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Why is important the nuclear symmetry energy ?

The nuclear symmetry energy is a fundamental quantity in Nuclear
Physics and Astrophysics because it governs, at the same time, important
properties of very small entities like the atomic nucleus ( R ∼ 10−15 m )
and very large objects as neutron stars ( R ∼ 104 m )

• Nuclear Physics: Neutron skin thickness in finite nuclei, structure of
neutron rich nuclei, Heavy-Ion collisions, Giant Resonances....

• High-Energy Physics: Test of the Standard Model through atomic
parity non-conservation observables.

• Astrophysics: Supernova explosion, Neutron emission and cooling of
protoneutron stars, Mass-Radius relations in neutron stars,
Composition of the crust of neutron stars...



∆rnp = 〈r2〉1/2n − 〈r2〉1/2p



Equation of State in asymmetric matter

e(ρ, δ) = e(ρ, 0) + csym(ρ)δ2 +O(δ4)

(
δ =

ρn − ρp

ρ

)
Around the saturation density we can write

e(ρ, 0) ' av +
1

2
Kv ε

2 and csym(ρ) ' J−Lε+
1

2
Ksymε

2

(
ε =

ρ0 − ρ
3ρ0

)

ρ0 ≈ 0.16fm−3, av ≈ −16MeV , Kv ≈ 230MeV , J ≈ 32MeV

However, the values of

L = 3ρ∂csym(ρ)/∂ρ|ρ0 and Ksym = 9ρ2∂2csym(ρ)/∂ρ2|ρ0

which govern the density dependence of csym near ρ0 are less certain and

predictions vary largely among nuclear theories.



Symmetry energy and neutron skin thickness
in the Liquid Drop Model

• Symmetry Energy

asym(A) =
J

1 + xA
, xA =

9J

4Q
A−1/3

Esym(A) = asym(A)(I + xAIC )2A

where

I = (N − Z )/A, IC = e2Z/(20JR), R = r0A
1/3

.
• Neutron skin thickness

S =
√

3/5

[
t − e2Z/(70J) +

5

2R
(b2

n − b2
p)

]
where

t =
3r0
2

J/Q

1 + xA
(I − IC) =

2r0
3J

[J − asym(A)] A1/3 (I − IC)

M. Centelles, M. Del Estal and X. Viñas, Nucl. Phys. A635, 193 (1998)



The csym(ρ)-asym(A) correlation

• There is a genuine relation between the symmetry energy
coefficients of the EOS and of nuclei: csym(ρ) equals asym(A) of
heavy nuclei like 208Pb at a density ρ = 0.1± 0.01 fm−3 practically
independent of the mean field model used to compute them.

• A similar situation occurs down to medium mass numbers, at lower
densities.

• We find that this density can be very well simulated by

ρ ≈ ρA = ρ0 − ρ0/(1 + cA1/3) ,

where c is fixed by the condition ρ 208 = 0.1 fm−3.
• Using the equality csym(ρ) = asym(A) and the LDM , the neutron

skin thickness can be finally written as:

S =

√
3

5

2r0
3

L

J

(
1− εKsym

2L

)
εA1/3

(
I − IC

)
• See also Lie-Wen Chen Phys. Rev. C83, 044308 (2011)



S = (0.9± 0.15)I + (−0.03± 0.02) fm
A. Trzcińska et al, Phys. Rev. Lett. 87, 082501 (2001)

Assuming c(ρ) = 31.6(ρ/ρ0)γ with ρ0=0.16 fm−3 we predict
(bn = bp): L = 75± 25 MeV



Influence of the surface width (bn 6= bp)

√
3

5

5

2R
(b2

n − b2
p) = 0.31I (NL3)− 0.15I (SGII )

bn and bp are obtained semiclassically at ETF level
M.Centelles et al. NPA 635, 193 (1998).



Surface contribution to the neutron skin thickness

√
3

5
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2R
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n − b2
p) = σsw I = (0.3

J

Q
+ c)I

c = 0.07fm and c = −0.05



Fit and results

J

Q
= 0.6− 0.9 L = 31− 81MeV



Neutron skin thickness



Constraints on the slope of the symmetry energy



What can we learn from parity-violating electron scattering ?

• See C.J. Horowitz et al. Phys. Rev. C63, 025501 (2001);
Shufang Ban et al arXiv:1010.3246 [nucl-th]

• ALR is the parity-violating asymmetry

• ALR ≡
dσ+

dΩ
− dσ−

dΩ
dσ+

dΩ
+

dσ−
dΩ

• V±(r) = VCoulomb(r)± Vweak(r)

• Vweak(r) = GF

23/2

ˆ
(1− 4 sin2 θW )Zρp(r)− Nρn(r)

˜
• APWBA

LR = GF q2

4πα
√

2

h
4 sin2 θW +

Fn(q)−Fp(q)

Fp(q)

i
• PREX experiment E ∼ 1.05 GeV and θ ∼ 5◦



From parity-violating electron scattering

with E=1.06 GeV and θ = 5◦



From parity-violating electron scattering



From parity-violating electron scattering

with E=1 GeV and θ = 5◦



Dipole polarizability and symmetry energy
The hydrodynamical model of Lipparini and Stringari (Phys. Rep. 175, 103
(1989) (see also W.Satula et al, Phys. Rev. C74, 011301 (2009) ) suggest a

relation between the dipole polarizability and the bulk and surface contributions
to the symmetry energy:

αhydro =
A < r 2 >

24J

„
1 +

5

3

J − asym

J
A−1/3

«
; E−1 =

s
~2A(1 + κ)

4mα(D)



Dipole polarizability and symmetry energy



Summary and Conclusions

• We have described a generic relation between the symmetry energy
in finite nuclei and in nuclear matter at subsaturation.

• We take advantage of this relation to explore constraints on csym(ρ)
from neutron skins measured in antiprotonic atoms. These
constraints points towards a soft symmetry energy.

• We discuss the L values constrained by neutron skins in comparison
with most recent observations from reactions and giant resonances.

• We learn that in spite of present error bars in the data of
antiprotonic atoms, the size of the final uncertainties in L is
comparable to the other analyses.



• We have investigated parity-violating electron scattering in nuclear
models constrained by available experimental data to extract the
neutron radius and skin of 208Pb without specific assumptions on
the shape of the nucleon densities.

• We have demonstrated a linear correlation, universal in mean field
framework, between Apv and ∆rnp that has very small scatter.

• It is predicted that a 1% measurement of Apv would allow to
constrain the slope L of the symmetry energy to near a novel 10
MeV level.

• We have found a simple parametrization of the parity-violating
asymmetry for electron scattering in terms of the parameters
Cn − Cp and an − ap of the equivalent 2pF distributions.



From parity-violating electron scattering



• The generic relation between the symmetry The generic relation
between the symmetry energy in finite nuclei and in nuclear matter
at subsaturation plausibly encompasses other prime correlations of
nuclear observables with the density content of the symmetry energy
as e.g. the constrains of csym(0.1) from the GDR of 208Pb (L.
Trippa et al. Phys. Rev. C77, 061304(R) (2008)).

• The properties of csym(ρ) derived from terrestrial nuclei also have
intimate connections to astrophysics. As an example, we can
estimate the transition density ρt between the crust and the core of
a neutron star as ρt/ρ0 ∼ 2/3 + (2/3)γKsym/2Kv (J. M. Lattimer,
M. Prakash, Phys. Rep. 442, 109 (2007)). . The constraints from
neutron skins hereby yield ρt ∼ 0.095± 0.01 fm−3. This value
would not support the direct URCA process of cooling of a neutron
star that requires a higher ρt . Our prediction is in consonance with
ρt ∼ 0.096 fm−3 of the microscopic EOS of Friedman and
Pandharipande as well as with ρt ∼ 0.09 fm−3 predicted by a recent
ρt ∼ 0.09 fm−3 predicted by a recent analysis of pygmy dipole
resonances in nuclei.



Neutron skin thickness

de(ρ, δ = 1)

dρ
=

L

3ρ0
− K + Ksym

3ρ0
ε

dcsym(ρ)

dρ
=

L

3ρ0
− Ksym

3ρ0
ε



What is experimentally know about neutron skin thickness in
nuclei ?

• The neutron skin thickness is defined as S=Rn − Rp, where Rn and
Rp are the rms of the neutron and proton distributions respectively.

• Rp is known very accurately from elastic electron scattering
measurements

• Rn has been obtained with hadronic probes such as:
a) Proton-nucleus elastic scattering
b) Inelastic scattering excitation of the giant dipole and spin-dipole
resonances
c) Antiprotonic atoms: Data from antiprotonic X rays and
radiochemical analysis of the yields after the antiproton annihilation



S = (0.9± 0.15)I + (−0.03± 0.02) fm
A. Trzcińska et al, Phys. Rev. Lett. 87, 082501 (2001)

CAN THE NEUTRON SKIN THICKNESS of 26 STABLE NUCLEI,
FROM 40Ca TO 238U, ESTIMATED USING ANTIPROTONIC ATOMS

DATA CONSTRAINT THE SLOPE AND CURVATURE OF csym ?



Some technical details
• The surface stiffness coeficient Q and the surface widths bn and bp

are obtained from self-consistent calculations of the neutron and
proton density profiles in asymmetric semi-infinite nuclear matter.

• To this end one has to minimize the total energy per unit area with
the constraint of conservation of the number of protons and
neutrons with respect to arbitrary variations of the densities.

Econst

S
=

∫ ∞
−∞

[
ε(z)− µnρn(z)− µpρp(z)

]
dz ,

where ε(z) is the nuclear energy density functional.
• In the non-relativistic framework the densities ρn and ρp obey the

coupled local Euler-Lagrange equations:

δε(z)

δρn
− µn = 0,

δε(z)

δρp
− µp = 0.

The relative neutron excess δ = (ρn − ρp)/(ρn + ρp) is a function of
the z-coordinate. When z → −∞ , the densities ρn and ρp

approach the values of asymmetric uniform nuclear matter in
equilibrium with a bulk neutron excess δ0.



• From the calculated density profiles one computes:

zoq =

∫∞
−∞ zρ′q(z)dz∫∞
−∞ ρ′q(z)dz

,

b2
q =

∫∞
−∞(z − z0q)2ρ′q(z)dz∫∞

−∞ ρ′q(z)dz
.

• From the relation

t = z0n − z0p =
3r0
2

J

Q
δ0,

one can evaluate Q from the slope of t at δ0 = 0.
• The distance t and the surface widths bn and bp in finite nuclei with

neutron excess I = (NZ )/A are obtained using δ0 given by:

δ0 =
I +

3

8

c1

Q

Z 2

A5/3

1 +
9

4

J

Q
A−1/3

.



Neutron skin thickness

de(ρ, δ = 1)

dρ
=

L

3ρ0
− K + Ksym

3ρ0
ε

dcsym(ρ)

dρ
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L

3ρ0
− Ksym

3ρ0
ε



Table: Value of asym(A) and density ρ that exactly fulfils
csym(ρ) = asym(A) for A = 208, 116, 40 , in various nuclear models. J and
asym are in MeV and ρ is in fm−3.

A = 208 A = 116 A = 40
Model J asym ρ asym ρ asym ρ
NL3 37.4 25.8 0.103 24.2 0.096 21.1 0.083
NL-SH 36.1 25.8 0.105 24.6 0.099 21.3 0.086
FSUGold 32.6 25.4 0.098 24.2 0.090 21.9 0.075
TF-MS 32.6 24.2 0.093 22.9 0.085 20.3 0.068
SLy4 32.0 25.3 0.100 24.2 0.091 22.0 0.075
SkX 31.1 25.7 0.102 24.8 0.096 22.8 0.082
SkM* 30.0 23.2 0.101 22.0 0.093 19.9 0.078
SIII 28.2 24.1 0.093 23.4 0.088 21.8 0.077
SGII 26.8 21.6 0.104 20.7 0.096 18.9 0.082

ρ ≈ ρA = ρ0 − ρ0/(1 + cA1/3) ,

with c fixed by the condition ρ 208 = 0.1 fm−3.



Neutron skin thickness

de(ρ, δ = 1)

dρ
=

L

3ρ0
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Fitting procedure and results

• We optimeze

S =

√
3

5

2r0
3

L

J

(
1− εKsym

2L

)
εA1/3

(
I − IC

)
using

csym = 31.6(
ρ

ρ0
)γMeV , ε =

1

3(1 + cA1/3)
, ρ0 = 0.16fm−3

and taking as experimental baseline the neutron skins measured in
26 antiprotonic atoms.

• We predict (bn = bp): L = 75± 25 MeV



S = (0.9± 0.15)I + (−0.03± 0.02) fm
A. Trzcińska et al, Phys. Rev. Lett. 87, 082501 (2001)



Neutron skin thickness

S =
√

3/5
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