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A review and a short introduction can be found in:

1) Nuclear Hamiltonians: The Question of their Spectral
Predictive Power and the Associated Inverse Problem;

JD, B. Szpak, M-G, Porquet, H. Molique, K. Rybak, B. Fornal
J. Phys. G: Nucl. Part. Phys. 37 (2010) 064031

FOCUS Special Issue: Open Problems in Nuclear Theory

2) Nuclear Mean Field Hamiltonians and Factors Limiting
their Predictive Power: Formalism;

JD, K. Rybak, B. Szpak, M-G, Porquet, H. Molique & B. Fornal
Int. J. Mod. Phys. E 19 (2010) 652

Jerzy DUDEK, University of Strasbourg, France Predictive Power of Mathematical Modelling



3) Statistical significance of theoretical predictions:
A new dimension in nuclear structure theories (I);

J. Dudek, B. Szpak, M.-G. Porquet and B. Fornal
Journal of Physics: Conference Series, 267 (2011) 012062

4) Statistical significance of theoretical predictions:
A new dimension in nuclear structure theories (II);

B. Szpak, J. Dudek, M.-G. Porquet and B. Fornal
Journal of Physics: Conference Series, 267 (2011) 012063

5) Nuclear Physics Hamiltonians, Inverse Problem
and the Related Issue of Predictive Power;

JD, B. Szpak, A. Dromard, M.-G. Porquet, B. Fornal and A. Góźdź
Int. J. Mod. Phys. E 21, No. 5 (2012) 1250053
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Part I

Nuclear Hamiltonians and Nuclear Theories:
Predictive-Power Perspective
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Predictive Power... The Issue of the Very Definition

• Discussing the problem of Predictive Power, we usually have no
doubt in our minds so as to what is meant (... or what we mean...)

• Suppose somebody has obtained a modelling result before any
experimental verification - Such a result can be called a prediction!

• After performing the experiment we verify, ex post, whether this
prediction was good and claim victory and (good) predictive power!

• At this moment “theory predictions” turn into “modelling result”
of the experiment - without anybody doing anything on theory side

• At this point - what begins - are the issues of lacking precision in
very posing of the problem, arbitrariness and semantical confusion,
the implied questions, troubles, possibly mathematical non-sense...
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What does it mean: Having Predictive Power?

• Any result of any modelling of any phenomenon before the right
experiments are performed can be called “a theoretical prediction”

• ... thus performing any model calculation can be called predicting!

• But if any calculation is a prediction, any theory can predict always
and therefore it has always a predictive power ‘no-matter-what’ ...

• As a consequence, the very term “predictive power” applies always
i.e. means no special property. In our context it will be fair to say:
This term is void of sense - more precisely: does not tell us anything

• ...and one may try using similar, a slightly modified wording: What
carries certain interest is, possibly, theory’s good predictive power!
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What does it mean: Prediction is Good (or Satisfactory)?

• Being good for someone may not be satisfactory for someone else

• ... and it becomes clear that discussions of this type unavoidably
involve the elements of arbitrariness and of a subjective judgement

• Therefore directly related with the notion of “good predictions”
are, sine qua non, criteria of distinction between “good” and “poor”

• It is not possible to talk about Predictive Power [whatever it
means∗)] without specifying the criteria of choice at the same time:

The notion of Predictive Power is relative and/or subjective#)

∗)This notion is still to be defined for you here ...
#)So is the very notion of probability (12 ‘official’ definitions and 16 interpretations)
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Theory-Errors Limit Theory’s Predictive Power [1]

• What do we usually wish to do is to learn the so-called ‘full truth’

Ĥtrue ψn = en ψn − where we wish to know: Ĥ = Ĥtrue

• The way humans do their research can be summarised like this:

Ĥ = Ĥ1︸︷︷︸
of 1949

+ Ĥ2︸︷︷︸
of 1964

+ Ĥ3︸︷︷︸
of 2012

+ · · ·+ Ĥn︸︷︷︸
of 2055

+ · · · → Ĥtrue︸ ︷︷ ︸
say:∞

In other words: Human quantum theories are usually incomplete

• Our Hamiltonians have always a structure: Ĥ = Ĥtrue + δĤignor

• Conclusion: The desired truth remains unknown to us because

of δĤ ignor → ignorance decreasing with research time
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Ĥtrue ψn = en ψn − where we wish to know: Ĥ = Ĥtrue
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Theory-Errors Limit Theory’s Predictive Power [2]

• There exist effective means of limiting the negative impact of
the ignorance originating from incompleteness of information

• Solution: In cases of doubt we ‘parametrize our ignorance’

• In other words: Estimate which answer will be more,- and
which less-likely ‘the right solution’. Expressed alternatively:

Find relative probability of what we think the right answer is!

In Applied Mathematics:

1. Our ignorance is usually represented by a random variable X

2. Mathematically, variable X is represented by a probability
distribution PX = PX(x), x called ‘realisation’ of the variable X

Conclusion: Not knowing ‘the truth’ we may introduce several
competing hypotheses & calculate their relative probabilities!
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A New Strategy for Theories and Predicting

This is a new strategical observation which introduces
what we call

”Stochastic Theory of Predictive Power”

Given theory T of a phenomenon P generating
observables F̂1, F̂2, . . . F̂p.

These observables are characterized not only
by the eigenvalues {F̂1 : f1, F̂2 : f2, . . . F̂p : fp}

but also by their probability distributions:

P1 = P1(f1), P2 = P2(f2), . . . Pp = P1(fp)
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Inverse Problem and Predictive Power: 132Sn
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Results of the extrapolation from the 208Pb to the 132Sn nucleus for the neutrons,

bars - cf. preceding table. Monte-Carlo simulation with N=20 000 Gaussian-distributed

parameter sets, based on 208Pb results; noise width σ=0.1MeV. With each of the so

obtained N=20 000 sets of parameters the results for the neutrons in 132Sn nucleus have

been obtained. Observe ‘pathologies’: 1g7/2 and 1f7/2 cf. following figures.
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Energy Levels as Probability Distributions

Experimental levels represent, from both quantum-mechanical and
experimental points of view an ensemble of probability distributions

.
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Energy-Levels as Probability Distributions

The biggest uncertainties of Hamiltonian Parameters originate not so
much from the experimental but rather from the theory uncertainties

[combine theory + experimental errors]
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Stochastic Nature of Theoretical Predictions

Combining Theoretical
and Experimental Errors
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Stochastic Nature of Theoretical Predictions

• Theories are incomplete whereas experiments plagued with errors:

Theo.→ en = etrue
n (p) + δeerror

n & εn = εtrue
n + δεerr

n ← Exp.

en and εn are random variables→ distributions Pth.
n (en) and Pexp

n (εn)

• Errors propagate to the theory predictions through parameter fits

χ2(p) ∼
∑

wn

[ (
εtrue

n + δεerr
n

)︸ ︷︷ ︸
Experiment

−
(
etrue

n + δeerr
n

)︸ ︷︷ ︸
Theory

]2 → ∂χ2

∂p
= 0

thus the optimal parameter values p ≡ {p1, p2, . . . pf } are random
variables and consequently characterised by probability distributions

P(p) = {Pth(e) ∗ Pexp(ε)}

• Conclusion: All predictions have their probability distributions!
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Smaller Theory Errors vs. Bigger Predictive-Power

• Constraining theory errors may help stabilising theory predictions:
The necessary although not sufficient condition of model’s stability

Big Prediction−Uncertainties

Data
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h

e
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ry
 R

e
su

lt
s

Errors

Theory
Big

Prediction Range

[e.g. Super−Heavy Nuclei]

[Stable Nuclei]

Range
Experimental

Smaller Uncertainties

Big Prediction−Uncertainties

Small Theory Errors
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Theoretical Predictions & Probability Distributions

• Neutron levels for 208Pb. Top: WS, bottom: HF Hamiltonians
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Part II

Nuclear Theories: Inference & Inverse Problem
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Nuclear Theories: Inference & Inverse Problems

• Starting from a limited experimental data set, e.g. energies {eexp
µ },

- we wish to obtain the information about all energies of the system

• In Applied Mathematics this approach is called Inference Problem

• The goal of the underlying mathematical theories is to provide
statistically sound, meaningful (i.e. stable) predictions and therefore

THE PREDICTIVE POWER

• All the theory predictions depend on the Hamiltonian parameters

• Hamiltonian parameters fitted by physicists reflect at the same
time both the form of the interactions and the data sampling (choice)

PARAMETERS INVOLVE ARBITRARY JUDGEMENT
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Direct and Inverse Problems in Quantum Theories

• Consider an arbitrary, e.g. many-body, theory with its Hamiltonian:

Ĥ = T̂ + V̂int(...{p}); {p} → Optimal parameters

• If we know the parameters, we are able to solve the Direct Problem:

Ĥϕj(..., {p}) = eth
j (..., {p})ϕ j(..., {p})

• However, before any comparison theory-experiment, and even more
generally: Before any calculation we must solve the Inverse Problem:

Determine the optimal parameters of the Hamiltonian
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Ĥ = T̂ + V̂int(...{p}); {p} → Optimal parameters

• If we know the parameters, we are able to solve the Direct Problem:
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Inverse Problem in Quantum Theories

• Parameter adjustment usually corresponds to the χ2-minimisation

χ2(p) =
∑d

j=1[eexp
j − eth

j (p)]2 → ∂χ2

∂pk
= 0, k = 1 . . .m

where: d - number of data points; m - number of model parameters

• Usually we iterate this non-linear problem using Taylor linearization

eth
j (p[it+1]) ≈ eth

j (p[it]) +
mX

k=1

„
∂eth

j

∂pk

«˛̨̨
p=p[it]

“
p

[it+1]
k − p

[it]
k

”
Short-hand notation: J

[it]
jk

df
=
“
∂eth

j

∂pk

”˛̨̨
p=p[it]

and b
[it]
j =

h
eexp

j − eth
j (p[it])

i

• Inserting the above into χ2(p) gives the Linearized Representation

χ2(p[it+1]) =
∑d

j=1

[∑m
k=1 J

[it]
jk ·

(
p

[it+1]
k − p

[it]
k

)− b
[it]
j

] 2
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Inverse Problem in Linearized Representation

• One may easily show that within the new, linearized representation

∂χ2

∂pi
= 0 → (JTJ) · p = JT b ↔ JTJ

df
= A

• In Applied Mathematics we slightly change wording and notation:

{p} → P : ‘Causes’ and {JTb} → D : ‘Effects’⇒ A · P = D

• From the measured ‘Effects’, called Data, represented by D, we extract
information about the optimal parameters, P, by inverting the matrix A:

A · P = D︸ ︷︷ ︸
Direct Problem

→ P = A−1 · D︸ ︷︷ ︸
Inverse Problem
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Stability of Solutions of Nuclear Inverse Problem

• We consider linear equations: P = A−1 · D ↔ P = C · D
P1

P2

· · ·
Pm

 =


C11 C12 · · · C1d

C21 C22 · · · C2d

· · · · · · · · · · · ·
Cm1 Cm2 · · · Cmd


︸ ︷︷ ︸

m×d rectangular matrix


D1

D2

· · ·
Dd



• [Cik ] depend on: 1) Hamiltonian, and 2) Selection of data points

• If one of the parameters is a function of another, say, pk = f (pk ′)
then one may show, that two columns of A are linearly dependent

• If this happens → C-matrix becomes singular [Ill-Posed Problem]

Ill-Posed: Correlation between parameters and the data is lost!
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Theoretical Predictions: What Are They Worth?

A Mathematical Model
of

Predictive Power
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A Mathematical Model for Predicting Data

• We will generate a set of pseudo-experimental data using function

f(x) ≡ exp(βx)

1 + α(βx)2
; → {fexp

i ≡ f(xi); i = 1, 2, . . . nS}

• We wish to be able to describe three mechanisms important here:

Sampling: Controlling the number- and type of data points

Precision (imprecision, errors) of the experimental input data

Exact vs. in-exact theories - more generally: Inexact modelling

• Concerning the Sampling: We define sampling by fixing “nS”

• We introduce the pseudo-experimental errors δfi by setting

fexp
i → fexp

i + δfi

where δfi are random numbers, here: Gaussian N(0, σ)-distribution
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Exact vs. in-exact theories - more generally: Inexact modelling

• Concerning the Sampling: We define sampling by fixing “nS”

• We introduce the pseudo-experimental errors δfi by setting

fexp
i → fexp

i + δfi

where δfi are random numbers, here: Gaussian N(0, σ)-distribution
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How to Parametrize Exact- vs. Inexact-Theory?

• Observe that for α = 0 we can express our ‘sampling function’ as

f(x)
∣∣∣
α=0

= exp(βx) ← “Exact” A,B,C,D-Model →
= A + B · βx + C · sinh(βx) + D · cosh(βx)

• For small βx we have an approximate linear dependence

exp(βx) ≈ A + B · x

• We call the ‘A,B,C,D’-model exact since generally we have

exp(βx) ≡ [A+B·x+C·sinh(βx)+D·cosh(βx)
]∣∣∣

A=B=0,C=D=1
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How to Parametrize Exact- vs. Inexact-Theory?

• By convention we generate the pseudo-experimental errors using

δf(x;σ) = 1/
(√

2πσ
)

exp
[− x2/(2σ2)

]
• We say that

The value of σ = 0.0001 represents ‘precise’ measurements

The value of σ = 0.0005 represents ‘average’ measurements

The value of σ = 0.0050 corresponds to ‘poor’ measurements

• Should x be interpreted as energy in [MeV], σ = 0.0001 implies
the precision of the order of a few of hundreds of eV

• We consider two cases:

The so-called ‘Exact Theory’ (with α = 0), and:

The so-called ‘In-exact Theory’ (with α = 0.001)

• When α 6= 0 → The ’a,b,c,d’ formula can, in the best case, only
approximate the above exponential, but it becomes exact at α→ 0
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Intraneous vs. Extraneous Predictions: Summary
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• Observe: From now on we ‘forget about the {xj}’→ focus on {fj}
• Pseudo-experiment: {fj} → We add random error (distributions)
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Extraneous Predictions for an Exact Theory

Extraneous Regime:

The Impact of Decreasing Experimental Error
in the Case of an Exact Theory
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Extraneous Predictions for an Exact Theory
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Exact V01= 54.60 V02= 70.11 V03= 90.02 V04= 115.58

Pred. V01= 143.31 V02= 188.69 V03= 247.37 V04= 323.13

• Conditions: Big errors and weak sampling→ No Predictive Power
[ Sampling: 4 points; Big Error σ = 0.005; Model: α = 0 ]
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Extraneous Predictions for an Exact Theory
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Exact V01= 54.60 V02= 70.11 V03= 90.02 V04= 115.58

Pred. V01= 72.70 V02= 94.30 V03= 122.11 V04= 157.91

• Smaller errors (a factor of 5)→ But: No ‘Good’ Predictive Power
[ Sampling: 4 points; Moderate Error σ = 0.001; Model: α = 0 ]
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Extraneous Predictions for an Exact Theory
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Exact V01= 54.60 V02= 70.11 V03= 90.02 V04= 115.58

Pred. V01= 56.34 V02= 72.44 V03= 93.11 V04= 119.30

• Smaller errors (a factor of 10) → Here: Some Predictive Power
[ Sampling: 4 points; Small Error σ = 0.0001; Model: α = 0 ]
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Extraneous Predictions for an Exact Theory
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Exact V01= 54.60 V02= 70.11 V03= 90.02 V04= 115.58
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• Error Impact → The same as before but using an enlarged scale
[ Sampling: 4 points; Small Error : σ = 0.0001; Model: α = 0 ]
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Extraneous Predictions for an Exact Theory

Conclusion:

Experimental errors may totally ruin
the Extraneous Predictive Power

even in the case of an Exact Theory
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Intraneous Predictions for an Exact Theory

Intraneous Regime:

The Impact of Decreasing Experimental Error
in the Case of an Exact Theory
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Intraneous Predictions for an Exact Theory
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• Big errors → Small sampling → Very good fit → χ-by-the-eye
[ Sampling: 4 points; Big Error : σ = 0.005; Model: α = 0 ]
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Intraneous Predictions for an Exact Theory
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• Smaller errors→ Small sampling→ Very good fit→ χ-by-the-eye
[ Sampling: 4 points; Moderate Error : σ = 0.001; Model: α = 0 ]
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Intraneous Predictions for an Exact Theory
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• Smaller errors → Small sampling → Excellent Fit → χ-by-the-eye
[ Sampling: 4 points; Small Error : σ = 0.0001; Model: α = 0 ]
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Intraneous Predictions for an Exact Theory
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Pred. V01= 1.0004 V02= 1.2844 V03= 1.6491 V04= 2.1175

• Same information, x-axis scaled → Excellent Fit → χ-by-the-eye
[ Sampling: 4 points; Small Error : σ = 0.0001 Model: α = 0 ]
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Intraneous Predictions for an Exact Theory

Conclusions:

Even very large experimental errors
may have a rather small impact

on the Intraneous Predictive Power∗)

∗)This is what is usually called the chi-by-the-eye “method”
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Theory and Its Possible Statistical In-Significance

About Chi-by-the-Eye “Method”

• After laborious theoretical constructions, we get terribly exhausted
and forget that: Parameter determination is a noble, mathematically
sophisticated procedure based on the statistical theories often more
involved than the physical problems under study!

• In their introduction to the chapter ‘Modelling of Data’, the au-
thors of ‘Numerical Recipes” (p. 651), observe with sarcasm:

”Unfortunately, many practitioners of parameter estimation never proceed

beyond determining the numerical values of the parameter fit. They deem

a fit acceptable if a graph of data and model ‘l o o k s g o o d’. This

approach is known as chi-by-the-eye. Luckily, its practitioners get what

they deserve” [i.e. - what is meant is: “they” get a ‘statistical nonsense’]
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Fitted Parameters in an Exact Theory

The Mechanism: Why?

Why are the Intraneous and Extraneous
components of Predictive Power

so strongly decorrelated?
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Fitted Parameters for an Exact Theory
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• Parameters totally wrong, but: → Excellent Fit → χ-by-the-eye

[ Sampling: 4 points; Big Error: σ = 0.005; Model: α = 0 ]
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Fitted Parameters for an Exact Theory
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• Parameters still quite wrong: → Excellent Fit → χ-by-the-eye

[ Sampling: 4 points; Moderate Error: σ = 0.001; Model: α = 0 ]
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Fitted Parameters for an Exact Theory
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Exact V01= 0.000 V02= 0.000 V03= 1.000 V04= 1.000

Pred. V01= 0.2269 V02= 0.6034 V03= 1.6286 V04= 1.2252

• Parameters not really good, but: → Excellent Fit → χ-by-the-eye
[ Sampling: 4 points; Small Error: σ = 0.0005; Model: α = 0 ]
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Errors: In Experiment and in Thinking

• As it is well known in logic: An error may imply the truth!

FALSE FALSE

TRUTH TRUTH

• Parameters were totally wrong, and yet: → Excellent Fit
• Exact theories/models are rare but extremely instructive
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Fitted Parameters for an Exact Theory

Conclusions:

1. We may easily obtain an excellent fit
with totally wrong parameters

2. This mechanism is a known sign
of an ill-posed Inverse Problem
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Fitted Parameters in an Exact Theory

Illustrations:

A Comparative Study
of Various Quantities of the Model
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Fit vs. Intraneous Predictive Power

• There is a risk of fooling oneself with the chi-by-the-eye technique
• ... and yet: The reproduction of the input may seem excellent ...
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• Parameters totally wrong, but: → Excellent Fit → χ-by-the-eye

[ Sampling: 4 points; Big Error: σ = 0.005; Model: α = 0 ]
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Extra- vs. Intraneous Predictions: An Exact Theory

• There is a risk of fooling oneself with the chi-by-the-eye technique
• Although: The reproduction of the input may seem excellent...
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• There is no extraneous predictive power whatsoever = ‘Good’ Fit

[ Sampling: 4 points; Big Error: σ = 0.005; Model: α = 0 ]
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Increasing the Sampling vs. Predictive Power

• Big errors but increasing sampling→ Improving Predictive Power?

[ Sampling: 6 points [left]; 4 points [right]; Error σ = 0.005 ]
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• Increasing sampling at a constant experimental error modelling
decreased the relative percentage errors by ∼an order of magnitude
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Increasing the Sampling: Intraneous vs. Extraneous

• Big errors but increasing sampling→ Improving Predictive Power?

[ Sampling: 6 points [left]; 4 points [right]; Error σ = 0.005 ]
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• Increasing sampling at a constant experimental error modelling
we restore the order of solutions and their approximate magnitude
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Increasing the Sampling: Intraneous Predictions

• Big errors but increasing sampling → Improving Predictive Power

[ Sampling: 6 points [left]; 4 points [right]; Error σ = 0.005 ]
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• Increasing sampling at a constant experimental error modelling
has no impact on the intraneous performance of predictive power
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Fitted Parameters in an Exact Theory

Possible Improvements:

The Focus
on the Experimental Errors

& Their Impact on Parameters
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Decreasing Experimental Errors: Fitted Parameters

• In how much decreasing experimental errors improves modelling?
[ Sampling: 6 points; Error σ = 0.005 (left) σ = 0.001 (right) ]
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• Decreasing the experimental error by a factor of 5 at constant
sampling implies a significant improvement in fitting parameters
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Decreasing Experimental Errors: Fitted Parameters

• In how much decreasing experimental errors improves modelling?
[ Sampling: 6 points; Error σ = 0.001 (left) σ = 0.0005 (right) ]
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• Decreasing the experimental error by a factor of 5 at constant
sampling implies more significant improvement in fitting parameters
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Decreasing Experimental Errors: Fitted Parameters

• In how much decreasing experimental errors improves modelling?
[ Sampling: 6 points; Error σ = 0.0005 (left) σ = 0.0001 (right) ]
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• Decreasing the experimental error by a factor of 5 at constant
sampling implies a definite improvement in fitting parameters
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Decreasing Experimental Errors: Fitted Parameters

Conclusions & Questions

1. By increasing the experimental precision
we definitely approach the right parameters

of the Exact Theory

2. Are we definitely solving the issue
of the ill-posed Inverse Problem?
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Fitted Parameters in an Exact Theory

Possible Improvements:

The Focus
on the Improved Sampling:

Impact on Extraneous Predictions
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Extraneous Predictions at Sufficient Sampling

•We fix sampling at 12 points and see how far we can go improving?
[ Sampling: 12 points; Decreasing Error, here: σ = 0.005 ]
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Extraneous Predictions at Sufficient Sampling

•We fix sampling at 12 points and see how far we can go improving?
[ Sampling: 12 points; Decreasing Error, here: σ = 0.001 ]
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Extraneous Predictions at Sufficient Sampling

•We fix sampling at 12 points and see how far we can go improving?
[ Sampling: 12 points; Decreasing Error, here: σ = 0.0005 ]
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Extraneous Predictions at Sufficient Sampling

•We fix sampling at 12 points and see how far we can go improving?
[ Sampling: 12 points; Decreasing Error, here: σ = 0.0001 ]
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Decreasing Experimental Errors: Fitted Parameters

Conclusions & Questions

1. By increasing the number of fit data-points
we definitely arrive at “predicting”

of our extraneous data-points

2. Again: Are we definitely solving the issue
of the ill-posed Inverse Problem?
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Parametric Correlations in an Exact Theory

A So-Far Ignored Mechanism:

Parametric Correlations
in Mathematical Modelling

Jerzy DUDEK, University of Strasbourg, France Predictive Power of Mathematical Modelling



Principles of a Simple Monte-Carlo Technique

•We generate pseudo-experimental errors: Here we will use random
numbers following the Gaussian distribution N(0, σ) for nS = 50 000

• We repeat the parameter fit 50 000 times thus obtaining 50 000
“optimal parameter sets” - they are denoted: P1, P2, P3 and P4

•We plot two-dimensional projections in the form of points with the
coordinates Pi vs. Pj on the x-y plane (in principle: 50 000 points)

• If there are no parametric correlations - the parameters fill in a
certain sub-set on the x-y plane: a circle, an ellipsoid, etc.

• Any pattern that resembles a line will be interpreted here as the
corresponding parametric correlation Pi vs.Pj (remaining parameters)
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Ill-Posedeness and Parametric Correlations

• Not done at all! Discover a disaster whose name is: Correlations!!
[ Parametric Correlations between parameters A=P1 and B=P2 ]
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Ill-Posedeness and Parametric Correlations

• Not done at all! Discover a disaster whose name is: Correlations!!
[ Disaster continues: Correlations between A=P1 and C=P3 ]
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Ill-Posedeness and Parametric Correlations

• Not done at all! Discover a disaster whose name is: Correlations!!
[ Disaster continues: Correlations between A=P1 and D=P4 ]
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Ill-Posedeness and Parametric Correlations

• Not done at all! Discover a disaster whose name is: Correlations!!
[ From bad to worse: Correlations between B=P2 and C=P3 ]
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Ill-Posedeness and Parametric Correlations

• Not done at all! Discover a disaster whose name is: Correlations!!
[ Bad luck continues: Correlations between B=P2 and D=P4 ]
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Ill-Posedeness and Parametric Correlations

• Not done at all! Discover a disaster whose name is: Correlations!!
[ If that was not enough: Correlations between C=P3 and D=P4 ]
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All Model Parameters Are Perfectly Correlated!

• This is the worst what may happen: All parameters correlated
imply the ill-posedeness of the inverse problem: No predictive power
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Ill-Posedeness and Parametric Correlations

What Did We Learn?

1. An exact theory may contain parametric correlations

2. Correlations can be studied and illustrated with the
help of the Monte-Carlo 2-D projections as shown above

3. For exact theories & null-errors they can be ignored...

4. ... but when shall we have the null errors?

5. Importantly: In the general case they imply Ill-Posed
Inverse Problem: No stability in theory Predictive Power
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Parameter-Correlations in Skyrme-HF
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Illustration suggesting that there are rather very few independent parameters
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Parametric Correlations in an Exact Theory

The Case of an Inexact Theory:

The Number of Factors to Consider
and of Mechanisms to Analyse - Increases:

Things Get More Complicated
[but perfectly doable]
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Decreasing Experimental Errors: Inexact Theory

•We fix sampling at 12 points and see how far we can go improving?
[ Sampling: 12 points; Error: σ = 0.005; Model: α = 0.005]

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Parameter Values

0

100

200

300

400

500

O
cc

u
re

n
ce

N
u
m

b
e
r

A− B− C− D−

A, B, C and D-Parameters

Id
.:

α
=

0
.0

0
5
0

β
=

0
.5

0
σ

=
0
.0

0
5
0

M
-C

=
5
0
0
0

S
a
m

p
=

1
2

[d
fp

]
E
x
a
ct

V
0
1
=

0
.0

0
0

V
0
2
=

0
.0

0
0

V
0
3
=

1
.0

0
0

V
0
4
=

1
.0

0
0

P
re

d
.
V

0
1
=

-0
.3

8
1
4

V
0
2
=

0
.9

3
2
2

V
0
3
=

0
.1

3
0
8

V
0
4
=

1
.6

5
9
3

Jerzy DUDEK, University of Strasbourg, France Predictive Power of Mathematical Modelling



Decreasing Experimental Errors: Inexact Theory

•We fix sampling at 12 points and see how far we can go improving?
[ Sampling: 12 points; Error: σ = 0.001; Model: α = 0.005]
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Decreasing Experimental Errors: Inexact Theory

•We fix sampling at 12 points and see how far we can go improving?
[ Sampling: 12 points; Error: σ = 0.0005; Model: α = 0.005]
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Decreasing Experimental Errors: Inexact Theory

•We fix sampling at 12 points and see how far we can go improving?
[ Sampling: 12 points; Error: σ = 0.0001; Model: α = 0.005]
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Decreasing Experimental Errors: Inexact Theory

•We fix sampling at 12 points and see how far we can go improving?
[ Sampling: 12 points; Error: σ = 0.005; Model: α = 0.005]
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Decreasing Experimental Errors: Inexact Theory

•We fix sampling at 12 points and see how far we can go improving?
[ Sampling: 12 points; Error: σ = 0.001; Model: α = 0.005]
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Decreasing Experimental Errors: Inexact Theory

•We fix sampling at 12 points and see how far we can go improving?
[ Sampling: 12 points; Error: σ = 0.0005; Model: α = 0.005]
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Decreasing Experimental Errors: Inexact Theory

•We fix sampling at 12 points and see how far we can go improving?
[ Sampling: 12 points; Error: σ = 0.0001; Model: α = 0.005]
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The Mechanism of Over-fitting

• Over-fitting: A mechanism according to which the model adjusts
itself to ‘any’ data set with χ2 ≈ 0 (data do not constrain the model)

Model

0 χ

N

0

Exp.

OVER−FITTING

Energy Spectra− Fitsχ2
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The Mechanism of Over-fitting

• Over-fitting: A mechanism according to which the model adjusts
itself to ‘any’ data set with χ2 ≈ 0 (data do not constrain the model)
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Unprecedented Precision ... Known as ‘Over-Fitting’
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•We introduce the Gaussian noise into the experimental-level input,
repeat the χ2-fit - and plot the histograms in function of χ2.

• Under the mathematical conditions discussed there are a large
number of exact fits possible. Over-Fitting - is a form of ill-posedenenss
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‘Chi-by-the-Eye’ Results May Look Attractive...

• We fit the single-particle experimental levels in 16O using Woods-
Saxon potential (six parameters for protons and neutrons each)
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Summary and Conclusions (I)

• The concept of the ‘exact theories’ gives an extremely useful in-
sight and guidance into the functioning of Mathematical Predicting:

a. Intraneous Predictions: Works usually very well no matter the
well-posed or ill-posed Inverse Problem
b. Extraneous Predictions: An ill-posed Inverse Problem generally
eliminates the possibility of any stable predictive power

• Inexact theories involve always theory uncertainties (which must
be estimated) and related probability distributions can be modelled

• In the future theoretical approaches: Theory provides not only
the numerical predictions but also probability distributions of the
associated uncertainties

•We believe that quite often it is easier to estimate the uncertainties
of the present theory rather than to document a new interaction term
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Summary and Conclusions (II)

• Even if there are too few data points and too many parameters -
one generally cannot obtain χ2 = 0 solutions always:

a. The physics modeling is possibly not totally wrong, however
b. The number of data points is too weak to constrain the model

• We have at least three ways out of the Ill-Posedeness:

A. We apply one of Regularisation Methods [not discussed today]
B. We modify the model by decreasing the number of parameters
C. We increase the number of data points (if we can pay for it...)

• Suppose we have already used out all the existing experimental
data: as theorists we can modify models / analyse uncertainties...

• In other words: We improve predictive power of our theory by
reducing the number of parameters, by regularising the associated
Inverse Problem, but first of all through including all interactions
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Part III

Ill-Posed Problems with Parametric Correlations:
Illustrative Examples with Realistic Hamiltonians
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Spherical Woods-Saxon and Correlations Vo vs. ro

• The valley on the χ2-plot showing correlation: r0 = f (V0)

-70 -65 -60 -55 -50 -45 -40 -35 -30
Depth ParameterVo

0.9

1.0

1.1

1.2

1.3

1.4

1.5
R

ad
iu

s
Pa

ra
m

et
er
r
o

Experimental Neutron Energy Levels: 1g9/2 2d5/2 3s1/2 1h11/2 2f5/2 3p1/2 Window Size: Emin=-20.35 MeV Emax=-8.35 MeV

constant parameter: A0CENT=0.69

E
xp

er
im

en
ta

ll
ev

el
s:

ce
nt

ra
li

nt
er

ac
ti

on
w

it
h

U
ni

ve
rs

al
W

S
pa

ra
m

et
er

s
V

0C
E

N
T

=-
55

.9
5

R
0C

E
N

T
=1

.2
1

A
0C

E
N

T
=0

.6
9

χ[MeV]

2

2

44 6

6

8

8

10

10
12
1416

18

Behaviour of the χ Function

0

1

2

3

4

5

6

7

8

9

10

208
82Pb

A map of χ2 from the fit based on six exp. levels close to the Fermi level
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Spherical Woods-Saxon and Correlations V so
o vs. r so

o

• Valley on the χ2-plot showing parametric correlations for V so
WS (r)
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We plot the χ2 in function of the S-O strength (horizontal) and the S-O

radius (vertical) axis. We start with the six lowest levels: r so
0 = F (V so

0 )
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Parameter Correlations and Correlation Matrix [WS]

• Given random variables X and Y . Correlation matrix in this case:

corr(X , Y ) =

P
i [(Xi − X̄ )(Yi − Ȳ )]qP

i (Xi − X̄ )2

qP
i (Yi − Ȳ )2

; X̄ ≡ 1

n

nX
i=1

Xi , Ȳ ≡ 1

n

nX
i=1

Yi

• Generally: {X ,Y } → {Xk} = {V c
0 , r

c
0 , a

c
0,V

so
0 , r so

0 } we obtain:

Correlation matrix for the Woods-Saxon Hamiltonian parameters
as obtained from the Monte-Carlo simulation

V c
0 r c

0 ac
0 V so

0 r so
0

V c
0 1.000 0.994 -0.028 0.000 0.265

r c
0 0.994 1.000 0.016 0.005 0.270

ac
0 0.028 0.016 1.000 0.259 0.288

V so
0 0.000 0.005 0.259 1.000 0.506

r so
0 0.265 0.270 0.288 0.506 1.000
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Parameter-Correlations and Correlation Matrix [WS]
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Sampling and Parametric Correlations

We will gradually increase the energy of the six-level window
to approach the nucleon binding region and thus gradually

approach the present-day experimental situation
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Spherical Woods-Saxon - Correlations V so
o vs. r so

o

• Impact of sampling (choice of data) on Parametric Correlations
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Experimental Neutron Energy Levels: 3s1/2 1i13/2 2f5/2 3p1/2 2g9/2 4s1/2 Window Size: Emin=-15.875 MeV Emax=-1.402 MeV

constant parameter: A0SORB=0.52
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Sampling and Parametric Correlations

[Illustrations for Skyrme SIII Hartree-Fock Hamiltonian]
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Parameter-Correlations and Correlation Matrix [HF]
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Illustration analogous to the preceding one; here Skyrme Hartree-Fock

Correlation matrix for the Skyrme-Hartree-Fock Hamiltonian parameters

Cρ
0 Cρ

1 Cρα
0 C τ

0 C τ
1 C∇J

0

Cρ
0 1.000 -0.948 -0.506 -0.902 0.952 0.965

Cρ
1 -0.948 1.000 0.682 0.745 -0.838 -0.854

Cρα
0 -0.506 0.682 1.000 0.102 -0.243 -0.290

C τ
0 -0.902 0.745 0.102 1.000 -0.985 -0.977

C τ
1 0.952 -0.838 -0.243 -0.985 1.000 0.993

C∇J
0 0.965 -0.854 -0.290 -0.977 0.993 1.000
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Parameter-Correlations in Skyrme-HF
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Illustration suggesting that there are rather very few independent parameters
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Skyrme-Hartree-Fock V̂int({p}) = v̂Skyrme(~ri ,~rj)

v̂Skyrme(~ri,~rj) = t0(1 + x0P̂σ) δ(~rij)

+ 1
2
t1(1 + x1P̂σ)

[
k̂′2δ(~rij) + δ(~rij)k̂2

]
+ t2 (1 + x2P̂σ)

[
k̂′
] · [δ(~rij) k̂

]
+ 1

6
t3(1 + x3P̂σ) ρα(~R)

[
δ(~rij) k̂

]
+ iW0 (σ̂i + σ̂j) ·

[
k̂′ × δ(~rij) k̂

]
+ vtensor(~ri,~rj)

vtensor(~ri,~rj) = 1
2 te

˘
[ 3(σ̂i · k̂′) (σj · k̂′)− (σ̂i · σ̂j)(k̂′)2 ] δ(~rij)

+ δ(~rij) [ 3(σ̂i · k̂ ) (σ̂j · k̂ )− (σ̂i · σ̂j)(k̂ )2 ]
¯

+ to

˘
3(σi · k̂′) δ(~rij)(σ̂j · k̂)− (σ̂i · σ̂j)

ˆ
k̂

′˜ · ˆδ(~rij)k̂
˜¯

12 Params.: {p} df
=
˘{t0, t1, t2, t3}; {x0, x1, x2, x3}; {W0}; {te, to}; {α}

¯
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Skyrme -HF in the EDF Formulation up to N3LO

• In a comprehensive study Carlsson, Dobaczewski and Kortelainen
introduce Skyrme nuclear density functionals up to the sixth order
(the standard Skyrme is of second order)

• Their total energy density contains all these rather than∼15 terms

H(~r ) =
∑

m′I′,n′L′v′J′
mI,nLvJ,Q

Cm′I′,n′L′v′J′

mI,nLvJ,Q × Tm′I′,n′L′v′J′

mI,nLvJ,Q (~r ),

where C m’I’,n’L’v’J’
mI,nLvJ,Q are corresponding necessary coupling constants

• It is instructive to think about the extentions of the EDF based
approaches in terms of the increasing number of coupling constants

• ... in view of all the couplings present already at the leading order
formulations which suggest a totally ill-posed inverse problem →→

Jerzy DUDEK, University of Strasbourg, France Predictive Power of Mathematical Modelling



Skyrme -HF in the EDF Formulation up to N3LO

• In a comprehensive study Carlsson, Dobaczewski and Kortelainen
introduce Skyrme nuclear density functionals up to the sixth order
(the standard Skyrme is of second order)

• Their total energy density contains all these rather than∼15 terms

H(~r ) =
∑

m′I′,n′L′v′J′
mI,nLvJ,Q

Cm′I′,n′L′v′J′

mI,nLvJ,Q × Tm′I′,n′L′v′J′

mI,nLvJ,Q (~r ),

where C m’I’,n’L’v’J’
mI,nLvJ,Q are corresponding necessary coupling constants

• It is instructive to think about the extentions of the EDF based
approaches in terms of the increasing number of coupling constants

• ... in view of all the couplings present already at the leading order
formulations which suggest a totally ill-posed inverse problem →→

Jerzy DUDEK, University of Strasbourg, France Predictive Power of Mathematical Modelling



Skyrme -HF in the EDF Formulation up to N3LO

• In a comprehensive study Carlsson, Dobaczewski and Kortelainen
introduce Skyrme nuclear density functionals up to the sixth order
(the standard Skyrme is of second order)

• Their total energy density contains all these rather than∼15 terms

H(~r ) =
∑

m′I′,n′L′v′J′
mI,nLvJ,Q

Cm′I′,n′L′v′J′

mI,nLvJ,Q × Tm′I′,n′L′v′J′

mI,nLvJ,Q (~r ),

where C m’I’,n’L’v’J’
mI,nLvJ,Q are corresponding necessary coupling constants

• It is instructive to think about the extentions of the EDF based
approaches in terms of the increasing number of coupling constants

• ... in view of all the couplings present already at the leading order
formulations which suggest a totally ill-posed inverse problem →→

Jerzy DUDEK, University of Strasbourg, France Predictive Power of Mathematical Modelling



Skyrme -HF in the EDF Formulation up to N3LO

• In a comprehensive study Carlsson, Dobaczewski and Kortelainen
introduce Skyrme nuclear density functionals up to the sixth order
(the standard Skyrme is of second order)

• Their total energy density contains all these rather than∼15 terms

H(~r ) =
∑

m′I′,n′L′v′J′
mI,nLvJ,Q

Cm′I′,n′L′v′J′

mI,nLvJ,Q × Tm′I′,n′L′v′J′

mI,nLvJ,Q (~r ),

where C m’I’,n’L’v’J’
mI,nLvJ,Q are corresponding necessary coupling constants

• It is instructive to think about the extentions of the EDF based
approaches in terms of the increasing number of coupling constants

• ... in view of all the couplings present already at the leading order
formulations which suggest a totally ill-posed inverse problem →→

Jerzy DUDEK, University of Strasbourg, France Predictive Power of Mathematical Modelling



Skyrme -HF in the EDF Formulation up to N3LO

• In a comprehensive study Carlsson, Dobaczewski and Kortelainen
introduce Skyrme nuclear density functionals up to the sixth order
(the standard Skyrme is of second order)

• Their total energy density contains all these rather than∼15 terms

H(~r ) =
∑

m′I′,n′L′v′J′
mI,nLvJ,Q

Cm′I′,n′L′v′J′

mI,nLvJ,Q × Tm′I′,n′L′v′J′

mI,nLvJ,Q (~r ),

where C m’I’,n’L’v’J’
mI,nLvJ,Q are corresponding necessary coupling constants

• It is instructive to think about the extentions of the EDF based
approaches in terms of the increasing number of coupling constants

• ... in view of all the couplings present already at the leading order
formulations which suggest a totally ill-posed inverse problem →→

Jerzy DUDEK, University of Strasbourg, France Predictive Power of Mathematical Modelling



Skyrme -HF in the EDF Formulation up to N3LO

• Numbers of terms depending on the time-even and time-odd densities
are given separately. The last two columns give numbers of terms when
the Galilean or gauge1 invariance is assumed, respectively.

Order T-even T-odd Total Galilean Gauge
0 1 1 2 2 2
2 8 10 18 12 12
4 53 61 114 45 29
6 250 274 524 129 54

N3LO 2x312 2x346 2x658 2x188 2x97

624 692 1316 376 194

• Let us observe a very fast-growing number of terms. To take into account
both isospin channels, the number of terms is multiplied by a factor of two

1For comments about Skyrme HF gauge invariance cf. e.g.
J. Dobaczewski and J. Dudek, PRC 52 (1995) 1827
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Parametric Correlations - Partial Conclusions

• Parametric correlations are overwhelmingly present and - as it is
very well known - they imply an ill-posedeness of the inverse problem

• The solutions of an ill-posed inverse problem are generally unstable

• Lack of stability means, by definition, that a small modification in
the input causes a big (perhaps exponential) modification on output
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Part IV

Ill-Posed Inverse Problem in Nuclear Theories
[Regularisation, Singular Value Decomposition]
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A Powerful Tool: Singular-Value Decomposition

• We have demonstrated that the finding the parameters of the
Hamiltonian is equivalent to solving the algebraic Inverse Problem:

P = A−1 · D with A = J · JT where J ≡ Jacobian

• One can demonstrate that an arbitrary rectangular m × d matrix
J can be decomposed as a product of three matrices (D-diagonal)

J = U D VT with U ∈ Rm×m, V ∈ Rd×d, D ∈ Rm×d

• Diagonal elements, δi , are called “singular values” and we have

D = diag{δ1, δ2, . . . δmin(m,d)︸ ︷︷ ︸
decreasing order

}

• We find easily that

JT = V ·DT ·UT where DT = diag
{

1
δ1
, 1
δ2
, . . . 1

δd
; 0, 0, . . . 0

}
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Fitting, Inverse Problem and Confidence Intervals

• Let us come back to the shown earlier χ2-minimum condition:

∂χ2

∂pj
→ (JTJ) · P = D

• From the Singular-Value Decomposition for matrix J it follows

(JTJ)−1 = V · (1/δ 2) · VT

• Independently one derives the expression for the correlation matrix

Corr(Pi,Pj)→ 〈(Pi − 〈Pi〉) · (Pj − 〈Pj〉)〉 ∼ χ2(p) (JTJ)−1
ij

• If one or more δk → 0 then (JT J)−1 → ∞ and generally, the
confidence intervals of all parameters diverge [null predictive power]
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Sing.-Value Decomposition & Conditional Number

• One may show that the parametric instability of the solutions of
the inverse problem is directly proportional to the condition number

Cond(A) ≡ δbiggest/δsmallest

• For the well posed Inverse Problem, Cond(A) is of the order of 1

30 40 50 60 70 80 90 100 110
Number of Experimental Points

1020

1040

1060

1080

1100

1120

1140

1160

1180

1200

C
on

di
ti

on
al

N
um

be
r

Evolution of Conditional Number

Conditional number of the SLY4-type Hamiltonian, parameters fitted to

the single-particle energies only, observe HUGE values of Cond(A)

Jerzy DUDEK, University of Strasbourg, France Predictive Power of Mathematical Modelling



Sing.-Value Decomposition & Conditional Number

• One may show that the parametric instability of the solutions of
the inverse problem is directly proportional to the condition number

Cond(A) ≡ δbiggest/δsmallest

• For the well posed Inverse Problem, Cond(A) is of the order of 1

30 40 50 60 70 80 90 100 110
Number of Experimental Points

1020

1040

1060

1080

1100

1120

1140

1160

1180

1200

C
on

di
ti

on
al

N
um

be
r

Evolution of Conditional Number

Conditional number of the SLY4-type Hamiltonian, parameters fitted to

the single-particle energies only, observe HUGE values of Cond(A)

Jerzy DUDEK, University of Strasbourg, France Predictive Power of Mathematical Modelling



Sing.-Value Decomposition & Conditional Number

• One may show that the parametric instability of the solutions of
the inverse problem is directly proportional to the condition number

Cond(A) ≡ δbiggest/δsmallest

• For the well posed Inverse Problem, Cond(A) is of the order of 1

30 40 50 60 70 80 90 100 110
Number of Experimental Points

1020

1040

1060

1080

1100

1120

1140

1160

1180

1200

C
on

di
ti

on
al

N
um

be
r

Evolution of Conditional Number

Conditional number of the SLY4-type Hamiltonian, parameters fitted to

the single-particle energies only, observe HUGE values of Cond(A)

Jerzy DUDEK, University of Strasbourg, France Predictive Power of Mathematical Modelling



The Catastrophe of Fitting to the Masses

• When fitting the Skyrme Hartree-Fock parameters to the single
particle energies and to the masses we obtain Cond(A)∼ 105
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Smaller Theory Errors vs. Bigger Predictive-Power

• Constraining theory errors may help stabilising theory predictions:
The necessary although not sufficient condition of model’s stability
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Parametric Correlations & Density Functionals

• Parameters expressed using Density-Functional representation

{p} ↔ {Cρ0
t , Cραt , C ∆ρ

t , Cτt , C J
t , C∇J

t , te , to and α }
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Part V

Controlling Experiment with the Help of Noise
Simulations
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Single-Particle Levels - Noise-Simulation Example

• Consider a single particle spectrum {eo
ν } ↔ Hϕo

ν = eo
ν ϕ

o
ν obtained

with the ‘optimal’ set of parameters {p}o as in the preceding Table;

• Define the “pseudo-experimental” levels {eexp
ν } ≡ {eo

ν }. Applying
the minimisation procedure will now reproduce those {eo

ν } exactly;

• Chose one level, say eo
κ ∈ {eo

ν }, and arbitrarily modify its position:

eo
κ → eκ ≡ (eo

κ − e) with, say e ∈ [−2,+2] MeV;

then refit the χ2-test → all other levels will move to new positions

• Collect these new positions: they are functions eν = eν(eκ), below
referred to as ‘error response functions’ → see illustrations
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Example: Error Response Functions to 2g9/2-Orbital
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To determine precisely the parameters through fitting the energies of 3p3/2, 2f7/2

etc. the right position of 2g9/2 must be analyzed particularly carefully (associated

spectroscopic factors precise, particle vibration subtracted, pairing effect subtracted)
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Example: Alternative Representation for 2g9/2-Orbital
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Attention: The figure may look similar but it contains a totally opposite information:

All the curves represent the 2g9/2-level - this is how the fitting will modify 2g9/2 if we

vary the indicated levels
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Conclusions from Error Response-Function Tests

• Observe rather precise indications as to ‘which levels influence
which’ what allows to discuss the experimental strategies precisely

• The low-` orbitals (such as 3p1/2, 3p3/2) have relatively small
impact on the error-response functions ...

• ... while some pairs of orbitals couple very strongly

• The highest-` orbitals do not couple in the strongest way

• ... all that in a particular case presented; analysis of this type may
require a case-by-case mode of operating...
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Part VI

Predictive Power and Over-Fitting Mechanism
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A Realistic Toy Model - Noise-Simulation Example

• Let us calculate {eµ}-levels for a given W-S parameter set, here:

Woods-Saxon parameters for the neutrons in 208Pb reproduce the experimental

levels with the r.m.s. deviation of 0.164 MeV and maximum error of 0.353 MeV.

V c
o r c

o ac
o λ r so

o aso

-39.520 1.371 0.694 26.133 1.255 0.500

• We can treat {eµ} ‘as experimental’; by trying to reproduce them
through fitting we know an exact solution!

• Extra advantage: we may introduce the notion of ‘noise’, usually
a random variable distributed according to a certain probability fct.

• We will obtain the response of all the levels to a ‘linear noise’ -
vary a level position within a window and refit the H-parameters {p}
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Unprecedented Precision of the Fits: 10−1 keV!

→ The standard Woods-Saxon Hamiltonian has been used:

No. Ecalc Eexp Level Err.(th-exp)

1. -15.300 -15.300 1p3/2 -0.0001

2. -9.000 -9.000 1p1/2 -0.0001

3. -0.600 -0.600 1d5/2 0.0000

4. -0.100 -0.100 2s1/2 0.0000

5. 4.400 4.400 1d3/2 0.0001

→ Couple of questions may come to one’s mind...:

Is this property limited to one single nucleus? Not at all!

Can a simple phenomenology achieve the precision of hundreds

of electronvolts in nearly all doubly-magic nuclei? Is it trivial?

What is the mathematical/physical significance of the result?
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‘Over-Fitting’ - What Does It Imply?

• Even if there are too few data points and too many parameters -
one generally cannot obtain χ2 = 0 solutions always: 2 conclusions

a. The physics modeling is not totally wrong, but also
b. The number of data points is too weak to constrain the model.

• We have two ways out of the overfitting problem:

A. We modify the model decreasing the number of parameters, or:
B. We increase the number of data points (if we can...)

• We have already used out all the experimental data: as theorists
we can only modify the model...

• We improve the model by reducing the number of parameters
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Summary and Conclusions (I)

• The concept of the ‘exact theories’ gives an extremely useful in-
sight and guidance into the functioning of Mathematical Predicting:

a. Intraneous Predictions: Works usually very well no matter the
well-posed or ill-posed Inverse Problem
b. Extraneous Predictions: An ill-posed Inverse Problem generally
eliminates the possibility of any stable predictive power

• Inexact theories involve always theory uncertainties (which must
be estimated) and related probability distributions can be modelled

• In the future theoretical approaches: Theory provides not only
the numerical predictions but also probability distributions of the
associated uncertainties

•We believe that quite often it is easier to estimate the uncertainties
of the present theory rather than to document a new interaction term
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Summary and Conclusions (II)

• Even if there are too few data points and too many parameters -
one generally cannot obtain χ2 = 0 solutions always:

a. The physics modeling is possibly not totally wrong, however
b. The number of data points is too weak to constrain the model

• We have at least three ways out of the Ill-Posedeness:

A. We apply one of Regularisation Methods [not discussed today]
B. We modify the model by decreasing the number of parameters
C. We increase the number of data points (if we can pay for it...)

• Suppose we have already used out all the existing experimental
data: as theorists we can modify models / analyse uncertainties...

• In other words: We improve predictive power of our theory by
reducing the number of parameters, by regularising the associated
Inverse Problem, but first of all through including all interactions
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