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1) LEVEL STATISTICS AND RMT, Brody et al. (1981),
REGULAR AND CHAOTIC BEHAVIOR <=

Poisson and Wigner (GOE) level-spacing distributions,
ONE-BODY motion, INTEGRABILITY

2) WALL FORMULA, Swiatecki et al. (1977,78),
ORDER VS CHAOS, POINCARE SECTIONS AND
LYAPUNOV EXPONENTS, Swiatecki, Blocki, Skalski
et al. (1995-1999)

3) QUANTUM AND CLASSICAL EXCITATION ENERGY,
Swiatecki, Blocki, Skalski, Magierski et al. (1995-2007);
Blocki, Yatsyshyn, Magner (2010,2011)

FOR 10-20 PERIODS OF OSCILLATIONS

4) NEAREST NEIGHBOR SPACING DISTRIBUTIONS (NND)
AND SHELL EFFECTS, INTEGRABILITY?



(2. NEAREST NEIGHBOR SPACING DISTRIBUTIONS (NND)]

S
P(S) =g(S) exp (—/0 g(x) dw) /N, Wigner, 1967

/da:’P(a:) = /dm:z:’P(a:) =1 = N
P(S) = exp (—S/D) <= Poisson for g(S) =1/D
P(S) = (wS/2D) exp (—nwS?/4D?*) <= Wigner, g(S) < S

P(S) = exp [(q¢ — 1)S] | (1 — q)%erf(\/7qS/2)+
(2q(1 —q) + 7rq3S) exp (—wq252/4) , Berry, Robnik, 1984
g(S)=[A+BS/D| /D, P:.A=1,B=0; W.: A=0,B=1:

P(S) = (1+ BE/A) exp (—BE2/2 — Ag) / [RE), + BRE), /A
E=S/D, Ng‘)/v = /7 /2B exp (A°*/2B?) erf[(A—l—Bﬁ) /\/%}

ROdy = — |exp (—BE2,,,/2 — Abmaa) + ARG | /B
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2.1. QUANTUM EQUILIBRIUM SPECTRUM: P, P;

Ho; =eigi, V (r,0) = Vo[l +exp{[r — R(6)] /a}]™"

R(6) = Rg [1 4+ o, P, (cosO) + a1 Py (cosO)] /A, o, = ar/(2n +1)/5
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Fig. 1a. The s.p. energy levels ¢; in the WS potential (V, = 200
MeV, Ry = 6.622 fm, a = 0.1 fm) as function of the deformation «
for the P, (left) and Ps (right) shapes.
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Ho; =eigi, V (r,0) = Vo[l +exp{[r — R(6)] /a}]™"

R(6) = Rg [1 4+ o, P, (cosB) + a1 Py (cosO)] /A, oy, = ar/(2n +1)/5
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Fig. 1b. The s.p. energy levels ¢; in the WS potential (V, = 200
MeV, Ry = 6.622 fm, a = 0.1 fm) as function of the deformation «
for the P, (left) and P5 (right) shapes.
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2.3. QUANTUM EQUILIBRIUM SPECTRUM m =0

Hp; = eithi, V (r,0) = =V [1 +exp{[r— R(0)] /a}]™"

R(6) = Rg [1 4+ o, Py, (cosO) + a1 Py (cosO)] /A, o, = ar/(2n +1)/5
P2 P5
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Fig. 3. The s.p. energy levels ¢; with m = 0 in the WS potential
(Vo = 200 MeV, Ry = 6.622 fm, a = 0.1 fm) as function of the
deformation o for the P, (left) and P5 (right) shapes.
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Fig. 4. Level densities gr(S) with m = 0 as function of the energy

S; dashed is smooth density g(S) solid is the total density gr(S).
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Fig. 5. NND P(S) (heavy dots) vs. the energies S; solid is Poisson
(1,0), A =1, B =0), frequent dots is Wigner (0,1) and dashed is

for the linear level density.
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Fig. 6. NND P(S) for levels with m = 0 (heavy dots) vs. the
energy S} solid is Poisson (1,0), A =1, B = 0, frequent dots is

Wigner (0,1) and dashed is for the linear density.
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Fig. 7. The general Wigner P(S) vs. energies S; thick dashed is
for smooth density g(S) and thin solid is for the total density

gr(S).
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Fig. 8. The general Wigner P(S) with the m = 0 vs. energies S;
thick dashed is for smooth density g(.5) and thin solid is for the
total density gr(S).
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3.9. ORDER VS CHAOS AND POINCARE SECTIONS
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Fig.9. Poincare sections for six shapes at the large deformation
a = 0.4 (two upper rows) and small deformation @ = 0.05 (two
lower rows) for the projections of the angular momentum on the
symmetry axis m = 0.5 with respect to the maximal value.



(CONCLUSIONS]

NND P(S) for full s.p. spectra and levels with m = 0 in a
deformed WS potential were analysed in terms of the Poisson
and Wigner distributions for several deformations and their
multipolarities.

We found the significant deflections of all distributions with a
fixed value of the angular momentum projection of the
particle, more closely to the Wigner distribution, in contrast
to those of the full spectra with Poisson-like behavior though
all desired potentials are non-integrable in the symmetry-axis
plane.

Notable shell effects are observed in the level distributions for
all deformations and their multipoilarities, besides of a small
region near the spherical shape.

As perspectives, it would be worth to apply to the collective

dynamics for analysis of the order-chaos transitions.

(THANKS!]




