Piotr Bednarczyk

Instytut Fizyki Jądrowej im. Henryka Niewodniczańskiego Polskiej Akademii Nauk

Quest for intruder band terminating states in the medium mass A 40 -60 shell model nuclei; challenge for experiments and theory

19th Nuclear Physics Workshop "Marie & Pierre Curie" Kazimierz, 2012

Origin of angular momentum in an atomic nucleus

Regular rotational bands E~I(I+1)

"chaotic" level distribution

Quadrupole collectivity across the nuclear chart

Quadrupole collectivity across the nuclear chart

Steady increase in γ -detection sensitivity

Increase in γ -detection sensitivity

Need for ancillary detectors Kazimierz Dolny

Recoil Filter Detector (Kraków)

 $ToF \rightarrow v_{REC}$

RFD is a set of HI detectors. They pick up <u>Evaporation</u> <u>Residues</u> in coincidence with γ-rays

Time-of-Flight technique allows to deduce actual <u>velocity of every recoil</u> and to filter out unwanted reaction channels:

scattered beam, coulex, fission

W. Męczyński et al., NIM A580, 1310 (2007)

Improvement in γ -spectra by a coincident recoil detection

Doppler broadening reduction

GASP + RFD (2009), 32 S (95MeV) + 40 Ca $\rightarrow {}^{72}$ Kr(CN)

Improvement in γ -spectra by a coincident recoil detection

□ Lifetime determination - lineshape analysis

GASP + RFD (2009), 32 S (95MeV) + 40 Ca $\rightarrow {}^{72}$ Kr(CN)

Collective effects in light $f_{7/2}$ shell nuclei

<u> At low spin / < 1980/:</u>

- Fast E2 transitions (tens W.u)
- Collective bands of unnatural parity (particle-hole states)

Experimental difficulties:

- > fast recoil velocity
- high energy transitions
- Break through /~2000/:
- Arrays of Ge detector arrays
 (GASP, EUROBALL, GAMASPHERE)
- Ancillary- particle and HI detectors

<u>At high spin</u>:

Deformed, core excited states (up to I_{max}): ⁴⁰⁻⁴⁴Ca, ⁴²⁻⁴⁵Sc, ⁴⁴⁻⁴⁶Ti, ^{46,47}V

Superdeformation ^{36,38,40}Ar, ^{40,42}Ca, ⁴⁴Ti

"Rotation" of ⁴⁸Cr

SM descroption of (super)deformation

Deformation along the π = '+' p-h band in ⁴⁵Sc

multi hole-particle SM approach

Izospin T=0, T=1 excitations in odd-odd N=Z nuclei

	44Mn	45Mn	46Mn	47Mn	48Mn	49Mn	50M4
25							
24	43Cr	44Cr	45Cr	46Cr	47Cr	480	49Cr
23	42♥	43V	44V	457	467	47V	487
22	41Ti	42Ti	43Ti	44T)	45Ti	46Ti	47Ti
21	40Sc	41Sc	42Sr	43Sc	44Sc	45Sc	46Sc
20	39 Ca	40C7	41Ca	42Ca	43Ca	44Ca	45Ca
	35	.9K	40K	41K	42K	43K	44K

Izospin T=0, T=1 excitations in odd-odd N=Z nuclei

Kazimierz Dolny

S.Lenzi Phys. Scr. T88, 100 (2000)

Izospin T=0, T=1 excitations in odd-odd N=Z nuclei

S.Lenzi Phys. Scr. T88, 100 (2000)

(p-n)_{fp} T=0 coupling in odd-A N=Z+1 nuclei

(p-n)_{fp} T=0 coupling in odd-A N=Z+1 nuclei

(p-n)_{fp} T=0 coupling in odd-A N=Z+1 nuclei

XIX NPW 2012

High spins in ⁴⁵Ti - SM results

Deformation driven high spin structure of ⁴⁵Ti

quadrupole deformation (SM view): if $Q_0(Q_{spec}) = Q_0(B(E2))$

increase of deformation at HS due to isospin degree of freedeom

Test of EDF components at band termination

Towards heavier (more collective) systems

At high rotational frequencies pairing correlations are considerably quenched and can often be neglected. A most interesting nuclear region is the one with $A \sim 60$ ($N \approx Z$ ≈ 30), where a large variety of rotational structures such as (smooth) terminating, highly deformed, and superdeformed (SD) rotational bands are expected to be observed up to very high rotational frequencies in the same nucleus.

A. V. Afanasjev, I. Ragnarsson, P. Ring

PHYSICAL REVIEW C, VOLUME 59, NUMBER 6, JUNE 1999

Structure of ⁶⁹As

Structure of ⁶⁹As

Is ⁶⁹As superdeformed?

The interpretation needs to be reconsidered

Prospects: EAGLE, HIL, Warsaw

□ 30 HPGe ACS detectors

Ο ε_γ=(1%-4%)

Lifetimes along rotational bands in fp nuclei

Prospects: GALILEO LNL, Legnaro

Acknowledges

IFJ PAN, Kraków

P.Bednarczyk, M.Ciemała*, B. Fornal, J. Grębosz, M. Kmiecik, M.Krzysiek*, A. Maj, M.Matejska–Minda*, W.Męczyński, J.Styczeń, M.Ziębliński **student PhD*

<u>IPHC, Strasbourg</u> D.Curien et al. (experiment) F.Nowacki <u>et al. (theory)</u>

> Preparation for new facilities: LNL-INFN, Legnaro-Padova C. Ur et al.

<u>University and INFN, Milano</u> S.Leoni et al.

<u>HIL, Warszawa</u> J. Srebrny et al.

<u>GANIL, Caen</u> Ch. Schmitt et al.

