19th Nuclear Physics Workshop "Marie & Pierre Curie" Kazimierz 2012 September 26 ~ September 30, 2012

Mass and lifetime of unstable nucleus in covariant density functional theory

北京大学物理学院 School of Physics Peking University (PKU)

・ 北京航空航天大学物理与核能工程学院 School of Physics and Nuclear Energy Engineering Beihang University (BUAA)

Existence Limit of nucleus

Astrophysical environment for r-process

<u>typical lifetimes for unstable nuclei far from the valley of β stability: $10^{-4} - 10^{-2}$ s</u>

requiring n $\tau_n \sim 10^{-4} \text{ s} \iff n_n \sim 10^{20} \text{ n/cm}^3$ capture time:

explosive scenarios needed to account for such high neutron fluxes

Nuclear physics input in the r-process

Quantity		Effect
S _n	neutron separation energy	path
T _{1/2}	b-decay half-lives	 abundance pattern timescale
Pn	b-delayed n-emission branchings	final abundance pattern smooth r-abundance
G	Nuclear Partition function	abundance pattern (weakly)
fission (branchings		endpoint
and products)		abundance pattern?
		degree of fission cycling
N _A <sv></sv>	neutron capture rates	 final abundance pattern during freezeout ? conditions for waiting point approximation
Isomeric states…		 Branch of the r-process path final abundance pattern timescale

Classical r-process calculation

Assume:

- \succ (n, γ) \leftrightarrow (γ ,n) equilibrium within isotopic chain, and
- \geq elemental distribution of neighboring z-chain is determined by the β -decays
- <u>neglect the effect of fission</u>
- > constant T₉, multi r-process components with n_n=10²⁰⁻²⁷.

The nucleus with maximum abundance in each isotopic chain has smaller neutron capture rate and must wait for the longer time to continue via β -decay

nuclear inputs: $S_n(RMF)$, $T_{1/2}(\beta$ -decay), P_{1n} , P_{2n} , P_{3n} (FRDM), astrophysical parameters: $T_9=1.5$, $n_n=10^{20-28}$, ω , τ (least-square fit),

Constraints of nuclear mass model by Solar abundance

- Single Sn isotopic chain influences the abundance for A around 135
- Sm and Eu isotopic chains influences the abundance for A around 180
 FRDM: ADNDT 59 185

Wang: PRC **81** 044322

Isospin for S-O & E_sym + mirror nuclei

- Abundance difference roots in nuclear structure
- separation energy, waiting point, and shell correction for FRDM & WLW

Z Li et al, Acta Phys. Sin. 61 072601

Constraints of astrophysical condition by Solar abundance

XD Xu et al, arXiv:1208.2341[nucl-th], 2012

Different astrophysical conditions for producing nuclei with neutron number N = 50 and those with N = 126 !

CDFT with non-linear point coupling interaction

Lagrangian density

$$\begin{split} L &= \overline{\psi}(i\gamma_{\mu}\partial^{\mu} - m)\psi \\ &- \frac{1}{2}\alpha_{s}(\overline{\psi}\psi)(\overline{\psi}\psi) - \frac{1}{2}\alpha_{v}(\overline{\psi}\gamma_{\mu}\psi)(\overline{\psi}\gamma^{\mu}\psi) - \frac{1}{2}\alpha_{Tv}(\overline{\psi}\vec{\tau}\gamma_{\mu}\psi)(\overline{\psi}\vec{\tau}\gamma^{\mu}\psi) \\ &- \frac{1}{3}\beta_{s}(\overline{\psi}\psi)^{3} - \frac{1}{4}\gamma_{s}(\overline{\psi}\psi)^{4} - \frac{1}{4}\gamma_{v}[(\overline{\psi}\gamma_{\mu}\psi)(\overline{\psi}\gamma^{\mu}\psi)]^{2} \\ &- \frac{1}{2}\delta_{s}\partial_{v}(\overline{\psi}\psi)\partial^{v}(\overline{\psi}\psi) - \frac{1}{2}\delta_{v}\partial_{v}(\overline{\psi}\gamma_{\mu}\psi)\partial^{v}(\overline{\psi}\gamma^{\mu}\psi) - \frac{1}{2}\delta_{Tv}\partial_{v}(\overline{\psi}\vec{\tau}\gamma_{\mu}\psi)\partial^{v}(\overline{\psi}\vec{\tau}\gamma_{\mu}\psi) \\ &- e\frac{1-\tau_{3}}{2}\overline{\psi}\gamma^{\mu}\psi A_{\mu} - \frac{1}{4}F^{\mu\nu}F_{\mu\nu} \end{split}$$

Parameterizations: PC-PK1

Coupl.	Cons.	PC-PK1	Dimension
$lpha_S$	$[10^{-4}]$	-3.96291	MeV^{-2}
eta_S	$[10^{-11}]$	8.66530	${\rm MeV}^{-5}$
γ_S	$[10^{-17}]$	-3.80724	${\rm MeV^{-8}}$
δ_S	$[10^{-10}]$	-1.09108	${\rm MeV}^{-4}$
$lpha_V$	$[10^{-4}]$	2.69040	${\rm MeV}^{-2}$
γ_V	$[10^{-18}]$	-3.64219	${\rm MeV^{-8}}$
δ_V	$[10^{-10}]$	-4.32619	${\rm MeV}^{-4}$
$lpha_{TV}$	$[10^{-5}]$	2.95018	${\rm MeV}^{-2}$
δ_{TV}	$[10^{-10}]$	-4.11112	${\rm MeV}^{-4}$
V_n	$[10^0]$	-349.5	$MeV fm^3$
V_p	$[10^{0}]$	-330	$MeV fm^3$

Zhao, Li, Yao, Meng, PRC 82, 054319 (2010)

11

Saturation properties:

Model	$ ho_0$	E/A	M_D^*/M	M_L^*/M	E_{sym}	L	K_{sym}	K_0	K_{asy}
	(fm^{-3})	(MeV)			(Mev)	(MeV)	(MeV)	(MeV)	(MeV)
Empirical	0.166	-16	0.55 - 0.60	0.8	~ 32	88		240	-550
	± 0.018	±1		± 0.1		± 25		± 20	± 100
NL3	0.148	-16.25	0.59	0.65	37.4	119	101	272	-611
PK1	0.148	-16.27	0.61	0.66	37.6	116	55	283	-640
TW99	0.153	-16.25	0.55	0.62	32.8	55	-125	240	-457
DD-ME1	0.152	-16.2	0.58	0.64	33.1	56	-101	245	-435
PKDD	0.15	-16.27	0.57	0.63	36.8	90	-81	262	-622
PC-LA	0.148	-16.13	0.58	0.64	37.2	108	-61	264	-711
PC-F1	0.151	-16.17	0.61	0.67	37.8	117	74	255	-628
PC-PK1	0.153	-16.12	0.59	0.65	35.6	113	95	238	-582
DD-PC1	0.152	-16.06	0.58	0.64	33	70	-108	230	-529

EoS for Nuclear matter

SG2

SkM*

-200

-300

SLy4 Skl4

We know K_A from E_{GMR} :

$$E_{GMR} = \hbar \sqrt{\frac{K_A}{m \langle r^2 \rangle}}$$

In an approximate way, K_A may be expressed as:

 $K_A \sim K_\infty (1 + cA^{-1/3}) + K_\tau ((N - Z)/A)^2 + K_{coul} Z$ Data from from Umesh Garg, also H. Sagawa *et al.*, *Phys. Rev. C* **76**, **034327 (2007)** 13

Spherical nuclei

Zhao, Li, Yao, Meng, PRC 82, 054319 (2010)

Deformed nuclei

Zhao, Li, Yao, Meng, PRC 82, 054319 (2010)

²⁴⁰Pu: 3D PES (β_{20} , β_{22} , β_{30}) in MD constraint CDFT

- Axial & reflection symmetric shapes for ground state & isomer, the latter is stiffer
- Triaxial shape around the inner barrier
- Triaxial & octupole shape around the outer barrier; this is also true for other actinide nuclei

Lu, Zhao, Zhou, PRC85 (2012) 011301R

$\beta_{\lambda\mu}$ with even μ are included automatically

Nuclear Mass

Exp value for 2149 nuclei from Audi et al. NPA2003

Two-neutron & two-proton separation energies

> Two-neutron and two-proton separation energies of the Sn isotopes and N=82 isotones.

The two-neutron and two-proton separation energies are well reproduced

Exotic phenomena in nuclei with extreme N/Z

Description of unstable nucleus and Prediction of giant halo

Spherical nucleus: Meng & Ring, PRL77,3963 (96) Meng & Ring, PRL80,460 (1998) Meng, NPA 635, 3-42 (1998) Meng, Tanihata & Yamaji, PLB 419, 1(1998) Meng, Toki, Zeng, Zhang & Zhou, PRC65, 041302R

Spherical nucleus but in DDRHFB: Long, Ring, Meng & Van Giai, PRC81,

031302

Deformed nucleus:

Zhou, Meng, Ring & Zhao, Phys. Rev. C 82, 011301 (2010)

Li, Meng, Ring, Zhao & Zhou, Phys. Rev. C 85, 024312 (2012)

Chen, Li, Liang & Meng, Phys. Rev. C 85, 067301 (2012)

Li, Meng, Ring, Zhao & Zhou, Chin. Phys. Lett. 29, 042101 (2012).

Reviews:

Meng,Toki, Zhou, Zhang, Long & Geng, PPNP 57. 460 (2006)

Prolate core & oblate halo

21

Newly measured masses of heavy neutron-rich nuclei

Observed neutron-richest e-e nuclei with 26<Z<100

Observed neutron-richest e-e nuclei with 26≤Z≤100

rms mass deviations:

$$\sigma_{\rm rms} = \sqrt{\sum_{i=1}^{N} \frac{(M_i^{\rm cal} - M_i^{\rm exp})^2}{N}}$$

- PC-PK1 improves the description remarkably.
- Similar accuracy for the others

TMA: PTP 113, 785. PC-F1: PRC 65, 044308 HFB-17: PRL 102, 152503. ETFSI-2: AIP 529, 287. ETFSI-Q: PLB 387, 455. KTUY: PTP 113, 305. DZ28: PRC 52, R23.

Life-time of Neutron Rich Nuclei

< Previous Article | Next Article >

APS » Journals » Phys. Rev. Lett. » Volume 106 » Issue 5

Phys. Rev. Lett. 106, 052502 (2011) [5 pages]

β-Decay Half-Lives of Very Neutron-Rich Kr to Tc Isotopes on the Boundary of the r-Process Path: An Indication of Fast r-Matter Flow

Viewpoint: RNA in cycles

(d)

(h

Tc

(Z=43)

Mo.

(Z=42)

FRDM+GRPA (1) KTUY+GT2

Previous

This wo

68

(g)

aphene prét-à-porter nic heterogeneity in amorphous

β - decay half - lives of Cd

RHFB+QRPA: the data is well reproduced, slightly overestimates half - lives of 1^{30,132}Cd

FRDM+QRPA:

overestimates the nuclear half - lives (the pp residual interactions in the T=0 channel are not considered.)

The nuclear β -decay half-lives are sensitive to the strength of T=0 pairing, which significantly reduce the β -decay half-lives.

β - decay half - lives of neutron rich nuclei Z=20~50

28Neutron Number

Impact on r-process by the β - decay half-lives of Sn, Cd, Pd, Ru, Mo, Zr

Solar r-process abundance

Summary and Perspectives

- Lots of efforts have been devoted for CDFT theory in the last decades
- CDFT theory includes either meson exchange (RH or RHF) or Point Coupling are equally good for nuclear ground properties
- Nuclear dynamic properties can be described well by CDFT of the RHF version or the RH version with improved tensor and pseudovector channels
- Newly proposed PC-PK1 provides better description for nuclear mass, nuclear matter EOS, shell structure, magnetic moment, magnetic and antimagnetic rotation, exotic phenomena such as halos, β-decay halflives of neutron rich nuclei

Thank you for your attention!

Nuclear matter properties

Saturation point:
$$p(\rho_0) = 0$$

Compressibility

$$E_{sym}(\rho) = E_{sym}(\rho_0) + \frac{L}{3} \left(\frac{\rho - \rho_0}{\rho_0}\right) + \frac{K_{sym}}{18} \left(\frac{\rho - \rho_0}{\rho_0}\right)^2$$

$$K_{0} = 9\rho_{0}^{2} \left[\frac{\partial^{2} \left(\varepsilon/\rho \right)}{\partial \rho^{2}} \right]_{\rho_{0}}$$

 $K(\alpha) \approx K_0 + K_{asy}\alpha^2, \alpha = (\rho_n - \rho_p)/(\rho_n + \rho_p)$

$$K_{asy} = K_{sym} - 6L$$

$$E_{sym}(\rho) = \frac{1}{2} \left(\frac{\partial^2 (\varepsilon / \rho)}{\partial t^2} \right)_{t=0}, t = \frac{\rho_n - \rho_p}{\rho_n}$$

$$L = 3\rho_0 \left(\frac{\partial E_{sym}(\rho)}{\partial \rho}\right)_{\rho_0}, K_{sym} = 9\rho_0^2 \left(\frac{\partial^2 E_{sym}(\rho)}{\partial \rho^2}\right)_{\rho_0}$$

$$M_D^* = M^* = M + S$$

 $M_L^* = \sqrt{(M_D^*)^2 + k_F^2}$

Merit of RPA based on DDRHF

- Relativistic Hartree + RPA (not self-consistent) De Conti:1998,2000, Vretenar:2003, Ma:2004, Paar:2004,2008, Niksic:2005
 - \diamond pion is added by hand
 - \diamond a parameter to fit E_{GTR}
- Relativistic Hartree-Fock + RPA (fully self-consistent) Liang, Giai, Meng, PRL 101, 122502 (2008)
 - \diamond both direct and exchange terms are kept
 - \diamond pion is naturally included
 - \diamond no readjustment of particle-hole residual interaction

Fock-terms : Physical mechanisms of GTR

RH + RPA

- No contribution from isoscalar mesons (σ,ω), because exchange terms are missing.
- \Rightarrow π -meson is dominant in this resonance.

RHF + RPA

- ♦ Isoscalar mesons (σ,ω) play an essential role via the exchange terms.
- ♦ While, π -meson plays a minor role.
- \Rightarrow g' = 1/3 is kept for self-consistency.

```
Liang, Giai, Meng, PRL 101, 122502 (2008)
```


Relativistic Hartree-Fock-Bogoliubov theory

• Effective Lagrangian density

Long, Ring, Giai, Meng, PRC 81, 024308 (2010) Long, Ring, Meng, Giai, Bertulani, PRC 81, 031302(R) (2010)

$$\begin{aligned} \mathscr{L} &= \bar{\psi} \left[i \gamma^{\mu} \partial_{\mu} - M - g_{\sigma} \sigma - \gamma^{\mu} \left(g_{\omega} \omega_{\mu} + g_{\rho} \vec{\tau} \cdot \vec{\rho}_{\mu} + e \frac{1 - \tau_{3}}{2} A_{\mu} \right) - \frac{f_{\pi}}{m_{\pi}} \gamma_{5} \gamma^{\mu} \partial_{\mu} \vec{\pi} \cdot \vec{\tau} \right] \psi \\ &+ \frac{1}{2} \partial^{\mu} \sigma \partial_{\mu} \sigma - \frac{1}{2} m_{\sigma}^{2} \sigma^{2} - \frac{1}{4} \Omega^{\mu\nu} \Omega_{\mu\nu} + \frac{1}{2} m_{\omega}^{2} \omega_{\mu} \omega^{\mu} - \frac{1}{4} \vec{R}_{\mu\nu} \cdot \vec{R}^{\mu\nu} + \frac{1}{2} m_{\rho}^{2} \vec{\rho}^{\mu} \cdot \vec{\rho}_{\mu} \\ &+ \frac{1}{2} \partial_{\mu} \vec{\pi} \cdot \partial^{\mu} \vec{\pi} - \frac{1}{2} m_{\pi}^{2} \vec{\pi} \cdot \vec{\pi} - \frac{1}{4} F^{\mu\nu} F_{\mu\nu} \end{aligned}$$

Relativistic Hartree-Fock-Bogoliubov equations Kucharek1991ZPA, Long2010PRC

$$\int d\mathbf{r}' \begin{pmatrix} h(\mathbf{r},\mathbf{r}') - \lambda & \Delta(\mathbf{r},\mathbf{r}') \\ \Delta(\mathbf{r},\mathbf{r}') & -h(\mathbf{r},\mathbf{r}') + \lambda \end{pmatrix} \begin{pmatrix} f_U(\mathbf{r}') \\ f_V(\mathbf{r}') \end{pmatrix} = E \begin{pmatrix} f_U(\mathbf{r}') \\ f_V(\mathbf{r}') \end{pmatrix},$$

where f_U and f_V are the quasiparticle spinors, λ is the chemical potential.

• The average field $h(\mathbf{r}, \mathbf{r}')$ and the pairing potential $\Delta(\mathbf{r}, \mathbf{r}')$ are given by

$$h(\mathbf{r},\mathbf{r}') = h^{\mathrm{kin}}(\mathbf{r},\mathbf{r}') + h^{\mathrm{D}}(\mathbf{r},\mathbf{r}') + h^{\mathrm{E}}(\mathbf{r},\mathbf{r}'), \quad \Delta_{\alpha}(\mathbf{r},\mathbf{r}') = -\frac{1}{2}\sum_{\beta}V^{pp}_{\alpha\beta}(\mathbf{r},\mathbf{r}')\kappa_{\beta}(\mathbf{r},\mathbf{r}').$$

• h^{kin} , h^{D} , h^{E} : derived from \mathscr{L} with sets PKO1 and DD-ME2 . Long2006PLB, Lalazissis2005PRC

• V^{pp} : phenomenological Gogny force with the set D1S. Berger1991CPC

Role of pion and Exchange term: DDRHFB

RHFB equation

$$\int d\mathbf{r}' \begin{pmatrix} h(\mathbf{r},\mathbf{r}') - \lambda & \Delta(\mathbf{r},\mathbf{r}') \\ \Delta(\mathbf{r},\mathbf{r}') & -h(\mathbf{r},\mathbf{r}') + \lambda \end{pmatrix} \begin{pmatrix} \psi_U(\mathbf{r}') \\ \psi_V(\mathbf{r}') \end{pmatrix} = E \begin{pmatrix} \psi_U(\mathbf{r}) \\ \psi_V(\mathbf{r}) \end{pmatrix}$$

- Pairing Force: Gogny D1S

$$V(\mathbf{r},\mathbf{r}') = \sum_{i=1,2} e^{\left(\binom{r-r'}{\mu_i}^2} \left(W_i + B_i P^{\sigma} - H_i P^{\tau} - M_i P^{\sigma} P^{\tau}\right)$$

Dirac Woods-Saxon Basis S.-G. Zhou (2003)

To Solve the integro-differential RHFB equation

Quasiparticle random phase approximation

QRPA equations: Ring1995Springer

$$\begin{pmatrix} A & B \\ -B & -A \end{pmatrix} \begin{pmatrix} X^{\nu} \\ Y^{\nu} \end{pmatrix} = \omega_{\nu} \begin{pmatrix} X^{\nu} \\ Y^{\nu} \end{pmatrix}$$

where ω_v is the excitation energy, X_v and Y_v denote the 2qp amplitudes. The QRPA matrices A and B read:

$$A_{kk'll'} = (E_k + E_{k'})\delta_{kl}\delta_{k'l'} + \frac{\delta^2 E}{\delta R^*_{kk'}\delta R_{ll'}}, \qquad B_{kk'll'} = \frac{\delta^2 E}{\delta R^*_{kk'}\delta R^*_{ll'}}$$

In the canonical basis, the matrices A and B for the charge-exchange channel read:

$$H_{kl}^{11} = (u_k u_l - v_k v_l) h_{kl} - (u_k v_l - v_k u_l) \Delta_{kl}.$$

where

Particle-hole residual interactions

• Particle-hole residual interactions:

$$V_{pnp'n'}^{ph} = \int \int d\mathbf{r}_1 d\mathbf{r}_2 f_p^+(\mathbf{r}_1) f_{n'}^+(\mathbf{r}_2) \sum_{\phi_i} V_{\phi_i}(1,2) \left[f_{p'}(\mathbf{r}_2) f_n(\mathbf{r}_1) - f_n(\mathbf{r}_2) f_{p'}(\mathbf{r}_1) \right],$$

- * σ -meson: $V_{\sigma}(1,2) = -[g_{\sigma}\gamma_0]_1[g_{\sigma}\gamma_0]_2D_{\sigma}(1,2),$
- * ω -meson: $V_{\omega}(1,2) = [g_{\omega}\gamma_0\gamma^{\mu}]_1 [g_{\omega}\gamma_0\gamma_{\mu}]_2 D_{\omega}(1,2),$
- * ρ -meson: $V_{\rho}(1,2) = [g_{\rho}\gamma_{0}\gamma^{\mu}\vec{\tau}]_{1} \cdot [g_{\rho}\gamma_{0}\gamma_{\mu}\vec{\tau}]_{2}D_{\rho}(1,2),$
- * π -meson: $V_{\pi}(1,2) = -\left[\frac{f_{\pi}}{m_{\pi}}\vec{\tau}\gamma_0\gamma_5\gamma^k\partial_k\right]_1 \cdot \left[\frac{f_{\pi}}{m_{\pi}}\vec{\tau}\gamma_0\gamma_5\gamma^l\partial_l\right]_2 D_{\pi}(1,2),$
- \star zero-range counter-term of π -meson:

$$V_{\pi\delta}(1,2) = g'[rac{f_\pi}{m_\pi} ec{ au} \gamma_0 \gamma_5 \gamma]_1 \cdot [rac{f_\pi}{m_\pi} ec{ au} \gamma_0 \gamma_5 \gamma]_2 \delta(\mathbf{r}_1 - \mathbf{r}_2).$$

Parameter set PKO1

- π-meson is included naturally.
- g' = 1/3 is maintained for the sake of self-consistency.

Particle-particle residual interactions

Particle-particle residual interactions:

$$V_{pnp'n'}^{pp} = \int \int d\mathbf{r}_1 d\mathbf{r}_2 f_p^+(\mathbf{r}_1) f_n^+(\mathbf{r}_2) \sum_{T=1,0} V_T(1,2) \left[f_{n'}(\mathbf{r}_2) f_{p'}(\mathbf{r}_1) - f_{p'}(\mathbf{r}_2) f_{n'}(\mathbf{r}_1) \right],$$

 \star T = 1 channel: Gogny force

$$V_{T=1}(1,2) = \sum_{i=1,2} e^{-r_{12}^2/\mu_i^2} (W_i + B_i P^{\sigma} - H_i P^{\tau} - M_i P^{\sigma} P^{\tau}),$$

with the set D1S, the same as those in RHFB calculations. Berger1991CPC

 \star T = 0 channel:

$$V_{T=0}(1,2) = -V_0 \sum_{j=1}^2 g_j e^{-r_{12}^2/\mu_j^2} \hat{\prod}_{S=1,T=0},$$

where $\mu_1 = 1.2$ fm, $\mu_2 = 0.7$ fm, $g_1 = 1$, $g_2 = -2$, V_0 is determined by fitting to the measured half-lives of nuclei. Engel1999PRC

Nuclear β-decay half lives

The nuclear β-decay half-life in the allowed Gamow-Teller approximation reads as

follows:

$$T_{1/2} = \frac{\ln 2}{\lambda_{\beta}} = \frac{D}{g_A^2 \sum_m \left| \sum_{pn} \left\langle \mathbf{1}_m^+ \left| \sigma \tau \right| \mathbf{0}^+ \right\rangle \right|^2 f(Z, A, E_m)},$$

where $D = \frac{\hbar^7 2\pi^3 \ln 2}{g^2 m_e^5 c^4} = 6163.4 \text{ s}, g_A = 1$. The transition probability $\langle \mathbf{1}_m^+ | \sigma \tau | \mathbf{0}^+ \rangle$ can be directly taken from the QRPA calculations.

***** The integrated (e, \overline{v}_{e}) phase volume $f(Z,A,E_{m})$:

$$f(Z, A, E_m) = \frac{1}{m_e^5} \int_{m_e}^{E_m} p_e E_e (E_m - E_e)^2 F(Z, A, E_m) dE_e,$$

 \star The maximum value of β-decay energy E_m :

$$\boldsymbol{E}_{m} = \boldsymbol{E}_{i} - \boldsymbol{E}_{f} = (\boldsymbol{m}_{n} - \boldsymbol{m}_{p}) - \boldsymbol{E}_{\text{QRPA}} = \boldsymbol{\Delta}_{np} - \boldsymbol{E}_{\text{QRPA}}.$$

Due to $E_m > m_e$, the sum on *m* runs over all final states with E_{QRPA} smaller than $\Delta_{nH} = \Delta_{np} - m_e = 0.782$ MeV.