Characteristics of the fragments production in ${ }^{197} \mathrm{Au}+{ }^{197} \mathrm{Au}$ reaction at 23 AMeV

Rafał Najman
Institute of Physics,
Jagiellonian University in Krakow

for Breakup Collaboration

Motivation

- extension of an earlier study carried out at a lower energy of 15 AMeV , in which a new reaction mechanism of violent collinear breakup of nonfusing colliding systems into 3 and/or 4 massive fragments was discovered (previous seminar)
- search for toroidal freeze out configurations predicted to be formed for this heavy system

Search for superheavy nuclei

The theoretical analysis of properties of superheavy nuclei do not predict any long living nuclei with compact shapes beyond the island of stability ($\mathrm{N} \sim 184, \mathrm{Z} \sim 114$).

> Liquid drop model with shell corrections and Hartree - Fock - Bogoliubov theory with the Gogny D1S force calculations have shown that metastable islands of nuclear bubbles can exist for nuclei in the range $A=450-3000$
> K. Dietrich, K.Pomorski Phys. Rev. Lett. 80,37 (1998)
> J. Decharge et al. Nucl. Phys.A $716,55(2003)$

Prediction for the toroidal shapes

The energy of the toroidal minimum decrease relatively to the potential energy of the spherical configuration with increase of the mass of the system
For $Z>140$, the global minimum of potential energy corresponds to the toroidal shape

BUU simulations for central collisions of $A u+A u$

Calculations predict that a threshold energy for toroidal freeze-out configuration is at about 23 MeV / nucleon

beam
direction

A.Sochocka et al., Int. J. Mod. Phys. E17, 190 (2008)

Results of ImQMD simulation

Tian et al., Phys. Rev. C77, 064603 (2008)

Macroscopic droplet collisions

Formation the toroidal-shapes configurations can be observed in binary droplet collision at high velocity.

$0 \mathrm{~ms} \quad 0.390 \mathrm{~ms} \quad 0.585 \mathrm{~ms} \quad 0.780 \mathrm{~ms} \quad 0.975 \mathrm{~ms} \quad 1.754 \mathrm{~ms} \quad 2.144 \mathrm{~ms}$

$2.729 \mathrm{~ms} \quad 3.314 \mathrm{~ms} \quad 3.899 \mathrm{~ms} \quad 4.678 \mathrm{~ms} \quad 7.992 \mathrm{~ms} \quad 17.544 \mathrm{~ms}$

$$
V=3.89 \mathrm{~m} / \mathrm{s}
$$

Measurements forAu + Au (23 AMeV) at INFN-LNS with CHIMERA detector

CHIMERA -Charged Heavy Ion Mass and Energy Resolving Array

CHIMERA detector

$A u+A u$ at 23 AMeV

Calibration procedure:
-Energy calibration of Si detectors (done)
$\cdot \mathrm{Z}$ identification of fragments, $\Delta \mathrm{E}-\mathrm{E}$ method (done)
-Energy deposited in Csl calculated (done)
-A identification of fragments, TOF method (done)
-Light particles identification, PSD method (in future)
-Pulse Shape Analysis, Time90 (in future)

Fragment identifications
 telescope 252

$\Delta \mathrm{E}-\mathrm{E}$
spectrum

Δ E-Time spectrum

Charge distributions

Energy distributions for fragments with Z=5-50

TOF calibration

E - particle energy $[\mathrm{MeV}]$ calculated from:
$\mathrm{E}=\mathrm{a}_{\mathrm{L}} \cdot$ Channel $_{\text {desilpg }}+\mathrm{b}_{\mathrm{L}}$
m - ion mass [u]
R - distance from target to detector [cm]
t_{0} - time offset calculated for each detector [ns]
$\alpha=3 \cdot T / d$
T- cyclotron period [ns]
d- distance between two beam bursts [channels]
For calibration data the following function is fitted:

TOF calibration

Telescope 430

Telescope 858

Mass distributions

Total momentum vs. $\mathbf{Z}_{\text {tot }}$ distribution

Multiplicity distributions

Multiplicity of identified particles:
$0.8<\mathbf{P}_{\|, \text {tot }} / \mathbf{P}_{\text {Proj }}<1.1 \& \mathrm{Z}_{\text {tot }}>120$

Multiplicity of fragments distributions

$\mathbf{Z}_{\mathrm{f} \text { threshold }}=5$

$Z_{\text {tot, fragments }}$ distribution

Observables definition

Δ parameter measures the flatness of the events in velocity space.
For toroids it is much smaller than for sphere or bubble.

$$
\begin{aligned}
& \mathbf{d}_{\mathbf{i}}=\frac{\left|\mathbf{A} \mathbf{v}_{\mathrm{x}_{\mathrm{i}}}+\mathbf{B} \mathbf{v}_{\mathbf{y}_{\mathrm{i}}}+\mathbf{C} \mathbf{v}_{\mathbf{z}_{\mathrm{i}}}+\mathbf{D}\right|}{\sqrt{\mathbf{A}^{2}+\mathbf{B}^{2}+\mathbf{C}^{2}}} \\
& \boldsymbol{\Delta}^{2}=\min \sum_{\mathrm{i}=1}^{5} \mathbf{d}_{\mathbf{i}}^{2}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})
\end{aligned}
$$

A, B, C, D - plane parameters

Observables definition

$\Theta_{\text {Plane }}$ distribution

$$
\mathbf{Z}_{\mathrm{f}, \text { threshold }}=\mathbf{8}
$$

Number of fragments : 4

Number of fragments : >=5

23

$\Theta_{\text {Plane }}$ distribution

$$
\mathbf{Z}_{\mathrm{f}, \text { threshold }}=6
$$

Number of fragments: 4

Number of fragments : $>=5$

24
XIX Nuclear Physics Workshop in Kazimierz Dolny 2012

Charge distribution

$$
\mathbf{Z}_{\mathrm{f}, \text { threshold }}=\mathbf{8}
$$

Number of fragments : 4

Charge distribution

$$
\mathbf{Z}_{\mathrm{f}, \text { threshold }}=\mathbf{6}
$$

Number of fragments: 4
Number of fragments : >=5

Summary

-Energy calibration of Si detectors have been completed. Energy loss in Csl detectors was taken into account.
-Charge identification of fragments is complete.
-

- Mass identification procedure for fragments stopped in $\mathbf{S i}$ detectors is complete.
- Selection of events corresponding to central collisions is in progress.

Breakup Collaboration

F.Amorini ${ }^{1,2}$, L.Auditore ${ }^{3}$, A.Bubak ${ }^{4}$, T.Cap ${ }^{5}$, G.Cardella ${ }^{6}$, E. De Filippo ${ }^{6}$, E.Geraci ${ }^{2,6}$, L.Grassi², ${ }^{\text {, }}$, A.Grzeszczuk ${ }^{4}$, E.La Guidara ${ }^{7}$, J.Han¹, D.loria ${ }^{3}$, S.Kowalski ${ }^{4}$, T.Kozik ${ }^{8}$, G.Lanzalone ${ }^{1,9}$, I.Lombardo ${ }^{2,9}$, Z.Majka ${ }^{8}$, R.Najman ${ }^{8}$, N.G.Nicolis ${ }^{10}$, A.Pagano ${ }^{6}$, E.Piasecki 11, S.Pirrone ${ }^{6}$, R.Płaneta ${ }^{8}$, G. Polititi,6, F.Rizzo ${ }^{1,2}$, P.Russotto ${ }^{1,2}$, K.Siwek-Wilczyńska ${ }^{5}$, I.SkwiraChalot ${ }^{5}$, A.Sochocka ${ }^{12}$, A.Trifirò ${ }^{3}$, M.Trimarchi ${ }^{3}$, J.Wilczyński13, G.Verde ${ }^{6}$, W.Zipper ${ }^{4}$

1) INFN, Laboratori Nazionali del Sud, Catania, Italy
2) Dipartimento di Fisica e Astronomia Universitá di Catania, Catania, Italy
3) Dipartimento di Fisica Universitá di Messina and INFN Gruppo Collegato di Messina, Italy
4) Institute of Physics, University of Silesia, Katowice, Poland
5) Faculty of Physics, University of Warsaw, Warsaw, Poland
6)INFN,Sezione di Catania, Italy
7)Centro Siciliano di Fisica Nucleare e Struttura della materia
6) M.Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
9)Università Kore, Enna, Italy
10)Department of Physics, The University of loannina,loannina, Greece
7) Heavy IonLaboratory, University of Warsaw, Warsaw, Poland
8) Department of Physics, Astronomy and Applied Informatics, Jagiellonian University, Kraków, Poland
9) A.SoltanInstitute for Nuclear Studies, Świerk, Poland

Thank you for your attention

Identification method for toroidal freeze-out configuration

To distinguish between different geometries we plan to use global shape variables proposed in Sochocka PhD thesis:

- δ - related to sphericity and coplanarity
- Δ - flatness parameter

ETNA model predictions

Observables definition

31

Observables definition

ETNA - Expecting Toroidal Nuclear

Agglomeration + GEMINI Code

Flow diagram

$A_{C N}=A_{T}+A_{P}$
$Z_{C N}=Z_{T}+Z_{P}$ minus preequilibrium nucleons

Drawing of fragments:
-Gaussian distribution
$<Z_{\text {frag }}>=Z_{\text {tot }} / \mathrm{N}$
N - number of fragments
$N=5$
All the fragments are placed in ball, bubble and toroidal configuration with additional condition: $R_{i j}>R_{i}+R_{i j}+\mathbf{2 f m}$

Non - central collisions are taken into account up to given impact parameter b

Partition of the available energy:

$$
\mathbf{E}_{\mathrm{ava}}=\mathbf{E}_{\mathrm{CM}}+\mathbf{Q}-\mathbf{E}_{\text {COULOMB }}
$$

Available energy is distributed between:
$E_{a v a}=E^{*}+E_{t h}=N a T^{2}+3 / 2 k(N-1) T$; assuming equal temperatures, N - number of fragments

The dynamical GEMINI code:

- sequential decay of excited fragments
- acceleration in the mutual Coulomb field

Detection of particles in the CHIMERA detector
$\square, \square \square$ detector number $\square \square_{\text {rand }}, \square_{\text {rand }}$

$$
\mathrm{E}_{\mathrm{thr}}=1 \mathrm{MeV} / \mathrm{A}
$$

$$
Z_{\text {FWHM }}=1 \text { ch.u. }
$$

$A=2.2^{*} Z$ (GEMINI prediction)

