

Silvia Leoni University of Milano & INFN

Gamma spectroscopy as a tool to search for particle-phonon coupled states: status and perspectives

19th Nuclear Physics Workshop September 26-30, 2012 Kazimierz, Poland

Milano University and INFN

A. Bracco, G. Benzoni, N. Blasi, F. Camera, F. Crespi, S. Leoni, B. Million, O. Wieland, S. Bottoni, G. Bocchi et al. P.F. Bortignon, G.Colò, E. Vigezzi et al.

Legnaro INFN Laboratory

L.Corradi, G. DeAngelis, E. Fioretto, D. Napoli, A. Stefanini, J.J. Valiente-Dobon, et al.

Padova University and INFN

D. Bazzacco, E. Farnea, S. Lenzi, S.Lunardi, A. Gottardo, G. Montagnoli, D.Montanari, F.Scarlassara, C.Ur, et al.

Torino University and INFN

G. Pollarolo

IFIC, CSIC-University of Valencia, Spain

A. Gadea, ...

IFIN-HH Bucharest

N. Marginean et al.

Krakow, Poland

A. Maj, P. Bednarczyk, B. Fornal, M. Kmiecik, M. Ciemala et al.,

Ruder Boskovic Institute, Zagreb

S. Szilner et al.

AGATA- PRISMA collaborations

OUTLINE:

□ INTRODUCTION

- **1.** Importance of Particle-Phonon correlations in nuclear structure studies
- **2.** Experimental and Theoretical Approach
- **3.** The case of ^{49,47}Ca:

Heavy-Ion Transfer reactions as a tool for complete in-beam γ -spectroscopy

WORK in PROGRESS and PERSPECTIVES:

- **1.** Particle-Phonon Coupling around Ni Isotopes
- **2.** Future studies with RIB around ¹³²Sn

HOT topic in Nuclear Structure

Evolution of Shell Structure with N/Z

Study of Shell closures, Magic Numbers, Effective Nuclear Force, ...

Doubly Magic Nuclei
 Near to Magic Nuclei

 (1 and 2 nucleons away)

Experimental Tools

Coulex → Collectivity B(E2), B(E3), ...

Knock-out, transfer reactions, ...

Spectroscopic Factors Purity of nuclear states Single particle (SF ~1) Correlations (SF <1)</p>

Spectroscopic Factors

Nature and Occupancy of single-particle orbits → Interplay Single-Particle and Collectivity

Crucial test of Shell Model and Interactions

30-40 % reduction of SF compared to Independent Particle Model Quenching of SF due to correlations: SHORT Range: Deeply Bound States LONG Range (coupling to vibrations): Surface States

V.R. Pandharipande et al., Rev. Mod. Phys. 89(1997)981

Large Basis Shell Model (LB-SM)

Correlations among valence nucleons

M.B. Tsang et al. PRL102(2009)062501

Coupling between Particle and Vibrations is not included ... (LONG RANGE CORRELATION)

V.R. Pandharipande et al., Rev. Mod. Phys. 89(1997)981, C. Barbieri et al. PRL103(2009)20502, ...

Spectroscopic Factors Information from Exotic Nuclei

Dependence on Fermi Surface

Enhanced CORRELATIONS in Strongly bound valence nucleons

Need for a more profound investigation of correlations \rightarrow Long Range Correlations

Focus on Long Range Correlations → only partially included in Shell Model

Coupling between Particle and Phonon

Key Ingredient for:

Quenching of Spectroscopic Factors
 Anharmonicity of vibrational spectra
 Damping of Giant Resonances, ...
 Effective Masses, ...

excited core

Research Program in Milano FOCUS on Particle-Phonon Coupled States Systematic Study around magic nuclei: Ca, Ni, Sn, ...

Experiments:

Transfer with Heavy-Ions @ LNL (n,γ) and (n,Fission) @ ILL ⁷Li reactions @ Bucarest

→ Preparatory work for SPES, SPIRAL2, HE- ISOLDE, ...

Theory (Colò, Bortignon): Coupling with 1 particle

- effective single particle levels
- coupling strength

Coupling with 2 particles

- core + 2 particles model
- physics of pairing

Dependence on Fermi Surface

Experimental STATUS

Up to now: Scarce Information Mostly in Heavy-Masses

A ~ 200

²⁰⁹Bi: Bohr & Mottelson, Vol. II.
 ²⁰⁹Pb: P. Kleinheinz et al., PRL48(1982)1457
 ²⁰⁷Pb: N. Pietralla et al., PLB681(2009)134

A ~ 150

¹⁴⁷**Gd,** ¹⁴⁷**Tb**: P. Kleinheinz et al.,PRL48(1982)1457; P. Kleinheinz, Physica Scripta 24(1981)236.

Evidence for Particle-phonon couplings in A~50 Nuclei

⁴⁹Ca: $9/2^+$ @ 4017 keV = $3^- \otimes p_{3/2}$ 47Ca: $11/2^+$ @ 3999 keV = $3^- \otimes f_{7/2}^{-1}$

indication also in ^{41,43}Ar: S. Szilner et al., PRC84(2011)014325 ⁶⁵Co: F. Recchia et al., PRC85(2012)064305 *lifetime analysis ??*

→ Robustness of Collectivity in rather Light systems

Experimental Signature
Multiplet of States: |l-j|≤1≤l+j
B(Eλ) of phonon

Theoretical Description

Best Reaction Mechanism ... ?

It has to enhance collective (core)-excitations

Fusion Reactions Incomplete Fusion Reactions

... need for RIB to reach n-rich systems

Heavy-lon Transfer Reactions

... population of moderately n-rich nuclei even with stable beams

CLARA (ex-EUROBALL)/AGATA – PRISMA setup Legnaro National Laboratory INFN (Italy)

AGATA Demonstrator @ LNL Physics Campaign 2010-2011

CLARA

TRACKING ARRA

25 EUROBALL HpGe Clover

ε~3 % @ E_y= 1.3 MeV 2π solid angle 3 rings at 100°, 130°, 150°

PRISMA

$\Delta \Omega = 80 \, \text{msr}$

 $\begin{array}{l} \Delta Z/Z\approx 1/60\\ \Delta A/A\approx 1/190\\ \text{Energy acceptance } \pm 20\%\\ B\rho=1.2\ Tm \end{array}$

High-Efficiency *y*-particle coincidence Measurements

PRISMA

Legnaro National Laboratory INFN (Italy)

48Ca + 64Ni @ 6 MeV/A (v/c ~10%) CLARA + PRISMA

Daniele Montanari, PhD-Thesis Milano University

γ-particle Coincidence Measurements ⁴⁸Ca + ⁶⁴Ni @ 6MeV/A

1 – Reaction Studies

Angular Distributions of ions (Inclusive and γ -gated)

D. Montanari, S. Leoni et al., Phys. Rev. C84(2011)054613 D. Montanari, S. Leoni et al., EPJA47(2011)4

Need for a careful study of spectrometer response

2 – Gamma Spectroscopy

Angular Distributions Polarizations Lifetime Analysis

Spin, Parity and Nature of State

D. Montanari, S. Leoni et al., Phys. Lett. B697(2011)288 D. Montanari, S. Leoni et al., Phys. Rev. C85(2012)044301

γ-Ray Angular Distributions in CLARA Array

Oblate SPIN Alignment perpendicular to reaction plane

Asymmetry of Compton Scattering in CLOVERs@90°

Spectroscopy of 49Ca: Spin and Parity Assignment

Interpretation of 7/2⁻ and 9/2⁺ Core(⁴⁸Ca) - particle (p_{3/2}) Couplings ??

⁴⁸Ca: 3- RPA calculations

(G. Colò, P.F. Bortignon)

Lifetimes of ⁴⁹Ca with Differential PLUNGER Recoil Distance Doppler Shift Method @ PRISMA-CLARA

Lifetimes in ⁵⁰Ca, ⁵¹Sc, ^{44,46}Ar Valiente-Dobon et al., PRL102(2009)242502

D. Mengoni et al., PRC82(2010)024308

A. Dewald et al., Köln

Lifetimes of 49Ca

R. Broda thick target exp.

Interpretation of 49Ca

D. Montanari, S. Leoni et al., Phys. Lett. B697(2011)288

The case of ⁴⁷Ca

Hole-Vibration Coupling Model : multiplet of states ~ 4 MeV

Interpretation of ⁴⁷Ca

D. Montanari, S. Leoni et al., Phys. Rev. C85(2012)044301

Remark for future Analysis:

High-Precision W(0) and Pol Measurements with AGATA

inelastic scattering of light ion beams + γ -decay

180

180

45

0

90

 $\theta_{\gamma,\text{recoil}}$ (deg)

135

F. Crespi, A. Bracco, et al. (Milano University)

Work in Progress: ^{65,67}Cu Study of Particle-Phonon states around Ni isotopes

0	5211	00211	07 211	00211	05211	70211	11
6	4Cu	65Cu	66Cu	67Cu	68Cu	69Cu	70
e	53Ni	64Ni	65Ni	66Ni	67Ni	68Ni	69
6	2Co	63Co	64Co	65Co	66Co	67Co	68
6	51Fe	62Fe	63Fe	64Fe	65Fe	66Fe	67

64,66Ni (Z=28,N=36,38)

- Superfluid Core in v
- π coupling

Theoretical Interpretation

(S. Bottoni, G. Bocchi, G. Colò, PF. Bortignon)

Good Candidates for Particle-Phonon Coupled states

Perspectives with RIB

γ spectroscopy around ¹³²Sn with <u>HI transfer reactions</u>

STUDY OF
 Single particle states
 particle-phonon couplings
 high spins
 μπ, Β(Ελ)

N=82

GRAZING calculations Conservative estimates for more than 1 nucleon transfer

SPES Beams Legnaro-RIB

¹³⁰ Sn	¹³¹ Sn	¹³² Sn	¹³³ Sn	¹³⁴ Sn
1.6 10 ⁸	6.8 10 ⁷	3.1 10 ⁷	2.8 10 ⁶	5 10⁵
¹²⁹ ln	¹³⁰ In	¹³¹ In	¹³² In	¹³³ ln
1.1 10 ⁵	1.5 10 ⁴	2.8 10 ³	1.9 10 ³	-
¹²⁸ Cd 2.9 10 ³	¹²⁹ Cd 2.5 10 ²	(130Cd -		

G.Colò and P.F.Bortignon

M.Gorska et al., PLB672(2009)313

¹³⁰Cd – 2 proton holes states

- Tentative I^π assignment
 Tentative B(Eλ) values
 Missing levels
- →Strength of **PAIRING** interaction → SHELL quenching below ¹³²Sn

A. Jungclaus et al., PRL99(2007)132501

GSI: Projectile fragmentation ¹³⁶Xe (750 MeV/A) + Be

Conclusions

+ FOCUS on Particle-Phonon Coupled States:

Building block of anarmonicity of vibrational spectra Quenching of Spectroscopic Factors, ...

- → Research Program in Milano in Exp. and Theory: Systematic study in different mass regions to obtain information on Interaction strength, N/Z dependence...
- + γ-spectroscopy of n-rich nuclei with
 HEAVY-ION Transfer, Incomplete Fusion Reactions, ...
 - Angular Distribution, Polarization, Lifetime Analysis → Spin, Parity and Nature of Nuclear State
 - → Evidence for particle-phonon states in ^{47,49}Ca
 → Indication In ^{65,67}Cu, ...
- + Preparatory Work for Radioactive Beam Physics ... Thank You for the Attention

Radioactive Beam Project at Legnaro Laboratory INFN - Italy

- Radioactive Ion Beams are produced by proton induced fission on a UCx direct target at a rate of 10¹³ fission/s.
- → Neutron rich re-accelerated beams will be available at energies up to 13 MeV/u in the mass region A=130.
- → Re-acceleration will be performed by the superconducting linear accelerator complex (PIAVE-ALPI) of the Laboratori Nazionali di Legnaro.
- → The facility for applied physics is based on proton and neutron beams from a two exit port cyclotron (70 MeV, 500 microA) and the high intensity RFQ TRASCO (5 MeV, 30 mA).

