Determination of neutron-skin thickness from giant resonance studies

A. Krasznahorkay, N. Paar, D. Vretenar for the R3B and EXL collaborations

Strongly interacting bulk matter at the nuclear, hadronic and partonic levels

Nuclear Equation of State (Relationship between energy, temperature pressure, and density in nuclear matter)

✓ Nuclear Astrophysics – What is the nature of neutron stars and dense nuclear matter?

✓ Nuclear Structure – What is the nature of the nuclear force that binds protons and neutrons into stable nuclei and rare isotopes?

$$E \diamondsuit, \alpha = E \diamondsuit, 0 + S \diamondsuit g^{2} + O \And^{4} + \dots$$

$$\alpha = \frac{N - Z}{A}$$

$$S(\rho) = \frac{1}{2} \frac{\partial^{2} E(\rho, \alpha)}{\partial \alpha^{2}} |_{\alpha=0} = a_{4} + \frac{p_{0}}{\rho_{2}^{2}} \bigstar - \rho_{0} + \dots$$

$$g_{\Theta}^{2} \text{ Nuclear Physics Workshop, Kazimierz, symmetry energy a, (MeV)}$$

The symmetry energy and their density dependence

2012

Experiment S408 at GSI

Spokesperson: A. Krasznahorkay

- Excitation of the Antianalog Giant Dipole Resonance (AGDR) in (p,n) reaction
- Very little quenching, and it is precisely known for the whole nuclear chart
- Ground-state γ-decay of the GDR

Helmholtzzentrum für Schwerionenforschung GmbH

$$\frac{\Gamma_{\gamma}(E_{\gamma})}{\Gamma} = \frac{E_{\gamma}^2}{3\pi^2 \hbar c \Gamma} \int \sigma_{abs}(E_{\gamma}) dE_{\gamma}$$

Excitation and y-decay of the AGDR

Isospin Clebsch-Gordan coefficients (F. Osterfeld, Rev. Mod. Phys. , 64, (1992), 491)

PHYSICAL REVIEW C, VOLUME 63, 034322 (2001)

Splitting of the dipole and spin-dipole resonances

Sam M. Austin,^{1,*} E. Adamides,¹ A. Galonsky,¹ T. Nees,¹ W. A. Sterrenburg,^{1,†} D. E. Bainum,^{2,‡} J. Rapaport,³ E. Sugarbaker,^{4,§} C. C. Foster,⁵ C. D. Goodman,⁵ D. J. Horen,^{6,||} C. A. Goulding,^{7,¶} and M. B. Greenfield^{7,**} ¹ National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824

Experimental data for the AGDR

Energy of the AGDR and the IVSGDR (SDR) resonances

19th Nuclear Physics Workshop, Kazimierz,

2012

Sum rules

$$S^{-} - S^{+} = N \langle r_{n} \rangle^{2} - Z \langle r_{p} \rangle^{2}$$
A. Krasznahorkay et al.,
PRL 82, 3216 (1999).

$$S^{-}E^{-} + S^{+}E^{+} = \left(\frac{3\hbar^{2}}{4\pi m}\right) A(1+\kappa+\eta)$$
N. Auerbach et al.,
PLB 106(1981)347
TRK = $\left(\frac{3\hbar^{2}}{8\pi m}\right) A(1+\kappa)$
if $S^{+} = 0$

$$E^{-} = \left(\frac{3\hbar^{2}A}{8N\pi mR_{p}}\right) \frac{1}{\Delta R_{pn} + R_{p}(N-Z)/2N}$$

(p,n) reaction in inverse kinematics p(¹³²Sn,n) E=600 AMeV

TE GSI Helmholtzzentrum für Schwerionenforschung GmbH

Schematic layout of the setup

$p(^{124}Sn,n) E = 600 AMeV$

Geometrical arrangement and characteristics of LENA

19th Nuclear Physics Workshop, Kazimierz,

2012

γ-ray spectrum measured in coincidence with the neutrons (0.5<E_n<3.5 MeV and 66°<Θ_{LAB}< 68°)

E(GDR) = 15.19 FWHM(GDR)=4.81

Theoretical results

- Fully self-consistent relativistic proton-neutron quasiparticle random phase approximation (pn-RQRPA) based on the Relativistic Hartree-Bogoliubov model (RHB) [Vretenar & Paar].
- density-dependent meson-exchange (DD-ME) interactions

AGDR strength distributions

Results for the Sn isotopes

Sensitivity of the AGDR to the neutron-skin thickness

The theoretical values E(AGDR)-E(IAS) are plotted as functions of the corresponding ground-state neutron skin thickness R_{pn} , and compared to the experimental value $E(AGDR) - E(IAS) = 10.90 \pm 0.32$ MeV.

²⁰¹²

Same as described previously for ¹²⁴Sn but for the target nucleus ²⁰⁸Pb.

¹⁹th Nuclear Physics Workshop, Kazimierz,

Summary of the results obtained so far for the neutron-skin thickness of ²⁰⁸Pb

V. Conclusions

- A new method was introduced to measure the neutron-skin thickness
- GR studies in stable beams
- GR studies proposed in RIB's
- Challenges for the detectors

THANK YOU VERY MUCH !

A. Krasznahorkay*, L. Stuhl*, M. Csatlós*, A. Algora*, J. Gulyás*,
J. Timár*, N. Paar[†], D. Vretenar[†], M.N. Harakeh**, K. Boretzky[‡], M. Heil[‡],
Yu.A. Litvinov[‡], D. Rossi[‡], C. Scheidenberger[‡], H. Simon[‡], H. Weick[‡],
A. Bracco^{§,1}, S. Brambilla[§], N. Blasi[§], F. Camera^{§,1}, A. Giaz^{§,1}, B. Million[§],
L. Pellegri^{§,1}, S. Riboldi^{§,1}, O. Wieland[§], S. Altstadt^{||,‡}, M. Fonseca^{||},
J. Glorius^{||}, K. Göbel^{||}, T. Heftrich^{||}, A. Koloczek^{||}, S. Kräckmann^{||},
C. Langer^{||}, R. Plag^{||}, M. Pohl^{||}, G. Rastrepina^{||}, R. Reifarth^{||}, S. Schmidt^{||},
K. Sonnabend^{||}, M. Weigand^{||}, N. Kalantar-Nayestanaki^{**}, C. Rigollet^{**},
S. Bagchi^{**}, M.A. Najafi^{**}, T. Aumann^{††}, L. Atar^{††}, M. Heine^{††}, M. Holl^{††},
A. Movsesyan^{††}, P. Schrock^{††}, V. Volkov^{††}, F. Wamers^{††}, T. Aumann^{††},
L. Atar^{††}, M. Heine^{††}, M. Holl^{††}, A. Movsesyan^{††}, P. Schrock^{††},
V. Volkov^{††}, F. Wamers^{††}, E. Fiori^{‡‡,§§}, B. Löher^{‡‡,§§}, J. Marganiec^{‡‡,§§},
D. Savran^{‡‡,§§}, H.T. Johansson^{¶†}, P. Diaz Fernández^{***}, U. Garg^{†††,‡‡} and

*Inst. of Nucl. Res. of the Hungarian Acad. of Sci. (ATOMKI), H-4001 Debrecen, P.O. Box 51, Hungary

[†]Physics Department, Faculty of Science, University of Zagreb, Croatia
**Kernfysisch Versneller Instituut, University of Groningen, Groningen, The Netherlands
[‡]GSI, Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
[§]INFN sez. Milano, Via Celoria 16, 20133 Milano, Italy
[§]Universita degli Studi di Milano, Dipartimento di Fisica, Milano,Italy
[§]Goethe-Universität, Frankfurt am Main, Germany
[§]Technische Universität Darmstadt, Germany
[§]Frankfurt Institute for Advanced Studies FIAS, Frankfurt am Main, Germany
^{§§}Frankfurt Institute for Advanced Studies FIAS, Frankfurt am Main, Germany
^{§§}Chalmers Tekniska Högskola, Göteborg, Sweden
^{***}Universidade de Santiago de Compostella, Santiago de Compostela, Spain