Generator Coordinate Method and
 Symmetries

Andrzej Góźdź,

Institute of Physics, Dept. Math. Phys.,UMCS, Lublin, Poland

Kazimierz 2011

Collaboration

Artur Dobrowolski,
IF UMCS, Lublin, Poland
Aleksandra Pedrak,
IF UMCS, Lublin, Poland
Agnieszka Szulerecka, IF UMCS, Lublin, Poland

GCM and GHW equation $1 / 2$

Trial function

$$
|\Psi\rangle=\int_{\mathcal{O}} d \alpha f(\alpha)|\alpha\rangle
$$

$\alpha=$ set of generator variables, $|\alpha\rangle=$ set of intrinsic generator functions and unknown $f(\alpha)=$ weight functions.

Variational principle

$$
\delta\langle\Psi| \hat{H}|\Psi\rangle=0, \text { where }\langle\Psi \mid \Psi\rangle=1 .
$$

GHW equation

$$
\hat{\mathcal{H}} f(\alpha)=E \hat{\mathcal{N}} f(\alpha),
$$

One needs to solve the integral equation.

GCM and GHW equation $2 / 2$

Notation:

The integral Hamilton operator

$$
\hat{\mathcal{H}} f(\alpha) \equiv \int_{\mathcal{O}} d \alpha^{\prime} \mathcal{H}\left(\alpha, \alpha^{\prime}\right) f\left(\alpha^{\prime}\right)
$$

where the hamiltonian kernel $\mathcal{H}\left(\alpha, \alpha^{\prime}\right) \equiv\langle\alpha| \hat{H}\left|\alpha^{\prime}\right\rangle$.

The overlap operator

$$
\hat{\mathcal{N}} f(\alpha) \equiv \int_{\mathcal{O}} d \alpha^{\prime} \mathcal{N}\left(\alpha, \alpha^{\prime}\right) f\left(\alpha^{\prime}\right)
$$

where the overlap kernel $\mathcal{N}\left(\alpha, \alpha^{\prime}\right) \equiv\left\langle\alpha \mid \alpha^{\prime}\right\rangle$.

GCM as a projection method $1 / 2$

The eigenequation of $\hat{\mathcal{N}}$

$$
\hat{\mathcal{N}} w_{n}(\alpha)=\lambda_{n} w_{n}(\alpha)
$$

The set of $w_{n}(\alpha)$ for $\lambda_{n} \neq 0$ is the basis in the space \mathcal{K}_{w} of the weight functions f. It allows to construct the basis in the corresponding many-body space \mathcal{K} :

The natural states

$$
\left|\psi_{n}\right\rangle=\frac{1}{\sqrt{\lambda_{n}}} \int_{\mathcal{O}} d \alpha w_{n}(\alpha)|\alpha\rangle
$$

This basis allows to construct the projection operator

$$
P_{\mathcal{K}_{\text {coll }}}=\sum_{\lambda_{n}>0}\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right|
$$

GCM as a projection method $2 / 2$

Standard way - solution of the GHW equation:

- Solve the overlap operator equation, and find: λ_{n} and $w_{n}(\alpha)$.
- Construct the natural states.
- Compute

$$
\left\langle\psi_{k}\right| \hat{H}\left|\psi_{l}\right\rangle=\frac{1}{\sqrt{\lambda_{k} \lambda_{l}}} \int_{\mathcal{O}} d \alpha d \alpha^{\prime} w_{k}(\alpha)^{\star}\langle\alpha| \hat{H}\left|\alpha^{\prime}\right\rangle w_{l}\left(\alpha^{\prime}\right)
$$

- Solve the eigenvalue problem $\sum_{l} H_{k l} h_{l}=E h_{k}$.
- Construct the weight function

$$
f(\alpha)=\sum_{n} \frac{1}{\sqrt{\lambda_{n}}} h_{n} w_{n}(\alpha)
$$

Hamiltonian symmetries and GHW equation $1 / 3$

Let G be a symmetry group of the Hamiltonian \hat{H} :

$$
\hat{g} \hat{H} \hat{g}^{-1}=\hat{H}
$$

Fundamental property

$$
\hat{H} \phi_{n}(x)=E_{n} \phi_{n}(x) \quad \Rightarrow \quad \hat{H}\left(\hat{g} \phi_{n}(x)\right)=E_{n}\left(\hat{\mathrm{~g}} \phi_{n}(x)\right) .
$$

Assume the GCM ansatz:

$$
\phi_{n}(x)=\int_{\mathcal{O}} d \alpha f_{n}(\alpha) \Phi_{0}(\alpha ; x),
$$

where $\Phi_{0}(\alpha ; x) \equiv\langle x \mid \alpha\rangle$.

Hamiltonian symmetries and GHW equation $2 / 3$

One expects the same property for the GHW equation

$$
\hat{\mathcal{H}}\left(g f_{n}(\alpha)\right)=E_{n} \hat{\mathcal{N}}\left(g f_{n}(\alpha)\right) .
$$

Transform the left hand side of the above condition:

$$
\begin{aligned}
& \hat{\mathcal{H}} g f_{n}(\alpha)=[\hat{\mathcal{H}}, g] f_{n}(\alpha)+g \hat{\mathcal{H}} f_{n}(\alpha)= \\
& {[\hat{\mathcal{H}}, g] f_{n}(\alpha)+E_{n} g \hat{\mathcal{N}} f_{n}(\alpha)=} \\
& {[\hat{\mathcal{H}}, g] f_{n}(\alpha)+E_{n}[g, \hat{\mathcal{N}}] f_{n}(\alpha)+E_{n} \hat{\mathcal{N}} g f_{n}(\alpha)}
\end{aligned}
$$

It implies the following condition:

Compatibility condition (CC)

$$
[\hat{\mathcal{H}}, g] f_{n}(\alpha)=E_{n}[\hat{\mathcal{N}}, g] f_{n}(\alpha)
$$

Hamiltonian symmetries and GHW equation $3 / 3$

If

Practical and sufficient condition (PSC)

$$
g \hat{\mathcal{H}} g^{-1}=\hat{\mathcal{H}} \quad \text { and } \quad g \hat{\mathcal{N}} g^{-1}=\hat{\mathcal{N}}
$$

the compatibility condition is always fufffilled.
Are the condition CC and PSC equivalent ? It is an open question.

Symmetry in GCM

A physical system decribed in the GCM formalism has the symmetry of the Hamiltonian \hat{H} if the PSC, or more generally CC condition is fulfilled.

Symmetry group action $1 / 2$

The symmetry group of the Hamiltonian \hat{H} is defined in the many-body space \mathcal{K}. One needs to find its realization in the space of weight functions \mathcal{K}_{w}.

A natural symmetry group G action which relates both spaces \mathcal{K} and \mathcal{K}_{w} :

$$
\hat{g}|\alpha\rangle=|g \alpha\rangle, \quad \text { for all } \quad g \in \mathrm{G}
$$

It implies (the integral should be G-invariant)

$$
\hat{g}|\Psi\rangle=\int_{\mathcal{O}} d \alpha f(\alpha)|g \alpha\rangle=\int_{\mathcal{O}} d \alpha f\left(g^{-1} \alpha\right)|\alpha\rangle
$$

G action in the weight space

$$
g f(\alpha)=f\left(g^{-1} \alpha\right)
$$

Symmetry group action 2/2

Using this action:

Invariant kernels

$$
\hat{g} \hat{\mathcal{A}} \hat{g}^{-1}=\hat{\mathcal{A}} \Leftrightarrow \mathcal{A}\left(g \alpha, g \alpha^{\prime}\right)=\mathcal{A}\left(\alpha, \alpha^{\prime}\right) .
$$

The integral has to be G-invariant.

Symmetry conserving GCM: For all $g \in G$

$$
\mathcal{N}\left(g \alpha, g \alpha^{\prime}\right)=\mathcal{N}\left(\alpha, \alpha^{\prime}\right), \quad \text { and } \quad \mathcal{H}\left(g \alpha, g \alpha^{\prime}\right)=\mathcal{H}\left(\alpha, \alpha^{\prime}\right) .
$$

G compatible intrinsic generating function:

$$
|\beta, g\rangle=\hat{g}|\beta\rangle, \text { where } \hat{g^{\prime}}|\beta, g\rangle=\text { either }\left|\beta, g^{\prime} g\right\rangle \text { or }\left|\beta, g g^{\prime}\right\rangle \text {. }
$$

An important example: an abelian group $1 / 2$ Let the symetry group G be an abelian group and

$$
\left|\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)\right\rangle=\hat{g}\left(\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)\right)|-\rangle
$$

Note that

$$
\begin{aligned}
& \hat{\mathcal{N}} \chi^{\ulcorner }(\alpha)=\int_{\mathrm{G}} d \alpha^{\prime}\langle-| \hat{\mathrm{g}}(\alpha)^{\dagger} \hat{\mathrm{g}}\left(\alpha^{\prime}\right)|-\rangle \chi^{\ulcorner }\left(\alpha^{\prime}\right)= \\
& \int_{\mathrm{G}} d \alpha^{\prime}\langle-| \hat{\mathrm{g}}\left(\alpha^{-1} \alpha^{\prime}\right)|-\rangle \chi^{\ulcorner }\left(\alpha^{\prime}\right)=\int_{\mathrm{G}} d \alpha^{\prime}\langle-| \hat{\mathrm{g}}\left(\alpha^{\prime}\right)|-\rangle \chi^{\ulcorner }\left(\alpha \alpha^{\prime}\right) \\
& \hat{\mathcal{N}} \chi^{\ulcorner }(\alpha)=\left\{\int_{\mathrm{G}} d \alpha^{\prime}\langle-| \hat{\mathrm{g}}\left(\alpha^{\prime}\right)|-\rangle \chi^{\ulcorner }\left(\alpha^{\prime}\right)\right\} \chi^{\ulcorner }(\alpha),
\end{aligned}
$$

where $\chi^{\ulcorner }(\alpha)$ are characters of the symmetry group G .

An important example: an abelian group $2 / 2$

To this class belongs a series of problems:
Axial symmetry and simplified angular momentum conservation

$$
|\alpha\rangle=\exp (-i \alpha \vec{n} \cdot \hat{\vec{J}})
$$

Rotations in the space of number of particles and the particle number conservation

$$
|\alpha\rangle=\exp (-i \phi \hat{N})
$$

and many others.

Remark: GCM as "restoration" of symmetries

$$
1 / 2
$$

Assume $\tilde{w}_{\nu\lceil\kappa}(g, \alpha)$ are eigenstates of $\hat{\mathcal{N}}$ and G required symmetry:

$$
\mathrm{G}=\operatorname{Sym}(\hat{\mathcal{N}}) \text { and } \mathrm{G} \neq \operatorname{Sym}(\hat{\mathcal{H}}) \subset \mathrm{G} .
$$

$$
\begin{aligned}
& \left.\left|\nu\lceil\kappa\rangle=\frac{1}{\sqrt{\lambda_{\nu \Gamma}}} \int_{\mathrm{G}} d g \int_{\mathcal{O}} d \alpha \tilde{w}_{\nu\lceil\kappa}(g, \alpha) \hat{g}\right| \alpha\right\rangle= \\
& =\int_{\mathcal{O}} d \alpha \sum_{\kappa^{\prime}} w_{\nu\left\lceil\kappa^{\prime}\right.}(\alpha) P_{\kappa \kappa^{\prime}}^{\Gamma}|\alpha\rangle
\end{aligned}
$$

where

$$
\tilde{w}_{\nu \Gamma \kappa}(g, \alpha)=\operatorname{dim}(\Gamma) \sum_{\kappa^{\prime}} w_{\nu\left\ulcorner\kappa^{\prime}\right.}(\alpha) \Delta_{\kappa \kappa^{\prime}}^{\Gamma}(g)^{\star} .
$$

An important note: GCM as " restoration" of symmetries $2 / 2$

Set of generator functions

$$
\sum_{\kappa^{\prime}} w_{\nu\left\lceil\kappa^{\prime}\right.}(\alpha) P_{\kappa \kappa^{\prime}}^{\Gamma}|\alpha\rangle
$$

where $w_{\nu \Gamma \kappa^{\prime}}(\alpha)$ can be considered as the weight functions, allows to force (" restore") the required symmetry G of the integral Hamiltonian $\hat{\mathcal{H}}$.

Symmetries in the intrinsic frame

The most important symmetries are seen ONLY in the INTRINSIC FRAME of the NUCLEUS

Quantum rotations

Figure: The rotated body probability spin orientations for the rotator wave functions $\psi \sim D_{M 2}^{5}-D_{M,-2}^{5}$ (left) and $\psi \sim D_{M 3}^{5}-D_{M,-3}^{5}$ (right)

Microscopic intrinsic frame 1/3

DEF. Intrinsic Frame (Biedernharn, Louck)

$$
\begin{aligned}
\vec{f}_{k}\left(\vec{x}_{1}+\vec{a}, \vec{x}_{2}+\vec{a}, \ldots, \vec{x}_{A}+\vec{a}\right)= \\
\vec{f}_{k}\left(\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{A}\right) \\
\begin{aligned}
& \vec{f}_{k}\left(\hat{\mathcal{R}} \vec{x}_{1}, \hat{\mathcal{R}} \vec{x}_{2}, \ldots, \hat{\mathcal{R}} \vec{x}_{A}\right)=\hat{\mathcal{R}} \vec{f}_{k}\left(\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{A}\right) \\
&=\sum_{k} \mathcal{R}_{k i} \vec{f}_{k}\left(\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{A}\right) \\
&\left(\frac{\partial \vec{f}_{i}}{\partial x_{n ; 1}}, \frac{\partial \vec{f}_{i}}{\partial x_{n ; 2}}, \frac{\partial \vec{f}_{i}}{\partial x_{n ; 3}},\right) \neq \overrightarrow{0},
\end{aligned}
\end{aligned}
$$

for any i and all n .

Microscopic intrinsic frame 2/3

A natural choice of the microscopic intrinsic frame:

The following conditions relate the laboratory $x_{n ; /}$ and intrinsic $\left(y_{n ; l}, \Omega\right)$ coordinates:

$$
x_{n ; l}=R_{l}^{C M}+\sum_{k} D_{k l}\left(\Omega^{-1}\right) y_{n ; k}
$$

Def. of rotational variables

$$
\vec{I}_{k}=R\left(\Omega^{-1}\right) \vec{f}_{k}\left(\vec{x}_{1}, \ldots, \vec{x}_{A}\right)
$$

The center of mass condition

$$
\sum_{n=1}^{3 A} m_{n} y_{n ; k}=0
$$

Microscopic intrinsic frame 3/3

Principal axes frame:

Def. of rotation variables

$$
\begin{aligned}
& Q_{i j}^{(l a b)}(x)=\sum_{i^{\prime} j^{\prime}} D_{i i^{\prime}}(\Omega) Q_{i^{\prime} j^{\prime}}(y), D_{j^{\prime} j}\left(\Omega^{-1}\right) \\
& Q_{i j}(y)=\sum_{n=1}^{A} m_{n} y_{n i} y_{n j} .
\end{aligned}
$$

Principal axes rotating frame

$$
Q_{i j}(y)=0 \text { for } i \neq j \text {. }
$$

Intrinsic groups $\overline{\mathrm{G}}$

Jin-Quan Chen, Jialun Ping \& Fan Wang: Group Representation Theory for Physicists, World Scientific, 2002.

Def. For each element g of the group G, one can define a corresponding operator \bar{g} in the group linear space \mathcal{L}_{G} as:

$$
\bar{g} S=S g, \quad \text { for all } S \in \mathcal{L}_{G}
$$

The group formed by the collection of the operators \bar{g} is called the intrinsic group of G.

IMPORTANT PROPERTY:

$$
[G, \overline{\mathrm{G}}]=0
$$

The groups G and $\overline{\mathrm{G}}$ are antyisomorphic.

Hamiltonian and tranformations 1/3

Hamiltonian in the intrinsic frame

$$
\hat{H}(x) \rightarrow \bar{H}(y, \Omega)=\bar{H}\left(y, \bar{J}_{x}, \bar{J}_{y}, \bar{J}_{z}\right)
$$

Possible form: generalized rotor

$$
\begin{aligned}
& \bar{H}\left(y, \bar{J}_{x}, \bar{J}_{y}, \bar{J}_{z}\right)=\bar{H}_{0}(y)+h_{00}(y) \bar{J}^{2} \\
& +\sum_{\lambda=1}^{\infty}\left(h_{\lambda 0}(y) \hat{T}_{0}^{\lambda}+\sum_{\mu=1}^{\lambda}\left(h_{\lambda \mu}(y) \hat{T}_{\mu}^{\lambda}+(-1)^{\mu} h_{\lambda \mu}^{\star}(y) \hat{T}_{-\mu}^{\lambda}\right)\right),
\end{aligned}
$$

$$
\hat{T}_{\mu}^{\lambda}=\left(\left(\ldots\left((\bar{J} \otimes \bar{J})^{\lambda_{2}=2} \otimes \bar{J}\right)^{\lambda_{3}=3} \otimes \ldots \otimes \bar{J}\right)^{\lambda_{n-1}=n-1} \otimes \bar{J}\right)_{\mu}^{\lambda=n},
$$

Hamiltonian and tranformations 2/3

Laboratory rotations

$$
\hat{R}(\omega) \in \operatorname{SO}(3): \hat{R}(\omega) f(y, \Omega)=f\left(y, \omega^{-1} \Omega\right)
$$

Rotational invariance

$$
\hat{R}(\omega) \hat{H}(x) \hat{R}\left(\omega^{-1}\right)=\hat{H}(x)
$$

It implies

$$
\hat{R}(\omega) \bar{H}\left(y, \bar{J}_{x}, \bar{J}_{y}, \bar{J}_{z}\right) \hat{R}\left(\omega^{-1}\right)=\bar{H}\left(y, \bar{J}_{x}, \bar{J}_{y}, \bar{J}_{z}\right)
$$

Hamiltonian and tranformations 3/3

Important classes of transformations in the intrinsic frame:

1. Rotation intrinsic group

$$
\bar{R}(\omega) \in \overline{\mathrm{SO}(3)}: \bar{R}(\omega) f(y, \Omega)=f\left(\bar{\omega} y, \Omega \omega^{-1}\right)
$$

It does not change laboratory variables x.
2. Intrinsic transformations of y only

$$
\hat{g} \in G_{v i b}: \hat{g} f(y, \Omega)=f\left(\hat{g}^{-1} y, \Omega\right)
$$

3. Intrinsic transformations of Ω only

$$
\hat{g} \in \mathrm{G}_{\text {rot }}: \hat{g} f(y, \Omega)=f\left(y, \Omega g^{-1}\right)
$$

Symmetries of the intrinsic Hamiltonian

Intrinsic Hamiltonian symmetries

- \bar{H} is invariant under all laboratory symmetries
- \bar{H} has additional symmetries related to transformations of intrinsic variables

Structure of the symmetry group of \bar{H} :

$$
\mathrm{G}=\mathrm{G}_{l a b} \times \mathrm{G}_{i n t}
$$

Symmetrization group G_{s} :

$$
\mathrm{G}_{s}=\left\{g_{s}: g_{s}(y, \Omega)=\left(y^{\prime}, \Omega^{\prime}\right) \text { then } x\left(y^{\prime}, \Omega^{\prime}\right)=x(y, \Omega)\right\} .
$$

Symmetrization group G_{s}

To have unique states in the laboratory frame:

State symmetrization

$$
g_{s} \psi(y, \Omega)=\psi(y, \Omega)
$$

for all $g_{s} \in \mathrm{G}_{s}$

Note: All the transformations $\bar{R}(\omega) \in \overline{\mathrm{SO}(3)}$ which keep structure of the intrinsic variables belong to the symmetrization group G_{s}.

Example

For the principal axes frame and the intrinsic variables (y, Ω), the symmetrization group is the octahedral group O.

GCM in the intrinsic frame $1 / 2$

Assume: \hat{H} is rotation invariant (lab frame).

General structure of the physical generating functions

$$
\Phi_{J M}(\alpha ; y, \Omega)=\sum_{K} \phi_{J K}(\alpha ; y) r_{M K}^{J}(\Omega)
$$

where $r_{M K}^{J}(\Omega)=\sqrt{2 J+1} D_{M K}^{J \star}(\Omega) \leftarrow($ NOTE: it has well determined angular momentum)

GCM ansatz

$$
\Psi_{J M}(y, \Omega)=\int_{O} d \alpha \int_{G_{i n t}} d g f(\alpha, g) \hat{g} \Phi_{J M}(\alpha ; y, \Omega)
$$

where $G_{\text {int }}$ is intrinsic symmetry of the intrinsic Hamiltonian.

GCM in the intrinsic frame $2 / 2$

The weight functions

$$
f(\alpha, g)=\operatorname{dim}(\Gamma) \sum_{b} \Delta_{a b}^{\ulcorner }(g)^{\star} f_{\Gamma b}^{J}(\alpha)
$$

$\Delta \Gamma$ i.r. of the intrinsic symmetry group $\mathrm{G}_{\text {int }}$.

GHW equation

$$
\int_{O} d \alpha^{\prime} \sum_{b^{\prime}} f_{\Gamma b^{\prime}}^{\jmath}\left(\alpha^{\prime}\right)\langle\alpha ; J M|(\bar{H}-E \mathbb{I}) B_{b b^{\prime}}^{\Gamma}\left|\alpha^{\prime} ; J M\right\rangle=0
$$

where $\langle y, \Omega \mid \alpha ; J M\rangle=\Phi_{J M}(\alpha ; y, \Omega)$ and the projector:

$$
B_{b b^{\prime}}^{\ulcorner }=\operatorname{dim}(\Gamma) \int_{\mathrm{G}_{i n t}} d g \Delta_{a b}^{\ulcorner }(g)^{\star} \hat{\mathrm{g}}
$$

Example: The symmetry group as a subgroup of the symmetrization group

Example: Let $\mathrm{G} \subset \mathrm{G}_{s}$

For all $g \in \mathrm{G}_{s}$

$$
\hat{g} \Phi_{J M}(\alpha ; y, \Omega)=\Phi_{J M}(\alpha ; y, \Omega)
$$

then

$$
B_{b b^{\prime}}^{\Gamma} \Phi_{J M}(\alpha ; y, \Omega)=\delta_{\Gamma 0} \Phi_{J M}(\alpha ; y, \Omega)
$$

$\Gamma=0$ means the scalar representation of G .

GHW equation

$$
\int_{O} d \alpha^{\prime} f_{\Gamma=0 b^{\prime}=0}^{J}\left(\alpha^{\prime}\right)\langle\alpha ; J M| \bar{H}-E \mathbb{I}\left|\alpha^{\prime} ; J M\right\rangle=0
$$

Conclusions

- $\operatorname{Sym}(\mathrm{GHW})=\operatorname{Sym}(\hat{H})=\mathrm{G}$ if $\operatorname{Sym}(\hat{\mathcal{H}})=\operatorname{Sym}(\hat{\mathcal{N}})=\mathrm{G}$.
- For all $g \in G$ the ket $\hat{g}|\alpha\rangle$ is defined.
- Required: $|g \alpha\rangle=\hat{g}|\alpha\rangle$ and $f^{\prime}(\alpha)=g f(\alpha)$, here $f(\alpha)$ is the weight function.
Solution: $|\alpha\rangle=\hat{g}|\beta\rangle$, here $\alpha=(g, \beta)$.
- If $|\alpha\rangle=\hat{g}|\beta\rangle$ and $\hat{g} \hat{H} \hat{g}^{-1}=\hat{H}$, then

$$
\hat{g} \hat{\mathcal{H}} \hat{g}^{-1}=\hat{\mathcal{H}} \text { and } \hat{g} \hat{\mathcal{N}} \hat{g}^{-1}=\hat{\mathcal{N}}
$$

- GHW in the intrinsic frame
- LaboratoryFrameForm(GHW)=IntrinsicFrameForm(GHW)
- The laboratory symmetries automatically implemented (e.g. spherical symmetry - conservation of angular momentum).
- Additional symmetries - intrinsic symmetries.
- A lot of open problems related to implementation of physical transformations in the intrinsic frame.

Problems

```
???
?????????
?????????????????
????????????????????????????
????????????????????????????????????? ????????????????????????????????????????????
```

