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INTRODUCTION & SPIRIT OF THE
PRESENTATION

⋆ One of the most important issues of any physical Theory is its predictive power and its
justification on more fundamental grounds . As a standard example : what is the link
between the nucleon-nucleon interaction and a given mean field ?
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INTRODUCTION & SPIRIT OF THE
PRESENTATION

⋆ One of the most important issues of any physical Theory is its predictive power and its
justification on more fundamental grounds . As a standard example : what is the link
between the nucleon-nucleon interaction and a given mean field ?

⋆ In the context of the Nuclear Mean Field approach, we propose an investigation of the
first aspect, the predictive power, by combining a robust (with respect to extrapolation)
non-self consistent mean field with the usual Hartree-Fock procedure

⋆ Also, a systematicinvestigation of the terms a priori allowed by symmetry
considerations should be performed

⋆ This must be done in order to avoid possible misinterpretations of ill-posed problems
such as possibly compensating missing terms in a given hamiltonian by over or
underestimating coupling constants for the remaining form factors

⋆ Also, in the spirit of

Workshop =
School+Conference

2

we would like to re-investigate a certain number of "old" technical questions solved with
an approach adapted to our needs
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QUESTION : IS THERE A WAY TO
INVESTIGATE SYSTEMATICALLY THE

ALLOWED TWO-BODY INTERACTIONS ?

ANSWER : YES, USE THE SPIN-TENSOR
DECOMPOSITION !
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THE SPIN-TENSOR DECOMPOSITION

⋆ In the fermionic spin-1/2 space, any operator can be expressed with the help of σ0 ≡ I

and the Pauli matrices σx, σy and σz
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particle, as e.g. σa
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THE SPIN-TENSOR DECOMPOSITION

⋆ In the fermionic spin-1/2 space, any operator can be expressed with the help of σ0 ≡ I

and the Pauli matrices σx, σy and σz

⋆ Therefore, the space of two nucleons can be described by a set of 4 × 4 = 16

operators composed of the tensor product of the corresponding operators for each
particle, as e.g. σa

i σ
b
j , with i = 0, 1, 2, 3 and j = 0, 1, 2, 3

⋆ We require the interaction to be independent of the interchange between the two
particles, and therefore we use the 6 irreducible tensors :

S
(0)
1 = 1, S

(2)
2 = [~σa × ~σb](0), S

(1)
3 = ~σa + ~σb

S
(2)
4 = [~σa × ~σb](2), S

(1)
5 = [~σa × ~σb](1), S

(1)
6 = ~σa − ~σb
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THE SPIN-TENSOR DECOMPOSITION

⋆ Advantage : These 6 tensors S
(k)
µ of rank k can immediately be coupled with a tensor

operator of the same rank in configuration space X
(k)
µ to a scalar and the so obtained

scalar functions finally summed to the general scalar(i.e. invariant with respect to
spatial rotations) two-particle interaction (PT=0 and PT=1 are projectors on the states
T = 0 and T = 1) :

V (a, b) =
6∑

µ=1

{
[X

(k)
µ × S

(k)
µ ](0)PT=0 + [Y

(k)
µ × S

(k)
µ ](0)PT=1

}
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SYMMETRY CONSIDERATIONS

⋆ We demand V (a, b) to be symmetric with respect to particle permutation
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SYMMETRY CONSIDERATIONS

⋆ We demand V (a, b) to be symmetric with respect to particle permutation

⋆ The combinations S1, S2, S3, S4 are symmetric with respect to the interchange of the
spins of the particles, and therefore the corresponding tensors X1, X2, X3, X4 and
Y1, Y2, Y3, Y4 will have to be symmetric

⋆ The combinations S5, S6 are anti-symmetric with respect to the interchange of the
spins of the particles, and therefore the corresponding tensors X5, X6 and Y5, Y6 will
have to be anti-symmetric
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ANTI-SYMMETRIC SPIN-ORBIT INTERACTION

⋆ The last possibility corresponds to the ALS (anti-symmetric spin-orbit) part of the
interaction
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ANTI-SYMMETRIC SPIN-ORBIT INTERACTION

⋆ The last possibility corresponds to the ALS (anti-symmetric spin-orbit) part of the
interaction

⋆ It violates the principle of invariance of the interaction with respect to the relative parity
of two nucleons, and is therefore in principle not allowed

Kazimierz 2011 – p.7/45



ANTI-SYMMETRIC SPIN-ORBIT INTERACTION

⋆ The last possibility corresponds to the ALS (anti-symmetric spin-orbit) part of the
interaction

⋆ It violates the principle of invariance of the interaction with respect to the relative parity
of two nucleons, and is therefore in principle not allowed

⋆ However, this is true for the free interaction, but not really necessary in effective
interactions. For a recent example, see the article on shell evolution and nuclear forces
by N.A. Smirnova et al., Phys. Lett. B686 (2010) 109

Kazimierz 2011 – p.7/45



RECALLING THE HF EQUATIONS ...

... JUST TO FIX THE NOTATIONS
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HARTREE-FOCK EQUATIONS

⋆ With the notations of second quantization, the many-body hamiltonian reads :

Ĥ =
∑

αβ

〈α|t̂|β〉a†
αaβ +

1

2

∑

αβγδ

〈αβ|V̂ |γδ〉a†
αa

†
βaδaγ
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∑
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〈α|t̂|β〉a†
αaβ +

1

2

∑

αβγδ

〈αβ|V̂ |γδ〉a†
αa

†
βaδaγ

⋆ Hartree-Fock ground state of the system of A particles :

|Φ〉 =

A∏

µ=1

a†
µ|0〉
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Kazimierz 2011 – p.9/45



HARTREE-FOCK EQUATIONS

⋆ With the notations of second quantization, the many-body hamiltonian reads :

Ĥ =
∑

αβ

〈α|t̂|β〉a†
αaβ +

1

2

∑

αβγδ

〈αβ|V̂ |γδ〉a†
αa

†
βaδaγ

⋆ Hartree-Fock ground state of the system of A particles :

|Φ〉 =

A∏

µ=1

a†
µ|0〉

⋆ Hartree-Fock equations :

〈α|ĥHF |β〉 ≡ 〈α|t̂ + ÛHF |β〉 = εαδαβ

⋆ Hartree-Fock potential :

〈α|ÛHF |β〉 ≡
A∑

µ=1

〈αµ|V̂ |β̃µ〉 =
A∑

µ=1

[
〈αµ|V̂ |βµ〉 − 〈αµ|V̂ |µβ〉

]
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THE HF EQUATIONS IN MATRIX FORM

⋆ Introduce a single-particle basis |i〉, |j〉, |k〉, |l〉 . . . , and the coefficients Cα
i ≡ 〈i|α〉.
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THE HF EQUATIONS IN MATRIX FORM

⋆ Introduce a single-particle basis |i〉, |j〉, |k〉, |l〉 . . . , and the coefficients Cα
i ≡ 〈i|α〉.

⋆ Introducing closure relations one gets the matrix relation :

∑

k

(H)ikC
α
k = εαCα

i
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THE HF EQUATIONS IN MATRIX FORM

⋆ Introduce a single-particle basis |i〉, |j〉, |k〉, |l〉 . . . , and the coefficients Cα
i ≡ 〈i|α〉.

⋆ Introducing closure relations one gets the matrix relation :

∑

k

(H)ikC
α
k = εαCα

i

⋆ where :

(H)ik ≡ 〈i|t̂|k〉 +
∑

jl

〈ij|V̂ |kl〉ρlj
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THE HF EQUATIONS IN MATRIX FORM

⋆ Introduce a single-particle basis |i〉, |j〉, |k〉, |l〉 . . . , and the coefficients Cα
i ≡ 〈i|α〉.

⋆ Introducing closure relations one gets the matrix relation :

∑

k

(H)ikC
α
k = εαCα

i

⋆ where :

(H)ik ≡ 〈i|t̂|k〉 +
∑

jl

〈ij|V̂ |kl〉ρlj

⋆ and where the density matrix is given by :

ρlj ≡
∑

µ occ.

C
µ
j

∗
C

µ
l
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NEXT STEP ...

... CALCULATING TWO-BODY MATRIX
ELEMENTS
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TWO-BODY MATRIX ELEMENTS

⋆ We want to calculate the two-body matrix elements of a central interaction

Vn1,n2;m1,m2 = 〈nx1ny1nz1 ;nx2ny2nz2 |V (|r1−r2|)|mx1my1mz1 ;mx2my2mz2〉

where

ϕnµ(xµ) = Nnµe−
β2
µxµ

2

2 Hnµ(βµxµ) = β
1/2
µ e−ξ2

µ/2H
(0)
nµ (ξµ)

and the normalization constant

Nnµ =

√
βµ√

2nµnµ!
√

π
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TWO-BODY MATRIX ELEMENTS

⋆ We want to calculate the two-body matrix elements of a central interaction

Vn1,n2;m1,m2 = 〈nx1ny1nz1 ;nx2ny2nz2 |V (|r1−r2|)|mx1my1mz1 ;mx2my2mz2〉

where

ϕnµ(xµ) = Nnµe−
β2
µxµ

2

2 Hnµ(βµxµ) = β
1/2
µ e−ξ2

µ/2H
(0)
nµ (ξµ)

and the normalization constant

Nnµ =

√
βµ√

2nµnµ!
√

π

⋆ Explicitely :

En1,n2;m1,m2 =

∫∫
d3~r1d

3~r2 ϕnx1
(x1)ϕny1

(y1)ϕnz1
(z1)ϕnx2

(x2)ϕny2
(y2)ϕnz2

(z2)

V (r) ϕmx1
(x1)ϕmy1

(y1)ϕmz1
(z1)ϕmx2

(x2)ϕmy2
(y2)ϕmz2

(z2)
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A FEW EXAMPLES

⋆ Probably one of the most succesfull approch to the evaluation of such two-body matrix
elements is the Gogny separation method. For a recent extension to gaussian matrix
elements in the cylindrical harmonic oscillator basis, see W. Younes, Comp. Phys.
Comm. 180 (2009) 1013.
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A FEW EXAMPLES

⋆ Probably one of the most succesfull approch to the evaluation of such two-body matrix
elements is the Gogny separation method. For a recent extension to gaussian matrix
elements in the cylindrical harmonic oscillator basis, see W. Younes, Comp. Phys.
Comm. 180 (2009) 1013.

⋆ For very exotic nuclear systems, approaching for instance the drip lines, one can select
other basist states than the usual harmonic oscillator states. As an example, one can
use the Kamimura-Gauss sets which are adapted to systems with slowly decreasing
density distributions. See for example H. Nakada and M. Sato, Nucl. Phys. A699 (2002)
511.
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A FEW EXAMPLES

⋆ Probably one of the most succesfull approch to the evaluation of such two-body matrix
elements is the Gogny separation method. For a recent extension to gaussian matrix
elements in the cylindrical harmonic oscillator basis, see W. Younes, Comp. Phys.
Comm. 180 (2009) 1013.

⋆ For very exotic nuclear systems, approaching for instance the drip lines, one can select
other basist states than the usual harmonic oscillator states. As an example, one can
use the Kamimura-Gauss sets which are adapted to systems with slowly decreasing
density distributions. See for example H. Nakada and M. Sato, Nucl. Phys. A699 (2002)
511.

⋆ The fundamental importance of Yukawa type forces has been recognized very early in
Nuclear Physics, but is also very important in other branches of Physics. Few examples
are the screened Thomas-Fermipotential in solid-states physics, or the Debye-Hückel
potential in plasma physics; S.L. Garavelli and F.A. Oliveira, Phys. Rev. Lett. 66 (1991)
1310. Theories of quantum gravity predict also the existence of graviphotons (spin 1)
and graviscalars (spin 0) for which phenomenological descriptions with the help of the
Yukawa potential is important; M.M. Nieto et al., Phys. Rev. D36 (1987) 3688.
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MULTIPOLE DECOMPOSITION OF THE YUKAWA
INTERACTION

⋆ The Yukawa multipole analysis is based on the relation (M. Abramowitz and I. Stegun,
Handbook of Mathematical Functions) :

e−|~r−~r′|

|~r − ~r′| =
2

π

∞∑

l=0

(2l + 1)il(rL)kl(rG)Pl(cos θ)

where the modified Bessel Functions of the first and third kinds read

il(rL) =
1

2r

l∑

k=0

Γ(l + k + 1)

Γ(k + 1)Γ(n − k + 1)

1

(2r)k

[
(−)kez − (−)le−z

]

and

kl(rL) =
π

2r
e−z

l∑

k=0

Γ(l + k + 1)

Γ(k + 1)Γ(n − k + 1)

1

(2r)k
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MULTIPOLE DECOMPOSITION OF THE YUKAWA
INTERACTION

⋆ The Yukawa multipole analysis is based on the relation (M. Abramowitz and I. Stegun,
Handbook of Mathematical Functions) :

e−|~r−~r′|

|~r − ~r′| =
2

π

∞∑

l=0

(2l + 1)il(rL)kl(rG)Pl(cos θ)

where the modified Bessel Functions of the first and third kinds read

il(rL) =
1

2r

l∑

k=0

Γ(l + k + 1)

Γ(k + 1)Γ(n − k + 1)

1

(2r)k

[
(−)kez − (−)le−z

]

and

kl(rL) =
π

2r
e−z

l∑

k=0

Γ(l + k + 1)

Γ(k + 1)Γ(n − k + 1)

1

(2r)k

⋆ But how about practical realizations : highest multiplole order ... ?
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WHY DO WE NOT BENEFIT FROM
TECHNIQUES ...

... USED FOR ONE-BODY MATRIX
ELEMENTS ?
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A FIRST NAIVE IDEA

⋆ It is known that the one-bodymatrix elements of a potential V , evaluated in the
cartesian basis of the harmonic oscillator, can be calculated by recurrence (U. Götz et
al., Nucl. Phys. A175 (1971) 481).
Indeed, using the recursion formulae for the Hermite polynomials

Hn+1(ξ) = 2ξHn(ξ) − 2nξHn−1(ξ)

one shows easily that

〈nx ny nz |V |mx my mz〉 =
√

mx+1

nx

〈nx − 1 ny nz |V |mx + 1 my mz〉

+

√
mx

nx

〈nx − 1 ny nz |V |mx − 1 my mz〉

−
√

nx−1

nx

〈nx − 2 ny nz |V |mx my mz〉

and with similar expressions in the "y" and "z" directions
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⋆ One can illustrate this recursion relation schematically in the (nx,mx)-plane for fixed
values of (ny, nz,my,mz) :

<n−2|V|m>

<n|V|m>

<n−1|V|m+1><n−1|V|m−1>
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⋆ One can illustrate this recursion relation schematically in the (nx,mx)-plane for fixed
values of (ny, nz,my,mz) :

<n−2|V|m>

<n|V|m>

<n−1|V|m+1><n−1|V|m−1>

⋆ The problem is that the number of seed pointsis rather large, and complicated structure
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⋆ One can illustrate this recursion relation schematically in the (nx,mx)-plane for fixed
values of (ny, nz,my,mz) :

<n−2|V|m>

<n|V|m>

<n−1|V|m+1><n−1|V|m−1>

⋆ The problem is that the number of seed pointsis rather large, and complicated structure

⋆ Generalization to two-body matrix elementsnot straightforward
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SO BACK TO BASICS ...

... THE MOSHINSKY TRANSFORMATION
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MOSHINSKY TRANSFORMATION

⋆ Consider the products of harmonic oscillator wave functions:

ϕnx1
(x1)ϕnx2

(x2) = Nnx1
Nnx2

e−
β2
xx1

2

2 e−
β2
xx2

2

2 Hnx1
(βxx1)Hnx2

(βxx2)

= Nnx1
Nnx2

e−
β2
xX2

2 e−
β2
xx2

2 Hnx1
(βxx1)Hnx2

(βxx2)
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MOSHINSKY TRANSFORMATION

⋆ Consider the products of harmonic oscillator wave functions:

ϕnx1
(x1)ϕnx2

(x2) = Nnx1
Nnx2

e−
β2
xx1

2

2 e−
β2
xx2

2

2 Hnx1
(βxx1)Hnx2

(βxx2)

= Nnx1
Nnx2

e−
β2
xX2

2 e−
β2
xx2

2 Hnx1
(βxx1)Hnx2

(βxx2)

⋆ Performing the Moshinsky transformation :

~R ≡ ~r1 + ~r2√
2

and ~r ≡ ~r1 − ~r2√
2
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MOSHINSKY TRANSFORMATION

⋆ Consider the products of harmonic oscillator wave functions:

ϕnx1
(x1)ϕnx2

(x2) = Nnx1
Nnx2

e−
β2
xx1

2

2 e−
β2
xx2

2

2 Hnx1
(βxx1)Hnx2

(βxx2)

= Nnx1
Nnx2

e−
β2
xX2

2 e−
β2
xx2

2 Hnx1
(βxx1)Hnx2

(βxx2)

⋆ Performing the Moshinsky transformation :

~R ≡ ~r1 + ~r2√
2

and ~r ≡ ~r1 − ~r2√
2

⋆ We obtain :

ϕnx1
(x1)ϕnx2

(x2) = ϕnx1

(X + x√
2

)
ϕnx2

(X − x√
2

)

= Nnx1
Nnx2

e−
β2
xX2

2 e−
β2
xx2

2 Hnx1

[
βx(

X + x√
2

)
]
Hnx2

[
βx(

X − x√
2

)
]
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⋆ This expression can further be transformed using :

Hn(a + b) =
n∑

k=0

Cn
k Hk(a

√
2)Hn−k(b

√
2)

where

Cn
k ≡ 1

2n/2

(n
k

)
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⋆ This expression can further be transformed using :

Hn(a + b) =
n∑

k=0

Cn
k Hk(a

√
2)Hn−k(b

√
2)

where

Cn
k ≡ 1

2n/2

(n
k

)

⋆ We get :

ϕnx1
(x1)ϕnx2

(x2) = Nnx1
Nnx2

e−
β2
xX2

2 e−
β2
xx2

2

nx1∑

kx1=0

nx2∑

kx2=0

(−)(nx2−kx2)Cnx1
kx1

Cnx2
kx2

[
Hkx1

(βxX)Hkx2
(βxX)

][
Hnx1−kx1

(βxx)Hnx2−kx2
(βxx)

]
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OLD FRIENDS - PART 1 - ...

... THE TALMI-BRODY-MOSHINSKY
(TBM) COEFFICIENTS !
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TALMI-BRODY-MOSHINSKY (TBM)
COEFFICIENTS

⋆ Now one can make use of the formula :

H
(0)
m (ξ)H

(0)
n (ξ) =

m+n∑

µ=0

Cµ
mn(00)H

(0)
µ (ξ)
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TALMI-BRODY-MOSHINSKY (TBM)
COEFFICIENTS

⋆ Now one can make use of the formula :

H
(0)
m (ξ)H

(0)
n (ξ) =

m+n∑

µ=0

Cµ
mn(00)H

(0)
µ (ξ)

⋆ To obtain finally :

ϕnx1
(x1)ϕnx2

(x2) =

nx1+nx2∑

nx=0

M
(NX)nx
nx1nx2

ϕNX
(X)ϕnx(x)
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TALMI-BRODY-MOSHINSKY (TBM)
COEFFICIENTS

⋆ Now one can make use of the formula :

H
(0)
m (ξ)H

(0)
n (ξ) =

m+n∑

µ=0

Cµ
mn(00)H

(0)
µ (ξ)

⋆ To obtain finally :

ϕnx1
(x1)ϕnx2

(x2) =

nx1+nx2∑

nx=0

M
(NX)nx
nx1nx2

ϕNX
(X)ϕnx(x)

⋆ Where the Talmi-Brody-Moshinsky coefficients are given by :

M
(NX )nx
nx1nx2

= δnx1+nx2 ,NX+nx βx Nnx1
Nnx2

×
nx1
∑

kx1=0

nx2
∑

kx2=0

δNX,kx1+kx2
(−)

(nx2−kx2 )
Cnx1
kx1

Cnx2
kx2

C
NX
kx1kx2

(00)C
nx
nx1−kx1 ,nx2−kx2

(00)

Nkx1
Nkx2

Nnx1−kx1
Nnx2−kx2
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COMPACT FORM OF THE TBM COEFFICIENTS

⋆ Using the following decomposition (see e.g. M. Girod and B. Grammaticos, Phys. Rev.
C27 (1983) 2317 or W. Younes, Comp. Phys. Comm. 180 (2009) 1013) :

ϕm(x)ϕn(x) = e−ξ2/2
m+n∑

µ=|m−n|,2
NµI

µ
mnϕµ(x),

where

Iµ
mn =

µ!(nm!nn!2µ)1/2

(nm−nn+µ
2

)!(nn−nm+µ
2

)!(nm+nn−µ
2

)!

one gets the more compact form :

M
(N)n
n1n2 = δn1+n2,N+n

1√
2n1+n2

√
n1!n2!

N !n!

∑

k

(−)(n−n1+k)
(N
k

)( n

n1 − k

)

(see for example Y.F. Smirnov, Nucl. Phys. 39 (1962) 346, or R.R. Chasman and S.
Wahlborn Nucl. Phys. A90 (1967) 401, or more recently L. Robledo, Phys. Rev. C 81,
044312 (2010) , who uses the properties of the harmonic oscillator generating
function).
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BACK TO THE TWO-BODY MATRIX ELEMENTS

⋆ We obtain the final expression for the central interaction

En1,n2;m1,m2 =
∑

nx,ny,nz

Dn1,n2;m1,m2
nxnynz;mxmymz

〈nxnynz|V (
√

2r)|mxmymz〉

where

Dn1,n2;m1,m2
nxnynz;mxmymz

≡ M
(NX)nx
nx1nx2

M
(NX)mx
mx1mx2

M
(NY )ny
ny1ny2

M
(NY )my
my1my2

M
(NZ)nz
nz1nz2

M
(NZ)mz
mz1mz2
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BACK TO THE TWO-BODY MATRIX ELEMENTS

⋆ We obtain the final expression for the central interaction

En1,n2;m1,m2 =
∑

nx,ny,nz

Dn1,n2;m1,m2
nxnynz;mxmymz

〈nxnynz|V (
√

2r)|mxmymz〉

where

Dn1,n2;m1,m2
nxnynz;mxmymz

≡ M
(NX)nx
nx1nx2

M
(NX)mx
mx1mx2

M
(NY )ny
ny1ny2

M
(NY )my
my1my2

M
(NZ)nz
nz1nz2

M
(NZ)mz
mz1mz2

⋆ Note that, because of orthonormality conditions , one has MX = NX , MY = NY

and MZ = NZ .

Kazimierz 2011 – p.24/45



BACK TO THE TWO-BODY MATRIX ELEMENTS

⋆ We obtain the final expression for the central interaction

En1,n2;m1,m2 =
∑

nx,ny,nz

Dn1,n2;m1,m2
nxnynz;mxmymz

〈nxnynz|V (
√

2r)|mxmymz〉

where

Dn1,n2;m1,m2
nxnynz;mxmymz

≡ M
(NX)nx
nx1nx2

M
(NX)mx
mx1mx2

M
(NY )ny
ny1ny2

M
(NY )my
my1my2

M
(NZ)nz
nz1nz2

M
(NZ)mz
mz1mz2

⋆ Note that, because of orthonormality conditions , one has MX = NX , MY = NY

and MZ = NZ .

⋆ Note also that, because of energy conservation, one has nx1 + nx2 = NX + nx.
Thus, the sum over mx, my and mz disappears.
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OLD FRIENDS - PART 2 - ...

... THE SMIRNOV BRACKETS !
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USE OF SMIRNOV BRACKETS

⋆ We are lead to the evaluation of the cartesian matrix elements :

〈nxnynz|V (
√

2r)|mxmymz〉 =
∑

nlm

∑

n′l′m′
〈nxnynz|nlm〉

〈nlm|V (
√

2r)|n′l′m′〉〈n′l′m′|mxmymz〉

where 〈nlm|nxnynz〉 are the Smirnov brackets.
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USE OF SMIRNOV BRACKETS

⋆ We are lead to the evaluation of the cartesian matrix elements :

〈nxnynz|V (
√

2r)|mxmymz〉 =
∑

nlm

∑

n′l′m′
〈nxnynz|nlm〉

〈nlm|V (
√

2r)|n′l′m′〉〈n′l′m′|mxmymz〉

where 〈nlm|nxnynz〉 are the Smirnov brackets.

⋆ One has explicitely to calculate

〈nlm|V (
√

2r)|n′l′m′〉 = δll′δmm′

∫ ∞

0
Rnl(r)V (

√
2r)Rn′l(r)dr

which are evaluated numerically via Gauss-Laguerre quadrature.
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USE OF SMIRNOV BRACKETS

⋆ We are lead to the evaluation of the cartesian matrix elements :

〈nxnynz|V (
√

2r)|mxmymz〉 =
∑

nlm

∑

n′l′m′
〈nxnynz|nlm〉

〈nlm|V (
√

2r)|n′l′m′〉〈n′l′m′|mxmymz〉

where 〈nlm|nxnynz〉 are the Smirnov brackets.

⋆ One has explicitely to calculate

〈nlm|V (
√

2r)|n′l′m′〉 = δll′δmm′

∫ ∞

0
Rnl(r)V (

√
2r)Rn′l(r)dr

which are evaluated numerically via Gauss-Laguerre quadrature.

⋆ Alternative suggestions may occur, as for instance the one proposed recently by L.
Robledo, Phys. Rev. C 81, 044312 (2010), who calculates approximately the matrix
elements in the cartesian basis with the help of the theorem of spectral decomposition:

〈nxnynz|V (
√

2r)|mxmymz〉 ≈
LC∑

L=0

D∗
nx,ny,nz

vLDmx,my,mz
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FORMULAE FOR SMIRNOV COEFFICIENTS

⋆ Smirnov coefficientshave been given in Y.F. Smirnov, Nucl. Phys. 39 (1962) 346
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FORMULAE FOR SMIRNOV COEFFICIENTS

⋆ Smirnov coefficientshave been given in Y.F. Smirnov, Nucl. Phys. 39 (1962) 346

⋆ For direct numerical applications one can utilize the transformation brackets given
explicitely by K.T.R. Davies and S.J. Krieger, Can. J. Phys. 69 (1991) 62 :

〈nlm|nxnynz〉 = δ2n+l,nx+ny+nz (−)(2n+nx+ny−m)/2 iny

×
[ (2l + 1)(l − m)!(n + l)!

2l(l + m)!n!(2n + 2l + 1)!

]1/2

×
(nx + ny + m

2

)
!
[
nx!ny!nz!

]1/2[1 + (−)(nx+ny+m)

2

]

×
smax∑

s=smin

(−)s(2l − 2s)!(n + s)!

s!(l − s)!(l − 2s − m)!(n + s − nx+ny−m

2
)!

×
pmax∑

p=pmin

(−)p

p!(nx − p)!(p +
nx−ny−m

2
)!(

nx+ny+m

2
− p)!
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AN ALTERNATIVE FORMULATION

⋆ Based on the same principles as in Davies and Krieger, we have derived the following
alternative formula :

〈nlm|nxnynz〉 = δ2n+l,nx+ny+nz
(−)

(2n+nx+ny−m)/2
i
ny

×
[2l(2l + 1)(n + l)!(l + m)!(l − m)!

n!(2n + 2l + 1)!

]1/2

×
(nx + ny + m

2

)

!
[

nx!ny!
]−1/2[

nz!
]1/2[1 + (−)(nx+ny+m)

2

] 1

2m
t0!

×
∑

s

(−)s
(

n
t0−s

)

22ss!(m + s)!(l − 2s − m)!

×
∑

p

(−)
p
(

nx

p

)(

ny

q

)

where t0 = (nx + ny − m)/2 and q = (nx + ny + m)/2 − p.

Kazimierz 2011 – p.28/45



⋆ The technique utilized by Davies and Krieger starts from the expression of the spherical
harmonic oscillator basis (see for instance the textbook M. Moshinsky and Y.F. Smirnov,
The Harmonic Oscillator in Modern Physics, Harwood Academic Publishers,
Amsterdam, 1996) ) :

|nlm〉 = (−)n
[ 4π2l(n + l)!

n!(2n + 2l + 1)!

]1/2
(~η · ~η)nYlm(~η)|0〉

where

~η ≡ ~a† = (~r − i~p)/
√

2 = (a†
x, a

†
y, a

†
z)
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⋆ The technique utilized by Davies and Krieger starts from the expression of the spherical
harmonic oscillator basis (see for instance the textbook M. Moshinsky and Y.F. Smirnov,
The Harmonic Oscillator in Modern Physics, Harwood Academic Publishers,
Amsterdam, 1996) ) :

|nlm〉 = (−)n
[ 4π2l(n + l)!

n!(2n + 2l + 1)!

]1/2
(~η · ~η)nYlm(~η)|0〉

where

~η ≡ ~a† = (~r − i~p)/
√

2 = (a†
x, a

†
y, a

†
z)

⋆ Introduce the spherical componentsof the vector ~η :





η+ = − 1√
2
(ηx + iηy)

η0 = ηz

η− = + 1√
2
(ηx − iηy)
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⋆ The technique utilized by Davies and Krieger starts from the expression of the spherical
harmonic oscillator basis (see for instance the textbook M. Moshinsky and Y.F. Smirnov,
The Harmonic Oscillator in Modern Physics, Harwood Academic Publishers,
Amsterdam, 1996) ) :

|nlm〉 = (−)n
[ 4π2l(n + l)!

n!(2n + 2l + 1)!

]1/2
(~η · ~η)nYlm(~η)|0〉

where

~η ≡ ~a† = (~r − i~p)/
√

2 = (a†
x, a

†
y, a

†
z)

⋆ Introduce the spherical componentsof the vector ~η :





η+ = − 1√
2
(ηx + iηy)

η0 = ηz

η− = + 1√
2
(ηx − iηy)

⋆ The binomial expansionallows to write (Davies and Krieger) :

(~η · ~η)n = (η2
z − 2η+η−)n =

∑

t

(−)t2t
(n
k

)
ηt
+ηt

−η2n−2t
z
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⋆ The solid spherical harmonicsare expanded according to (see D.A. Varshalovich, A.N.
Moskalev and V.K. Khersonskii, Quantum Theory of Angular Momentum, World
Scientific, Singapore, 1988) ) :

Ylm(~η) =

√

2l + 1

4π
(l + m)!(l − m)!

∑

s

1

2
2s+m

2 s!(m + s)!(l − 2s − m)!

η
m+s
+

η
s
−η

l−2s−m
z
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⋆ The solid spherical harmonicsare expanded according to (see D.A. Varshalovich, A.N.
Moskalev and V.K. Khersonskii, Quantum Theory of Angular Momentum, World
Scientific, Singapore, 1988) ) :

Ylm(~η) =

√

2l + 1

4π
(l + m)!(l − m)!

∑

s

1

2
2s+m

2 s!(m + s)!(l − 2s − m)!

η
m+s
+

η
s
−η

l−2s−m
z

⋆ One obtains therefore :

|nlm〉 = (−)n
[2l(2l + 1)(n + l)!(l + m)!(l − m)!

n!(2n + 2l + 1)!

]1/2

×
∑

s,t

(−)t2t
(

n
k

)

2
2s+m

2 s!(m + s)!(l − 2s − m)!

η
m+s+t
+

η
s+t
− η

l−2s−m+2n−2t
z
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⋆ The solid spherical harmonicsare expanded according to (see D.A. Varshalovich, A.N.
Moskalev and V.K. Khersonskii, Quantum Theory of Angular Momentum, World
Scientific, Singapore, 1988) ) :

Ylm(~η) =

√

2l + 1

4π
(l + m)!(l − m)!

∑

s

1

2
2s+m

2 s!(m + s)!(l − 2s − m)!

η
m+s
+

η
s
−η

l−2s−m
z

⋆ One obtains therefore :

|nlm〉 = (−)n
[2l(2l + 1)(n + l)!(l + m)!(l − m)!

n!(2n + 2l + 1)!

]1/2

×
∑

s,t

(−)t2t
(

n
k

)

2
2s+m

2 s!(m + s)!(l − 2s − m)!

η
m+s+t
+

η
s+t
− η

l−2s−m+2n−2t
z

⋆ The cartesian realization of the three-dimensional harmonic oscillator states reads,
using again the binomial expansion(Davies and Krieger) :

|nxnynz〉 =
1

√

nx!ny!nz!
η
nx
x η

ny
y η

nz
z |0〉

=
1

√

nx!ny!nz!

(η− − η+√
2

)nx
(

i
η− + η+√

2

)ny
η
nz
z |0〉

= i
ny

√

nx!ny!

2nx+nynz!

∑

p,q

(−)p

p!(nx − p)!q!(ny − q)!
η
p+q
+

η
nx+ny−p−q

− η
nz
z |0〉
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⋆ Comparing these two expressions, one sees that the overlap between the cartesian
and spherical states vanishes, unless one has the conditions :

nz = l − 2s − m + 2n − 2t = 2n + l − m − 2(s + t)

which fixes the value of s + t ≡ t0. One also must have

s + t = nx + ny − p − q

and

m + s + t = p + q
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⋆ Comparing these two expressions, one sees that the overlap between the cartesian
and spherical states vanishes, unless one has the conditions :

nz = l − 2s − m + 2n − 2t = 2n + l − m − 2(s + t)

which fixes the value of s + t ≡ t0. One also must have

s + t = nx + ny − p − q

and

m + s + t = p + q

⋆ This allows to express the spherical states in the form :

|nlm〉 = (−)n
[2l(2l + 1)(n + l)!(l + m)!(l − m)!

n!(2n + 2l + 1)!

]1/2

×
∑

s

(−)t0−s2t0−s
( n
t0−s

)

2
2s+m

2 s!(m + s)!(l − 2s − m)!
η
m+t0
+ ηt0

− η2n+l−m−2t0
z
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⋆ Comparing these two expressions, one sees that the overlap between the cartesian
and spherical states vanishes, unless one has the conditions :

nz = l − 2s − m + 2n − 2t = 2n + l − m − 2(s + t)

which fixes the value of s + t ≡ t0. One also must have

s + t = nx + ny − p − q

and

m + s + t = p + q

⋆ This allows to express the spherical states in the form :

|nlm〉 = (−)n
[2l(2l + 1)(n + l)!(l + m)!(l − m)!

n!(2n + 2l + 1)!

]1/2

×
∑

s

(−)t0−s2t0−s
( n
t0−s

)

2
2s+m

2 s!(m + s)!(l − 2s − m)!
η
m+t0
+ ηt0

− η2n+l−m−2t0
z

⋆ The above expression terminates the final calculation of the Smirnov brackets
〈nlm|nxnynz〉 in the form given previously.
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ANOTHER FANCY ...

... AND VERY EFFICIENT METHOD !
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USE OF RECURRENCE FORMULEA

⋆ From a numerical point of view it will be of advantage to use the recurrence formulae
derived by M. Hage-Hassan , Thèse d’État, Université Claude Bernard, Lyon (1980)
(Bargman representationfor bosons)
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USE OF RECURRENCE FORMULEA

⋆ From a numerical point of view it will be of advantage to use the recurrence formulae
derived by M. Hage-Hassan , Thèse d’État, Université Claude Bernard, Lyon (1980)
(Bargman representationfor bosons)

⋆ Consider the following generating function of the spherical harmonic oscillator basis:

|G(z, ξ0, r)〉 =
∑

nlm

( 4π

2l + 1

)1/2 zn

Nnl
Φlm(ξ0)|nlm〉

where ξ0 = (ξ, η) ∈ C2 and

Φlm(ξ0) =
ξl+mηl−m

[(l + m)!(l − m)!]1/2
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USE OF RECURRENCE FORMULEA

⋆ From a numerical point of view it will be of advantage to use the recurrence formulae
derived by M. Hage-Hassan , Thèse d’État, Université Claude Bernard, Lyon (1980)
(Bargman representationfor bosons)

⋆ Consider the following generating function of the spherical harmonic oscillator basis:

|G(z, ξ0, r)〉 =
∑

nlm

( 4π

2l + 1

)1/2 zn

Nnl
Φlm(ξ0)|nlm〉

where ξ0 = (ξ, η) ∈ C2 and

Φlm(ξ0) =
ξl+mηl−m

[(l + m)!(l − m)!]1/2

⋆ This can be transformed with the help of the generating function of the solid spherical
harmonics (see J. Schwinger in Quantum Theory of Angular Momentum, ed.
Biedenharn and Van Dam, Academic press, New York,1965, p.229) :

( 4π

2l + 1

)1/2 ∑

m

Φlm(ξ0)Ylm(~a†) =
(~b∗ · ~a†)l

2l l!
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⋆ In the latter expression one has introduced the null-length vector~b = (bx, by, bz), i.e.
such that~b∗ ·~b = 0 : 




bx = −ξ2 + η2

by = −i(ξ2 + η2)

bz = 2ξη
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⋆ In the latter expression one has introduced the null-length vector~b = (bx, by, bz), i.e.
such that~b∗ ·~b = 0 : 




bx = −ξ2 + η2

by = −i(ξ2 + η2)

bz = 2ξη

⋆ Also, one uses the vector (see for example the textbook M. Moshinsky and Y.F.
Smirnov, The Harmonic Oscillator in Modern Physics, Harwood Academic Publishers,
Amsterdam, 1996)

~a† = (~r − i~p)/
√

2 = (a†
x, a

†
y, a

†
z)

and

ρ2 = (a†
x)

2 + (a†
y)

2 + (a†
z)

2
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⋆ In the latter expression one has introduced the null-length vector~b = (bx, by, bz), i.e.
such that~b∗ ·~b = 0 : 




bx = −ξ2 + η2

by = −i(ξ2 + η2)

bz = 2ξη

⋆ Also, one uses the vector (see for example the textbook M. Moshinsky and Y.F.
Smirnov, The Harmonic Oscillator in Modern Physics, Harwood Academic Publishers,
Amsterdam, 1996)

~a† = (~r − i~p)/
√

2 = (a†
x, a

†
y, a

†
z)

and

ρ2 = (a†
x)

2 + (a†
y)

2 + (a†
z)

2

⋆ The three-dimensional spherical harmonic oscillator basis can be expressed as :

|nlm〉 = (−)n
1

n!2n+l/2
Nnlρ

2nYlm(~a†)|000〉

with

Nnl =

√
2π3/2Γ(n + 1)

Γ(n + l + 3/2)
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⋆ And therefore one gets

|G(z, ξ0, r)〉 =
∑

nlm

( 4π

2l + 1

)1/2 zn

Nnl
Φlm(ξ0)|nlm〉

=
∑

nl

(−)n
1

n!2n+l/2

znρ2n

2ll!
(~b∗ · ~a†)l|000〉

= e
(− zρ2

2
+

~b∗·~a†
2
√

2
)|000〉
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⋆ And therefore one gets

|G(z, ξ0, r)〉 =
∑

nlm

( 4π

2l + 1

)1/2 zn

Nnl
Φlm(ξ0)|nlm〉

=
∑

nl

(−)n
1

n!2n+l/2

znρ2n

2ll!
(~b∗ · ~a†)l|000〉

= e
(− zρ2

2
+

~b∗·~a†
2
√

2
)|000〉

⋆ On the other hand, one knows that the generating function of the three-dimensional
harmonic oscillator can be writte as (here ~t = (zx, zy, zz)) :

|Φ(~r,~t)〉 = e
~t∗·~a† |000〉 =

∑

nxnynz

z∗
x
nxz∗

y
nyz∗

z
nz

√
nx!ny!nz!

a
†
x
nx

a
†
y
ny

a
†
z
nz

√
nx!ny!nz!

|000〉
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⋆ And therefore one gets

|G(z, ξ0, r)〉 =
∑

nlm

( 4π

2l + 1

)1/2 zn

Nnl
Φlm(ξ0)|nlm〉

=
∑

nl

(−)n
1

n!2n+l/2

znρ2n

2ll!
(~b∗ · ~a†)l|000〉

= e
(− zρ2

2
+

~b∗·~a†
2
√

2
)|000〉

⋆ On the other hand, one knows that the generating function of the three-dimensional
harmonic oscillator can be writte as (here ~t = (zx, zy, zz)) :

|Φ(~r,~t)〉 = e
~t∗·~a† |000〉 =

∑

nxnynz

z∗
x
nxz∗

y
nyz∗

z
nz

√
nx!ny!nz!

a
†
x
nx

a
†
y
ny

a
†
z
nz

√
nx!ny!nz!

|000〉

⋆ One is now in the position to evaluate the generating function for changing from the
cartesian to the spherical basis: G(s,~b,~t) = 〈Φ(~r,~t)|G(s, ξ0, r)〉
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⋆ One obtains two expressions :

G(s,~b,~t) = e
(− s~t2

2
+

~b∗·~t
2
√

2
)
= eQ

with

Q = −s~t2

2
+

~b∗ · ~t
2
√

2

and

G(s,~b,~t) =
∑

nlm

∑

nxnynz

zxnxzynyzznz

√
nx!ny!nz!

( 4π

2l + 1

)1/2 sn

Nnl

× ξl+mηl−m

[(l + m)!(l − m)!]1/2
〈nxnynz|nlm〉
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⋆ One obtains two expressions :

G(s,~b,~t) = e
(− s~t2

2
+

~b∗·~t
2
√

2
)
= eQ

with

Q = −s~t2

2
+

~b∗ · ~t
2
√

2

and

G(s,~b,~t) =
∑

nlm

∑

nxnynz

zxnxzynyzznz

√
nx!ny!nz!

( 4π

2l + 1

)1/2 sn

Nnl

× ξl+mηl−m

[(l + m)!(l − m)!]1/2
〈nxnynz|nlm〉

⋆ Then partial derivatives with respect to ξ, η and s are taken :





∂Q
∂ξ

G = ∂G
∂ξ

∂Q
∂η

G = ∂G
∂η

∂Q
∂s

G = ∂G
∂s
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⋆ Let us illustrate the procedure on the case ofξ :

On one hand one can derive that

∂Q

∂ξ
=

1√
2
[−ξzx − iξzy + ηzz]

wherefrom
∂Q

∂ξ
G = Tx + Ty + Tz

with

Tx =
∑

nlm
nxnynz

zx
nxzy

nyzz
nz

√

nx!ny!nz!

(

− ξ
√

2
zx

)( 4π

2l + 1

)1/2 sn

Nnl

ξl+mηl−m

[(l + m)!(l − m)!]1/2
〈nxnynz|nlm〉

Ty =
∑

nlm
nxnynz

zx
nxzy

nyzz
nz

√

nx!ny!nz!

(

− i
ξ

√
2
zy

)( 4π

2l + 1

)1/2 sn

Nnl

ξl+mηl−m

[(l + m)!(l − m)!]1/2
〈nxnynz|nlm〉

Tz =
∑

nlm
nxnynz

zx
nxzy

nyzz
nz

√

nx!ny!nz!

(

+
η

√
2
zz

)( 4π

2l + 1

)1/2 sn

Nnl

ξl+mηl−m

[(l + m)!(l − m)!]1/2
〈nxnynz|nlm〉
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⋆ On the other hand one has :

∂G

∂ξ
=

∑

nlm
nxnynz

zx
nxzy

nyzz
nz

√

nx!ny!nz!

( 4π

2l + 1

)1/2 sn

Nnl

(l+m)
ξl+m−1ηl−m

[(l + m)!(l − m)!]1/2
〈nxnynz|nlm〉
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⋆ On the other hand one has :

∂G

∂ξ
=

∑

nlm
nxnynz

zx
nxzy

nyzz
nz

√

nx!ny!nz!

( 4π

2l + 1

)1/2 sn

Nnl

(l+m)
ξl+m−1ηl−m

[(l + m)!(l − m)!]1/2
〈nxnynz|nlm〉

⋆ The idea is to identify in both expressions the terms with equal powers. This is done
separately for Tx, Ty andTz .
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⋆ On the other hand one has :

∂G

∂ξ
=

∑

nlm
nxnynz

zx
nxzy

nyzz
nz

√

nx!ny!nz!

( 4π

2l + 1

)1/2 sn

Nnl

(l+m)
ξl+m−1ηl−m

[(l + m)!(l − m)!]1/2
〈nxnynz|nlm〉

⋆ The idea is to identify in both expressions the terms with equal powers. This is done
separately for Tx, Ty andTz .

⋆ The term Tx can also be expressed in the form :

Tx=
∑

nlm
nxnynz

zx
nx+1zy

nyzz
nz

√

nx!ny!nz!

(

− 1
√

2

)( 4π

2l + 1

)1/2 sn

Nnl

ξl+m+1ηl−m

[(l + m)!(l − m)!]1/2
〈nxnynz|nlm〉

By posing the change of variables λ = l + 1, νx = nx + 1 and µ = m + 1 and
coming finally back again to nx, l and m (mute variables) one finds

Tx =
∑

nlm
nxnynz

zx
nxzy

nyzz
nz

√

nx!ny!nz!

(

− n
1/2
x

21/2

)( 4π

2l − 1

)1/2 sn

Nnl

× [(l + m)(l + m − 1)]
1/2 ξl+m−1ηl−m

[(l + m)!(l − m)!]1/2
〈nx − 1 ny nz|n l − 1 m − 1〉
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⋆ Equating terms of equal powers for the contribution Tx gives :

√
l + m 〈nxnynz|nlm〉  − 1√

2

Nnl

Nnl−1

√
2l + 1

2l − 1
√

nx(l + m − 1)〈nx − 1 ny nz|n l − 1 m − 1〉
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⋆ Equating terms of equal powers for the contribution Tx gives :

√
l + m 〈nxnynz|nlm〉  − 1√

2

Nnl

Nnl−1

√
2l + 1

2l − 1
√

nx(l + m − 1)〈nx − 1 ny nz|n l − 1 m − 1〉

⋆ In the same way, equating terms of equal powers for the contribution Ty gives :

√
l + m 〈nxnynz|nlm〉  − i√

2

Nnl

Nnl−1

√
2l + 1

2l − 1
√

ny(l + m − 1)〈nx ny − 1 nz|n l − 1 m − 1〉
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⋆ Equating terms of equal powers for the contribution Tx gives :

√
l + m 〈nxnynz|nlm〉  − 1√

2

Nnl

Nnl−1

√
2l + 1

2l − 1
√

nx(l + m − 1)〈nx − 1 ny nz|n l − 1 m − 1〉

⋆ In the same way, equating terms of equal powers for the contribution Ty gives :

√
l + m 〈nxnynz|nlm〉  − i√

2

Nnl

Nnl−1

√
2l + 1

2l − 1
√

ny(l + m − 1)〈nx ny − 1 nz|n l − 1 m − 1〉

⋆ And finally equating terms of equal powers for the contribution Tz gives :

√
l + m 〈nxnynz|nlm〉  1√

2

Nnl

Nnl−1

√
2l + 1

2l − 1
√

nz(l − m)〈nx ny nz − 1|n l − 1 m〉

Kazimierz 2011 – p.39/45



⋆ Bringing now the contributions of Tx, Ty and Tz together leads to the desired
recurrence relations :

√
l + m 〈nxnynz|nlm〉 = − 1√

2

Nnl

Nnl−1

√
2l + 1

2l − 1
[√

nx(l + m − 1)〈nx − 1 ny nz|n l − 1 m − 1〉

+ i
√

ny(l + m − 1)〈nx ny − 1 nz|n l − 1 m − 1〉

−
√

nz(l − m)〈nx ny nz − 1|n l − 1 m〉
]

with
Nnl

Nnl−1
=

1√
n + l + 1/2
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⋆ In the same way, by derivating with respect toη :

√
l − m 〈nxnynz|nlm〉 = +

1√
2

Nnl

Nnl−1

√
2l + 1

2l − 1
[√

nx(l − m − 1)〈nx − 1 ny nz|n l − 1 m + 1〉

− i
√

ny(l − m − 1)〈nx ny − 1 nz|n l − 1 m + 1〉

+
√

nz(l + m)〈nx ny nz − 1|n l − 1 m〉
]
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⋆ In the same way, by derivating with respect toη :

√
l − m 〈nxnynz|nlm〉 = +

1√
2

Nnl

Nnl−1

√
2l + 1

2l − 1
[√

nx(l − m − 1)〈nx − 1 ny nz|n l − 1 m + 1〉

− i
√

ny(l − m − 1)〈nx ny − 1 nz|n l − 1 m + 1〉

+
√

nz(l + m)〈nx ny nz − 1|n l − 1 m〉
]

⋆ And finally by derivating with respect to s:

n 〈nxnynz|nlm〉 = −1

2

Nnl

Nnl−1
[√

nx(nx − 1)〈nx − 2 ny nz|n − 1 l m〉

− i
√

ny(ny − 1)〈nx ny − 2 nz|n − 1 l m〉

+
√

nz(nz − 1)〈nx ny nz − 2|n − 1 l m〉
]
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REMARK ON GENERATING FUNCTIONS

⋆ In Quantum Chemistry, the issue of constructing common generating functionsof
harmonic oscillator wave functions, for cartesian, circular and spherical coordinates,
and transformation brackets in D dimensions, has been given explicitely by L.
Chaos-Cador and E. Ley-Koo, International Journal of Quantum Chemistry 97 (2004)
844
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to be calculated accurately. At this occasion, sometimes "hot water" is re-discovered,
sometimes it has to be heated up again a little bit by : correcting typing errors, looking
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CONCLUSIONS & OUTLOOK

- 1 - We aim at large scale mean field calculations requirering fast calculation of the
Hartree-Fock field

- 2 - The goal is to analyze all a priori allowed terms steming from the fundamental
nucleon-nucleon interaction

- 3 - The predictive power of such calculations is a crucial point and it is believed that mixing
up a robust non self-consistent part and self-consistent terms might be a key point

- 4 - Several ”old friends” like the Talmi-Brody-Moshinsky or the Smirnov coefficients have
to be calculated accurately. At this occasion, sometimes "hot water" is re-discovered,
sometimes it has to be heated up again a little bit by : correcting typing errors, looking
for more efficient numerical methods etc.

- 5 - A natural extension to non-central forcesis of course needed

- 6 - The formalism is also well suited for HFB type calculations (pairing field)
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THANK YOU FOR YOUR ATTENTION !
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