....Fission is complex...

Collective large-scale amplitude motion involving many (all) nucleons of the system

Mass re-arrangement in fission as an ideal tool for probing the interplay between <u>static and dynamical</u> effects

for fundamental and industrial issues

Available theories

Multi-dimensional fission

- Quantum mechanical / Microscopic approaches
 Thorough « static » analysis of multi-dimensional potential energy surfaces
 Dynamics within time-dependent HFB treatment (GCM+GOA) in 2 dimensions
 → today: low-energy only, no evaporation, huge computing time
- Stochastic Langevin (or FPE) transport approach
 - × Classical equation of motion
 - **×** Macroscopic ingredients and coupling to evaporation
 - **\times** Extension to lower E^* proved successful

 $[\]rightarrow$ today: up to 4D and A~100 region tractable

On some limitation of current multi-dimensional Langevin calculations

P.N. Nadtochy¹, K. Mazurek², <u>C. Schmitt³</u>

¹Omsk State University, Department of Theoretical Physics, 644077 Omsk, Russia

² IFJ PAN, 31-342 Krakow, Poland

³ Ganil, CEA/DSM-CNRS/IN2P3, 14076 Caen, France

☞ Basic principle of the Langevin approach and recent achievement

▷ Limitations and consequences

 « Practical implementation » issue : Cures ?

19th Nuclear Physics Workshop "Marie & Pierre Curie", Kazimierz 2012

The stochastic Langevin approach

Transport theory for the slow dissipative fission process

⇒ Most relevant collective degrees of freedom in interaction with heat bath

(analogy with Brownian motion, Kramers, 1940)

Multi-dimensional classical Langevin equation

$$q_i^{(n+1)} = q_i^{(n)} + \frac{1}{2} \frac{\mu_{ij}^{(n)}(\vec{q})}{(\vec{q})} (p_j^{(n)} + p_j^{(n+1)})\tau,$$

$$p_{i}^{(n+1)} = p_{i}^{(n)} - \tau \left[\frac{1}{2} p_{j}^{(n)} p_{k}^{(n)} \left(\frac{\partial \mu_{jk}(\vec{q})}{\partial q_{i}} \right)^{(n)} - \kappa_{i}^{(n)}(\vec{q}) - \gamma_{ij}^{(n)}(\vec{q}) \mu_{jk}^{(n)}(\vec{q}) p_{k}^{(n)} \right] + \theta_{ij}^{(n)} \xi_{j}^{(n)} \sqrt{\tau},$$

- Inertia Tensor: $\|\mu_{ij}(\vec{q})\| = \|m_{ij}(\vec{q})\|^{-1}$
- Friction Tensor: $\gamma_{ij}(\vec{q})$
- Conservative Force: $K_i(\vec{q}) = -\frac{\partial F(\vec{q})}{\partial q_i}$, where $F(\vec{q})$ free energy
- Random Force: $\theta_{ij}\xi_j$, where θ_{ij} is the random force amplitude

$$egin{aligned} &\langle \xi_i^{(n)}
angle = 0, \ &\langle \xi_i^{(n_1)} \xi_j^{(n_2)}
angle = 2 \delta_{ij} \delta_{n_1 n_2}, \ &D_{ij} = heta_{ik} heta_{kj} = T \gamma_{ij} \end{aligned}$$

- Track time evolution by Monte-Carlo sampling of single trajectories
- Solvable exactly in nD
- « Easy » coupling with evaporation

The multi-dimensional model of Omsk (1)

G.D.Adeev, A.V.Karpov, P.N.Nadtochy, and D.V.Vanin, Phys. Part. Nucl. 36 (2005) 378

Sophisticated three-dimensional Langevin code

- ⇒ Successful description of various observables over wide range
 - of systems (A _{CN}, E*, L) for fission at high temperature
- ⇒ Recent extension to 4D (3 deformation coordinates + *K*-rotational mode)

Experiment has a lot to do with much of the (early and present) progress !

Cautious survey of the theoretical results is mandatory at the risk of mis-interpretation of underlying physics

NB: Present study performed with the 3D model

The multi-dimensional model of Omsk (2)

C Shape parameterization (q_1, q_2, q_3) based on (c, h, α) Funny Hills coordinates

$$q_{1} = c$$

$$q_{2} = \frac{h+3/2}{\frac{5}{2c^{3}} + \frac{1-c}{4} + 3/2}$$

$$q_{3} = \begin{cases} \alpha/(A_{s} + B), & B \ge 0\\ \alpha/A_{s}, & B < 0 \end{cases}$$

- c the elongation of the nucleus
- h constriction coordinate
- α mass-asymmetry parameter related to the ratio of the masses of nascent fragments

M.Brack et al., Rev. Mod. Phys. 44 (1972) 320

Driving potential : FREE energy

$$F(\mathbf{q}, I, K, T) = V(\mathbf{q}, I, K) - a(\mathbf{q})T^2$$

- a(q) level density parameter (various options)
- $T = \sqrt{E_{\text{int}}/a(\mathbf{q})}$ temperature of the nucleus
- The potential energy of the nucleus was calculated swith Sierk's parameters^a (FRLDM)

Ignatyuk et al., Yad. Fiz. 21 (1975) 1185

Sierk et al., Phys. Rev. C 33 (1986) 2039

Transport coefficients

19th Nuclear Physics Workshop "Marie & Pierre Curie", Kazimierz 2012

The multi-dimensional model of Omsk (3)

Initial conditions

- Spherical and thermalized CN
- Spin $d\sigma_l/dl$ for fusion from Fröbrich and

Gontchar, Phys. Rep. 292 (1998) 131

(\approx surface friction model)

Scission criterion

 $R_N = 0.3R_0$,

 R_N - neck thickness and R_0 - radius at ground state

Compatible with rupture condition (instability with respect to neck variation, stochastic rupture, Coulomb repulsion \approx nuclear attraction)

Dynamics coupled with evaporation within Monte Carlo method

- Hauser-Feschbach theory for $\Gamma_{n,p,\alpha}$

statistical code LILITA, J. Gomez del Campo et al., ORNL TM-7295 (1981)

- Conservation laws used at each step

Trajectory terminates either at scission or with ER formation

Achievement (1)

\Box Survey of various observables over wide (A _{CN}, E*, L) plane to study nuclear viscosity (i.e. extract k_s)

> Fission/ER cross sections, light particle multiplicities and energies

19th Nuclear Physics Workshop "Marie & Pierre Curie", Kazimierz 2012

Achievement (2)

Fission-fragment mass and TKE distributions - Angular anisotropies

P.N. Nadtochy et al., EPJ Web Conf. 2 (2010) 08003

P.N. Nadtochy et al., Phys. Rev. C 65 (2002) 064615

□ $k_s \sim (0.25-0.5)$ suited for whole data set on $\sigma_{ER,fiss}$, M_n^{pre} , σ_M^2 , W(9)□ σ_{TKE} un-explained → too poor variety of scission configurations (elongation/neck)

 Three dimensions crucial for consistent description of evneriment Too strong wall-and-window dissipation (related to theory of chaos)
 Nix and Sierk, Proceedings JINR,1987, p.453
 Pal et al., Phys. Rev. C 54 (1996) 1333)

Consequence of "practical" limitations?

- Theoretical TKE distribution too narrow due to poor variety of scission shapes
 <u>More generally</u>: «Practical» implementation of theory often implies simplification or approximations due to space/computing/mathematical limitation
 - \rightarrow Need to ensure that no hazardous consequence as for interpretation of experiment

□ Meticulous survey of all calculated observables over a very wide range of the model ingredients, and with large statistics (a few 10⁵ trajectories)

E.g:
$$0.1 < k_s < 2$$

Asymmetric fission peaks with:

Classical equation

Macroscopic ingredients (PES, transport coeff High E*

Model ingredients and dynamics

 \Box Potential energy surface \rightarrow Single fission valley to symmetry

J Transport coefficients

Shape parameterization, scission line and dynamics

Curved scission line (« hyper-space» in *n***D**)

 \rightarrow influence on the mass distribution

Tricky <u>puzzle</u> between magnitude and deformation-dependence of mass, friction, stochastic force, PES topolography combined to curved scission line
 much too much asym splitting !!

Practical implementation of theory ...

□ Shape parameterization $\{q_i\}$ + scission criterion

 \rightarrow define the « scission hyper-surface »

□ Scission should have a specific geometry to avoid pratical bias

 \rightarrow line in 2D, plane in 3D, etc

□ At day, no existing prescription that can guarantee being free of any such limitation ($\forall nD$)

... calls for careful analysis of result

Do we master the conditions under which implementation may cause trouble?

Hazardeous... as the appearance of « un-physical » results is due to interplay involving puzzling dynamics and practical limitations

Consequences

Modelling of washing out of shell effects with excitation energy **Model 1:** dynamics on macro-micro PES including $\delta U = f(T)$ and with some k_s^1

purely macro PES with some other k_s^2

Fission at 1 < T < 2MeV **E.g**:

Persistence of shell effects ?«Mere» dynamical effect @ moderate viscosity ?

Viscous nature of nuclear matter

 σ_M^2 , *<TKE>*, σ_{TKE}^2 commonly used to infer the magnitude of dissipation σ_M^2 , *<TKE>*, $\sigma_{TKE}^2 = f$ (saddle descent, scission configuration) **Uncontrolled** practical bias \Rightarrow Mis-interpretation on underlying viscosity

Conclusion ?

Dynamical multi-dimensional Langevin approach as a powerful tool for understanding fission dynamics

Practical implementation implies restriction on the modeling as compared to the richness of the available phase-space

⇒ often neglected or forgotten

⇒ due to intricate effects, potentially un-controlled, if not un-physical, result

Wise analysis of prediction due to still un-perfect modeling of shape and scission configurations : any input is welcome !

Other difficult aspect: find the true saddle ridges and fission valleys out of a multi-dimensional space

 N. Dubray and D. Regnier.

⇒ Need of a discriminant observable

N. Dubray and D. Regnier, Comp.Phys. Com. 183 (2012) 2035

Thank you for your attention !

EXTRAS

19th Nuclear Physics Workshop "Marie & Pierre Curie", Kazimierz 2012

Ch. Schmitt et al.

The stochastic Langevin vs. FP approach

²⁴⁸Cm, T=3MeV, β =5·10²¹s⁻¹ K.-H.Schmidt , Ch. Schmitt, et al.

Y. Abe, S. Ayik, P.G. Reinhard, E. Suraud, Phys. Rep. 275 (1996) 49

- Track time evolution by Monte-Carlo sampling of single trajectories
 → P(q_i,p_i;t) as with FPE
- Solvable exactly in *n*D
- •« Easy » coupling with evaporation

Viscosity and shape evolution

Complex interplay between transport coefficients and their dependence on deformation

Fig. 5. Transport coefficients as functions of the coordinate q_1 ($h = \alpha = 0$): (a) the inertia tensor; (b) the friction tensor under the assumption of the two-body mechanism of nuclear viscosity $v_0 = 2 \times 10^{-23}$ MeV s fm⁻³, and (c) the friction tensor under the one-body mechanism of viscosity with $k_s = 0.25$. The calculations are performed for the ²²⁴Th nucleus.

Adeev et al., Phys. Part. Nucl. 36 (2005) 378 and therein

« Chaocity » in nuclei ?

19th Nuclear Physics Workshop "Marie & Pierre Curie", Kazimierz 2012

2.5

Influence of the PES prescription

19th Nuclear Physics Workshop "Marie & Pierre Curie", Kazimierz 2012

Influence of scission condition

Scission criterion should define

a <u>line</u> instead of a curve (2D), a planar surface (3D) , etc,

in the corresponding collective coordinates space

Potential discrepant interpretation of data ?

Fig. 8. Mass distribution for the fission of ²³⁵U with 90 MeV ¹²C (50 MeV excitation). Open circles represent the total chain yields deduced from cumulative yields whereas solid circles give those calculated with independent yields. Fitted curves are also shown for a single gaussian (dashed line) and a double gaussian (solid line).

Duh et al., Nucl. Phys. A 550 (1992) 281

