudo-potential

$$\begin{split} \hat{v}_{1234} &\equiv \hat{v}_{\overline{12}34} + \hat{v}_{\overline{13}24} + \hat{v}_{\overline{23}14} + \hat{v}_{\overline{12}43} + \hat{v}_{\overline{14}23} + \hat{v}_{\overline{24}13} \\ &\quad + \hat{v}_{\overline{13}42} + \hat{v}_{\overline{14}32} + \hat{v}_{\overline{34}12} + \hat{v}_{\overline{23}41} + \hat{v}_{\overline{24}31} + \hat{v}_{\overline{34}21} \\ \hat{v}_{\overline{12}34} &= v_0 \ \hat{\delta}_{r_1 r_3} \hat{\delta}_{r_2 r_3} \hat{\delta}_{r_3 r_4} \end{split}$$

Introduction	Pseudo-potential	Implications	Appendices
000000	000000	00	
Four-body case (new)			

• Final three-body Skyrme pseudo-potential

$$\hat{v}_{1234} = v_0 \left(\hat{\delta}_{r_1 r_3} \hat{\delta}_{r_2 r_3} \hat{\delta}_{r_3 r_4} + \hat{\delta}_{r_1 r_2} \hat{\delta}_{r_3 r_2} \hat{\delta}_{r_2 r_4} + \hat{\delta}_{r_2 r_1} \hat{\delta}_{r_3 r_1} \hat{\delta}_{r_1 r_4} + \cdots \right)$$

Bilinear Skyrme functional (energy density) : normal and pairing part

$$\begin{split} \mathcal{E}_{H,\text{even}}^{\rho\rho\rho\rho}(\vec{r}) &= \sum_{t=0,1} C_{t}^{\rho} \rho_{t}^{4} + C_{01}^{\rho} \rho_{0}^{2} \rho_{1}^{2} \\ \mathcal{E}_{H,\text{odd}}^{\rho\rho\rho\rho}(\vec{r}) &= \sum_{t=0,1} \left\{ C_{t}^{s} \vec{s}_{t}^{4} + C_{tt}^{\rho s} \rho_{t}^{2} \vec{s}_{t}^{2} + C_{t\bar{t}}^{\rho s} \rho_{t}^{2} \vec{s}_{t}^{2} \right\} + C^{\rho\rho s s} \rho_{0} \rho_{1} \vec{s}_{0} \vec{s}_{1} + C_{01}^{s} \vec{s}_{0}^{2} \vec{s}_{1}^{2} \\ \mathcal{E}_{H}^{\kappa\kappa\rho\rho}(\vec{r}) &= \sum_{t=0,1} \left\{ C_{tt}^{\tilde{\rho}\rho} \rho_{t}^{2} \tilde{\rho}_{t}^{2} + C_{t\bar{t}}^{\tilde{\rho}\rho} \rho_{t}^{2} \tilde{\rho}_{t}^{2} \right\} + C^{\rho\rho\tilde{\rho}\tilde{\rho}} \rho_{0} \rho_{1} \tilde{\rho}_{0} \tilde{\rho}_{1} \\ \mathcal{E}_{H}^{\kappa\kappa\kappa\kappa}(\vec{r}) &= \sum_{t=0,1} \left\{ C_{tt}^{\tilde{\rho}\tilde{\rho}} \tilde{\rho}_{t}^{4} + C_{t\bar{t}}^{\tilde{\rho}\tilde{\rho}} \tilde{\rho}_{t}^{2} \tilde{\rho}_{t}^{2} \right\} \end{split}$$

000000	OOOOOO		Implications OO	Appendices
Four-body case (new)				
Bilinear Skyrme functional				
Bilinear functional coefficie	ents			
		v_0		
	$C_0^{\rho} =$	$+\frac{3}{64}$		
	$C_1^{\rho} =$	$+\frac{3}{64}$		
	$C_{01}^{\prime} = C_{0}^{s} =$	$-\frac{3}{32}$ $+\frac{3}{64}$		
	$C_{1}^{s} =$	$+\frac{3}{64}$		
	$C_{00}^{\rho s} = C_{00}^{\rho s} =$	$-\frac{3}{32}$		
	$C_{11}^{\rho s} = C_{10}^{\rho s} =$	$-\frac{32}{32}$		
	$C_{01}^{\rho s} =$	$-\frac{3}{32}$		
		÷		

000000	000000	00	Appendices
Motivation			
General-EDF			

- Good-quality EDF parameterization of reference : SLy4
- \sim Usual quasi-bilinear functional (density-dependent interaction) : 7+2 parameters

Pseudo-potential-based EDF

- Aim : Get a pseudo-potential parameterization as good as SLy4
 - Similar fitting procedure used
- **x** Two-body plus three-body pseudo-potential : (9-2)+6 parameters = 4 more

- Produce a set of parameterizations
 - ► $S_3Ly_{260}^{71}$ ► $S_3Ly_{250}^{73}$ ► $S_3Ly_{230}^{76}$ ► $S_3Ly_{250}^{81}$

Fitted nuclear properties

- Fit on pure neutron matter equation of state
 - ➡ As for SLy4 parameterization : Wiringa *ab-initio* data
- Symmetry energy $a_{sym} = 32 \text{ MeV}$
- Binding energies and radii of doubly magic nuclei (if exist):

40
Ca, 48 Ca, 56 Ni, 100 Sn, 132 Sn, 208 Pb

• Neutron spin-orbit splitting $\epsilon_{3p}\equiv\epsilon_{\nu3p_{1/2}}-\epsilon_{\nu3p_{3/2}}$ in $^{208}{\rm Pb}$