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The question of predictive power of nuclear theories and
statistical significance of theoretical predictions is a vast
and quickly growing field of nuclear science

Today we will present merely a selection of keywords
and illustrations belonging to the underlying subfield

of Applied Mathematics: the Inverse Problem1

Attention: The term ‘Inverse Problem’ of Applied Mathematics has NOT
much in common with its traditional meaning in quantum mechanics

1GOOGLE SEARCH on Sunday, May 16, 2010, at 10:30 AM

”Nuclear Physics” 3 200 000 results (∼0.18 seconds)
”Inverse Problem” 510 000 results (∼0.36 seconds)
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Marie-Geneviève PORQUET, CSNSM Orsay

Bogdan FORNAL, IFJ Kraków
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In this presentation we use some material from the article:

Nuclear Hamiltonians: The Question of their Spectral
Predictive Power and the Associated Inverse Problem

JD, B. Szpak, M-G, Porquet, H. Molique, K. Rybak & B. Fornal
J. Phys. G: Nucl. Part. Phys. 37 (2010) 064031

FOCUS Special Issue: Open problems in nuclear structure theory
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... as well as some material from the articles:

2. Nuclear Mean Field Hamiltonians and Factors Limiting
their Predictive Power: Formalism

JD, K. Rybak, B. Szpak, M-G, Porquet, H. Molique & B. Fornal
Int. J. Mod. Phys. E 19 (2010) 652

3. Nuclear Mean Field Hamiltonians and Factors Limiting
their Predictive Power: Illustrations

B. Szpak, JD, K. Rybak, M-G, Porquet, H. Molique & B. Fornal
Int. J. Mod. Phys. E 19 (2010) 665
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About the Bottom Line

Suppose we let 100 theorists...
... to develop 100 models of, say, the neutron drip line:

Then: there will be 100 predictions (we are individualists)
and, eventually, one of them will, perhaps, be ...
in agreement with an a posteriori experimental information.

QUESTION: Should we congratulate the happy one?

ANSWER: Yes, we always do when one of our friends
winns a bigger amount of money in a poker game...
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This and the following presentation are about:

How to help our 100 theorists

to arrive at close-lying results
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Part I

Nuclear Hamiltonians: Predictive-Power
Perspective
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About this Particular Project: What? and Why?

• What do we usually wish to do is to learn the full truth

Ĥψn = en ψn ↔ Ĥ = Ĥtrue

where by definition Ĥtrue contains complete information

• Complete - both: already known and yet undiscovered

Conclusion 1: The solutions {en, ψn} remain ‘asymptotic’
rather fictitious, ideal and to an extent unknown objects

Conclusion 2: The desired truth remains unknown to us
→ lack of knowledge → ignorance imposed#) by nature

#)... and thus well excused - because not resulting from our lazyness
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About this Particular Project: What? and Why?

• Humans do not know any efficient cure against deliberate
lazyness, but they did invent a cure against forced ignorance

• Solution: In cases of doubt we ‘parametrize our ignorance’

• ... more precisely: estimate by all available means which
answer will be more- and which less-likely ‘the right solution’:

Find relative probability of what we think the right answer is!

In Applied Mathematics:

1. Our ignorance is usually reprezented by a random variable X

2. Mathematically, variable X is reprezented by a probability
distribution PX = PX(x), x called ‘realization’ of the variable X

Conclusion: We need to introduce probabilities of ignorance!
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A Few Comments about the Nature of Errors

Combining Theoretical
and Experimental Errors
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A Few Comments about the Nature of Errors

• Theories are incomplete whereas experiments plagued with errors:

Theo.→ en = etrue
n (p) + δeerror

n & εn = εtrue
n + δεerr

n ← Exp.

en and εn are random variables→ distributions Pth.
n (en) and Pexp

n (εn)

• Errors propagate to the theory predictions through parameter fits

χ2(p) ∼
∑

wn

[ (
εtrue

n + δεerr
n

)︸ ︷︷ ︸
Experiment

−
(
etrue

n + δeerr
n

)︸ ︷︷ ︸
Theory

]2 → ∂χ2

∂p
= 0

so that the parameters p ≡ {p1, p2, . . . pf } are random variables
and as such are characterised by the probability distributions

P(p) = {Pth(e) ∗ Pexp(ε)}

• Conclusion: All the predictions have the probability distributions!
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New Strategy in Terms of Theories and Predictions

This is a new strategical observation which introduces
what we call a

”Theory about Constructing Theories”

Given theory T of a phenomenon P generating
observables F̂1, F̂2, . . . F̂p.

These observables are characterized not only
by the eigenvalues {F̂1 : f1, F̂2 : f2, . . . F̂p : fp}

but also by their probability distributions:

P1 = P1(f1), P2 = P2(f2), . . . Pp = P1(fp)
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Mean-Field Theory and Its General Importance

• We assume that the Nuclear Mean-Field Theory will remain
one of the fundamental nuclear-physics tools for a good while

• Existing developments, especially the Relativistic Mean-Field
(explicit link with particle physics) and Density Functionals
(Kohn-Sham theorem, its potentialities in nuclear physics) do
represent the best we can and should do in the coming future

• Possibilities of extrapolations to unknown, extreme isospin
areas remain - using the mildest formulation - unsatisfactory!

• Questions of statistical significance of the theory modeling
the most basic questions asked in other domains of research
are seldom - if ever - posed → This will be our subject today

Jerzy DUDEK, University of Strasbourg, France Nuclear Hamiltonians and Spectroscopic Predictive Power



Mean-Field Theory and Its General Importance

• We assume that the Nuclear Mean-Field Theory will remain
one of the fundamental nuclear-physics tools for a good while

• Existing developments, especially the Relativistic Mean-Field
(explicit link with particle physics) and Density Functionals
(Kohn-Sham theorem, its potentialities in nuclear physics) do
represent the best we can and should do in the coming future

• Possibilities of extrapolations to unknown, extreme isospin
areas remain - using the mildest formulation - unsatisfactory!

• Questions of statistical significance of the theory modeling
the most basic questions asked in other domains of research
are seldom - if ever - posed → This will be our subject today

Jerzy DUDEK, University of Strasbourg, France Nuclear Hamiltonians and Spectroscopic Predictive Power



Mean-Field Theory and Its General Importance

• We assume that the Nuclear Mean-Field Theory will remain
one of the fundamental nuclear-physics tools for a good while

• Existing developments, especially the Relativistic Mean-Field
(explicit link with particle physics) and Density Functionals
(Kohn-Sham theorem, its potentialities in nuclear physics) do
represent the best we can and should do in the coming future

• Possibilities of extrapolations to unknown, extreme isospin
areas remain - using the mildest formulation - unsatisfactory!

• Questions of statistical significance of the theory modeling
the most basic questions asked in other domains of research
are seldom - if ever - posed → This will be our subject today

Jerzy DUDEK, University of Strasbourg, France Nuclear Hamiltonians and Spectroscopic Predictive Power



Mean-Field Theory and Its General Importance

• We assume that the Nuclear Mean-Field Theory will remain
one of the fundamental nuclear-physics tools for a good while

• Existing developments, especially the Relativistic Mean-Field
(explicit link with particle physics) and Density Functionals
(Kohn-Sham theorem, its potentialities in nuclear physics) do
represent the best we can and should do in the coming future

• Possibilities of extrapolations to unknown, extreme isospin
areas remain - using the mildest formulation - unsatisfactory!

• Questions of statistical significance of the theory modeling
the most basic questions asked in other domains of research
are seldom - if ever - posed → This will be our subject today

Jerzy DUDEK, University of Strasbourg, France Nuclear Hamiltonians and Spectroscopic Predictive Power



Mean-Field Theory and Its General Importance

• We assume that the Nuclear Mean-Field Theory will remain
one of the fundamental nuclear-physics tools for a good while

• Existing developments, especially the Relativistic Mean-Field
(explicit link with particle physics) and Density Functionals
(Kohn-Sham theorem, its potentialities in nuclear physics) do
represent the best we can and should do in the coming future

• Possibilities of extrapolations to unknown, extreme isospin
areas remain - using the mildest formulation - unsatisfactory!

• Questions of statistical significance of the theory modeling
the most basic questions asked in other domains of research
are seldom - if ever - posed → This will be our subject today

Jerzy DUDEK, University of Strasbourg, France Nuclear Hamiltonians and Spectroscopic Predictive Power



Theory Predictions - Their Statistical Significance

Consider a mean-field Hamiltonian: RMF, HF, Phenomenological ...

Hmf = Hmf (̂r, p̂, ŝ; {p}); {p} → parameters

After laborious constructions of Hmf , we often get terribly exhausted
and forget that: Parameter determination is a noble, mathematically
sophisticated procedure based on the statistical theories often more
involved than the physical problems under study!

• In their introduction to the chapter ‘Modeling of Data’, the authors
of ‘Numerical Recipes” (p. 651), observe with sarcasme:

”Unfortunately, many practitioners of parameter estimation never proceed

beyond determining the numerical values of the parameter fit. They deem

a fit acceptable if a graph of data and model ‘l o o k s g o o d’. This

approach is known as chi-by-the-eye. Luckily, its practitioners get what

they deserve” [i.e. - what is ment is: “they” get a ‘statistical nonsense’]
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The So-Called ‘Experimental’ Single-Particle Levels

• From Audi et al., Nucl. Phys. A729 (2003) 345, we find that:

Neutron separation from 91Zr: Sn = 7194.5 keV

• An example: the data for νd3/2 states (3/2+):

E1 = 2042 keV with S1 = 0.78
E2 = 2871 keV with S1 = 0.08
E3 = 3083 keV with S1 = 0.16
E4 = 3290 keV with S1 = 0.22
E2 = 3681 keV with S1 = 0.16

〈E〉 =
(∑

i Ei × Si

)
/
(∑

i Si

)
→→→→ 〈E 〉 = 2592 keV

Ed3/2
= −Sn + 〈E 〉 = (−7194.5 + 2592) keV = −4602.5 keV

Jerzy DUDEK, University of Strasbourg, France Nuclear Hamiltonians and Spectroscopic Predictive Power



The So-Called ‘Experimental’ Single-Particle Levels

• From Audi et al., Nucl. Phys. A729 (2003) 345, we find that:

Neutron separation from 91Zr: Sn = 7194.5 keV

• An example: the data for νd3/2 states (3/2+):

E1 = 2042 keV with S1 = 0.78
E2 = 2871 keV with S1 = 0.08
E3 = 3083 keV with S1 = 0.16
E4 = 3290 keV with S1 = 0.22
E2 = 3681 keV with S1 = 0.16

〈E〉 =
(∑

i Ei × Si

)
/
(∑

i Si

)
→→→→ 〈E 〉 = 2592 keV

Ed3/2
= −Sn + 〈E 〉 = (−7194.5 + 2592) keV = −4602.5 keV

Jerzy DUDEK, University of Strasbourg, France Nuclear Hamiltonians and Spectroscopic Predictive Power



The So-Called ‘Experimental’ Single-Particle Levels

• From Audi et al., Nucl. Phys. A729 (2003) 345, we find that:

Neutron separation from 91Zr: Sn = 7194.5 keV

• An example: the data for νd3/2 states (3/2+):

E1 = 2042 keV with S1 = 0.78
E2 = 2871 keV with S1 = 0.08
E3 = 3083 keV with S1 = 0.16
E4 = 3290 keV with S1 = 0.22
E2 = 3681 keV with S1 = 0.16

〈E〉 =
(∑

i Ei × Si

)
/
(∑

i Si

)
→→→→ 〈E 〉 = 2592 keV

Ed3/2
= −Sn + 〈E 〉 = (−7194.5 + 2592) keV = −4602.5 keV

Jerzy DUDEK, University of Strasbourg, France Nuclear Hamiltonians and Spectroscopic Predictive Power



The So-Called ‘Experimental’ Single-Particle Levels

1. Many energy levels need to be measured in order to extract one,
average energy, interpreted as an experimental single particle energy

2. To obtain reliable results, attention should be payed to measuring
all the jπ states that contribute significantly to the weighted average

3. Vibration-coupling contributions need to be measured and one
should aim at subtracting them (or alternatively: include in theory)!

4. Levels depend, among others, on the spectroscopic factors, de-
fined in the presence of simplifying assumptions in reaction theory;
the latter may facilitate the self-control through the sum rule tests

5. Paradoxally, the so-called experimental single-particle levels are
highly complicated, model-dependent objects - this leads to errors!
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Single-Particle Levels as Probability Distributions

Experimental levels represent, from both quantum-mechanical and
experimental points of view an ensemble of probability distributions
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Single-Particle Levels as Probability Distributions

Uncertainties propagate to sought parameters {p1, p2, . . .} ≡ {p} in
Ĥ(r̂ , p̂; {p})ψn = en(p)ψn: Parameters→ Probability Distributions
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Single-Particle Levels as Probability Distributions

As it turns out, even small uncertainties on some experimental levels
may cause very large uncertainties on the adjusted parameters ...
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Single-Particle Levels as Probability Distributions

... while at the same time big uncertainties on other levels have a
small impact: as in life, all are equal but some more than the others
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Single-Particle Levels as Probability Distributions

Conclusion: the quality of adjustement depends strongly on the
quality of the data implying the existence of theoretical error bars
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Let Us Come Back to the Predictive Power

• Discussing the problem of Predictive Power, we usually have no
doubt in our minds so as to what is meant (or what we mean...)

• Suppose somebody has obtained a modelling result before any
experimental verification - Such a result can be called a prediction.

• After performing the experiment we verify, ex post, whether this
prediction was good and claim victory and (good) predictive power!

• At this point - what begins - are the issues of lacking precision in
very posing of the problem, arbitrariness and semantical confusion,
the implied questions, troubles, possibly mathematical non-sense...
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What does it mean: Having Predictive Power?

• Any result of any modelling of any phenomenon before the right
experiments are performed can be called “a theoretical prediction”

• ... thus performing any model calculation can be called predicting!

• But if any calculation is a prediction, any theory can predict always
and therefore it has always a predictive power ‘no-matter-what’ ...

• As a consequence, the very term “predictive power” applies always
i.e. means no special property. In our context it will be fair to say:
This term is void of sense - more precisely: does not tell us anything

• ...and one may try using similar, a slightly modified wording: What
carries certain interest is, possibly, theory’s good predictive power!
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What does it mean: Prediction is Good (or Satisfactory)?

• Being good for someone may not be satisfactory for someone else

• ... and it becomes clear that discussions of this type unavoidably
involve the elements of arbitrariness and of a subjective judgement

• Therefore directly related with the notion of “good predictions”
are, sine qua non, criteria of distinction between “good” and “poor”

• It is not possible to talk about Predictive Power [whatever it
means∗)] without specifying criteria of choice at the same time:

The notion of Predictive Power is relative and/or subjective#)

∗)This notion is still to be defined for you here ...
#)So is the very notion of probability (12 ‘official’ definitions and 16 interpretations)
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There will be no way to present
the full richness of the problem today

Therefore: Let us illustrate one of the
bottom-lines first

... and continue with presenting as much as Time
(and the Chairman)

permit

Jerzy DUDEK, University of Strasbourg, France Nuclear Hamiltonians and Spectroscopic Predictive Power



There will be no way to present
the full richness of the problem today

Therefore: Let us illustrate one of the
bottom-lines first

... and continue with presenting as much as Time
(and the Chairman)

permit

Jerzy DUDEK, University of Strasbourg, France Nuclear Hamiltonians and Spectroscopic Predictive Power



There will be no way to present
the full richness of the problem today

Therefore: Let us illustrate one of the
bottom-lines first

... and continue with presenting as much as Time

(and the Chairman)
permit

Jerzy DUDEK, University of Strasbourg, France Nuclear Hamiltonians and Spectroscopic Predictive Power



There will be no way to present
the full richness of the problem today

Therefore: Let us illustrate one of the
bottom-lines first

... and continue with presenting as much as Time
(and the Chairman)

permit

Jerzy DUDEK, University of Strasbourg, France Nuclear Hamiltonians and Spectroscopic Predictive Power



Inverse Problem and Predictive Power: 132Sn

Neutron levels around N=82

Level States in 133Sn

eexc
1 shift 1(a) shift 2(b) ε B. E.

νf7/2 0.0000 0.2 0.6(4) 0.6(4) -1.9(4)
νp3/2 (0.8537) - - - -
νh9/2 1.5609 0.1 0.6(5) 2.2(5) -0.3(5)
νp1/2 (1.6557) - - - -

Level States in 131Sn

eexc
1 shift 1(a) shift 2(b) ε B. E.

νd3/2 0.0000 0.25 0.6(4) 0.6(4) -7.9(4)
νh11/2 0.0651 0.3 0.6(3) 0.7(3) -8.0(3)
νs1/2 0.3317 0.25 0.6(4) 0.9(4) -8.2(4)
νd5/2 1.6545 - 0.6(4) 2.3(4) -9.6(4)
νg7/2 2.4341 - 0.6(4) 3.0(4) -10.3(4)

(a)Shifts in energy from level fragmentation measured in neighbouring nuclei.
(b)The values obtained through analogy by extrapolating from the data on 208Pb.

The numbers in parentheses give errors in the last digit.
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Inverse Problem and Predictive Power: 132Sn
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Results of the extrapolation from the 208Pb to the 132Sn nucleus for the neutrons,

bars - cf. preceding table. Monte-Carlo simulation with N=20 000 Gaussian-distributed

parameter sets, based on 208Pb results; noise width σ=0.1MeV. With each of the so

obtained N=20 000 sets of parameters the results for the neutrons in 132Sn nucleus have

been obtained. Observe ‘pathologies’: 1g7/2 and 1f7/2 cf. following figures.
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Single-Particle Levels - Noise-Simulation Example

• Consider a single particle spectrum {eo
ν } ↔ Hϕo

ν = eo
ν ϕ

o
ν obtained

with the ‘optimal’ set of parameters {p}o as in the preceding Table;

• Define the ”pseudo-experimental” levels {eexp
ν } ≡ {eo

ν }. Applying
the minimisation procedure will now reproduce those {eo

ν } exactly;

• Chose one level, say eo
κ ∈ {eo

ν }, and arbitrarily modify its position:

eo
κ → eκ ≡ (eo

κ − e) with, say e ∈ [−2,+2] MeV;

then refit the χ2-test → all other levels will move to new positions

• Collect these new positions: they are functions eν = eν(eκ), below
referred to as ‘error response functions’ → see illustrations
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• Collect these new positions: they are functions eν = eν(eκ), below
referred to as ‘error response functions’ → see illustrations
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Example: Error Response Functions to 2g9/2-Orbital

-2.0 -1.0 0.0 1.0 2.0
Relative Change of Experimental Energy [MeV]

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

C
ha

ng
e

in
F

it
te

d
E

ne
rg

y
[M

eV
]

2g9/2

3p3/2

2f7/2

3p1/2

1i13/2

1h9/2

1g7/2

2f5/2

2g7/2

1g9/2

1g9/2

1h9/2

2f5/2

1g7/2

1i13/2

2g7/2

3p1/2

2f7/2

3p3/2

208
82Pb

To determine precisely the parameters through fitting the energies of 3p3/2, 2f7/2

etc. the right position of 2g9/2 must be analyzed particularly carefully (associated

spectroscopic factors precise, particle vibration subtracted, pairing effect subtracted)

Jerzy DUDEK, University of Strasbourg, France Nuclear Hamiltonians and Spectroscopic Predictive Power



Example: Alternative Representation for 2g9/2-Orbital
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Attention: The figure may look similar but it contains a totally opposite information:

All the curves represent the 2g9/2-level - this is how the fitting will modify 2g9/2 if we

vary the indicated levels
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Conclusions from the Error Response-Function Tests

• Observe rather precise indications as to ‘which levels influence
which’ what allows to discuss the experimental strategies precisely

• The low-` orbitals (such as 3p1/2, 3p3/2) have relatively small
impact on the error-response functions ...

• ... while some pairs of orbitals couple very strongly

• The highest-` orbitals do not couple in the strongest way

• ... all that in a particular case presented; analysis of this type may
require a case-by-case mode of operating...
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Part II

Inverse Problem of Applied Mathematics
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Applied Mathematics:

About Inference & Inverse
Problems
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Applied Mathematics: Inference & Inverse Problems

• Starting from a limited experimental data set {eexp
µ } we wish

to obtain the information about all of the single particle levels

• In Applied Mathematics this is called the ‘Inference Problem’

• The goal of underlying mathematical theories is to provide
statistically sound, meaningful (i.e. stable) predictions: Thus

THE PREDICTIVE POWER

• Statistically sound ⇔ Instead of saying: eg9/2
= −8.8 MeV

we better provide also the probability function P = P(eg9/2
)
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Simple Mathematics of the Nonlinear Inverse Problem

• Consider an example of a spherical mean-field Hamiltonian:

Hmf = Hmf (̂r, p̂, ŝ; {p}); {p} → parameters

• In looking for ‘an as adequate approach as possible in a search for
coupling constants’ we need some guidelines. Our choice:

The mean-field Hamiltonian should first of all describe optimally
the mean field degrees of freedom

{ϕν , eν} in Hmfϕν(r, {p}) = e ν(p)ϕ ν(r, {p})

• In an Appendix we explain at length why not the nuclear masses...
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Introduction: χ2-Problem and Its Linearisation

• Parameter adjustement usually corresponds to a minimisation of:

χ2(p) = 1
m−n

∑m
j=1 Wj [eexp

j − eth
j (p)]2 → ∂χ2

∂pk
= 0, k = 1 . . . n

where: m - number of data points; n - number of model parameters

• Introduce linearisation procedure [after simplification eth
j (p)→ fj ]

fj (p) ≈ fj (p0) +
n∑

i=1

(
∂fj

∂pi

)∣∣∣
p=p0

(pi − p0,i )

Jjk ≡
√

Wj

( ∂fj

∂pk

)∣∣∣
p=p0

and bj =
√

Wj [eexp
j − fj (p0)]

χ2(p) = 1
m−n

∑m
j=1

[∑n
i=1 Jji · (pi − p0,i)− bj

] 2
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χ2-Problem Using Applied-Mathematics’ Jargon

•One may easily show that within the linearized representation

∂χ2

∂pi
= 0 → (JTJ) · (p− p0) = JT b

• In Applied Mathematics we usually change wording and notation:

{p} ↔ x↔ ‘causes’ and {e} ↔ b↔ ‘effects’↔ A · x = b

From the measured effects represented by ‘b’ we extract information
about the causes ‘x’ by inverting the matrix: A→ x = A−1 · b

• Some mathematical details: J ≡ A ∈ Rm×n; x ∈ Rn, and b ∈ Rm
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A Powerful Tool: Singular-Value Decomposition

• The problems with instabilities (i.e. ill-conditioning) can be easily
illustrated using the so-called Singular-Value Decomposition of A:

A = U · D · VT with U ∈ Rm×m, V ∈ Rn×n, D ∈ Rm×n

where diagonal matrix has a form D = diag{d1, d2, . . . dmin(m,n)︸ ︷︷ ︸
decreasing order

}

• Formally (but also in practice), the solution ‘x’ is expressed as

x = ATb; AT = V · DT · UT

where
DT = diag

{
1
d1
, 1

d2
, . . . 1

dp
; 0, 0, . . . 0

}
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Ill-Conditioned Problems: Qualitative Illustration

• An academic 2×2 problem: A has eigenvalues: d1 and d2 ∼ 1
10 d1

• Introduce errorless data (b∗) and uncertain (noisy) data: b1 & b2

1

2 2

1

errorless
data b*

data points
with  noise

b − space x − space

x  = A b
* *

x  = A b

x  = A b1 1

2 2
b

b
1

2 x = A  b

A x = b

−1

Left: Red circle represents points equally distant from ‘noisless’ data b∗.
Right: Purple oval represents the image of the circle through Ax=b. One
may show that instability is directly dependent on the condition number

cond(A) ≡ d1

dr

- the bigger the condition number the more ‘ill-conditioned’ the problem
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Fitting, Implied Errors and Confidence Intervals

• Let us come back to the underlying χ2 minimum condition:

∂χ2

∂pj
→ (JTJ)(p− p0) = JTb

• Using the Singular-Value Decomposition written down explicitly

Jik =
∑r
`=1 Ui` d` VT

`k one shows that (JTJ)−1 = V 1
d 2 VT

• Independently one derives the expression for the correlation matrix

〈(pi − 〈pi〉) · (pj − 〈pj〉)〉 = χ2(p) t2
α/2,m−n (JTJ)−1

ij

• If one or more dk → 0 then (JTJ)−1 tends to infinity and
generally, the confidence intervals of all parameters diverge
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Part III

Totally Undesired Parameteric Correlations
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Undesired Parametric
Correlations:

Illustrative Examples
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Begin with a Well Known: Vo vs. ro Are Correlated
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A map of χ2 from the fit based on six levels close to the Fermi level.
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Parametric Correlations and Their Consequences
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constant parameter: A0SORB=0.52
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We plot the χ2 in function of the S-O strength (horizontal) and the S-O

radius (vertical) axis. We start with six very lowest levels. Note: no way

to fix reliably the spin-orbit strength in the interval from 15 to 40 units

Jerzy DUDEK, University of Strasbourg, France Nuclear Hamiltonians and Spectroscopic Predictive Power



We will gradually increase the energy of the six-level
window to approach the nucleon binding region and
thus simulate the present-day experimental situation

Jerzy DUDEK, University of Strasbourg, France Nuclear Hamiltonians and Spectroscopic Predictive Power



Limited Experimental Input: How Little is Sufficient?
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Experimental Neutron Energy Levels: 1p3/2 1d3/2 2s1/2 1f5/2 2p1/2 1g9/2 Window Size: Emin=-37.676 MeV Emax=-22.09 MeV

constant parameter: A0SORB=0.52
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Increasing the energy of the six levels helps localising the spin-orbit strength

only very slowly!
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Experimental Neutron Energy Levels: 1d3/2 2s1/2 1f5/2 2p1/2 1g9/2 2d5/2 Window Size: Emin=-31.742 MeV Emax=-17.732 MeV

constant parameter: A0SORB=0.52
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Increasing the energy of the six levels helps localising the spin-orbit strength

only very slowly...
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Experimental Neutron Energy Levels: 2s1/2 1f5/2 2p1/2 1g9/2 2d5/2 1h11/2 Window Size: Emin=-30.7 MeV Emax=-15.916 MeV

constant parameter: A0SORB=0.52
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Increasing the energy of the six levels helps localising the spin-orbit strength

only very slowly...
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Experimental Neutron Energy Levels: 2p1/2 1g9/2 2d5/2 1h11/2 3s1/2 1i13/2 Window Size: Emin=-23.424 MeV Emax=-9.303 MeV

constant parameter: A0SORB=0.52
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Increasing the energy of the six levels helps localising the spin-orbit strength

only very slowly...
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Experimental Neutron Energy Levels: 1g9/2 2d5/2 1h11/2 3s1/2 1i13/2 2f5/2 Window Size: Emin=-22.09 MeV Emax=-8.461 MeV

constant parameter: A0SORB=0.52

E
xp

er
im

en
ta

ll
ev

el
s:

U
ni

ve
rs

al
W

S
pa

ra
m

et
er

s
(c

en
tr

al
+

sp
in

-o
rb

it
in

te
ra

ct
io

n)
V

0C
E

N
T

=-
55

.9
5

R
0C

E
N

T
=1

.2
1

A
0C

E
N

T
=0

.6
9

V
0S

O
R

B
=2

3.
00

R
0S

O
R

B
=1

.1
4

A
0S

O
R

B
=0

.5
2

χ[MeV]

0.3

0.7

1.1

1.5

1.5

1.5

1.9

1.
9

1.9

2.
3

Behaviour of the χ Function

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

208
82Pb

Increasing the energy of the six levels helps localising the spin-orbit strength

only very slowly...
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Experimental Neutron Energy Levels: 2d5/2 1h11/2 3s1/2 1i13/2 2f5/2 3p1/2 Window Size: Emin=-17.732 MeV Emax=-7.839 MeV

constant parameter: A0SORB=0.52
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Increasing the energy of the six levels helps localising the spin-orbit strength

only very slowly... whereas gradually another solution ...
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Experimental Neutron Energy Levels: 1h11/2 3s1/2 1i13/2 2f5/2 3p1/2 2g9/2 Window Size: Emin=-15.916 MeV Emax=-3.785 MeV

constant parameter: A0SORB=0.52
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Increasing the energy of the six levels helps localising the spin-orbit strength

only very slowly... Attention: Second solution is coming !
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Experimental Neutron Energy Levels: 3s1/2 1i13/2 2f5/2 3p1/2 2g9/2 4s1/2 Window Size: Emin=-15.875 MeV Emax=-1.402 MeV

constant parameter: A0SORB=0.52
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... and here we discover the existence of two solutions - we call them

compact and non-compact.

Jerzy DUDEK, University of Strasbourg, France Nuclear Hamiltonians and Spectroscopic Predictive Power



What Can We Conclude from This Set of Tests?

• First of all, the fitted spin-orbit strength may vary widely
from one doubly-magic nucleus to another - there exists a
considerable softness in χ2 dependence on λso

• Secondly - there are correlations between the parameters:
two relatively distant sets of parameters may be, what we call
spectroscopically equivalent (‘iso-spectroscopic’)

• Clearly: The ‘spectroscopic predictive power’ is in danger !!!
- especially since the results depends on the sampling thus on
experimentalist’s → with all the implied subjectivity

• We discover a possibility of double-valued solutions giving
rise to compact and non-compact spin-orbit parametrisations

• We confirm the presence of iso-spectral lines also in the
space of the spin-orbit potential parameters
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A Kind of Summary and a Historical Analogy

If the confidence intervals diverge we loose unique answers,
but on the other hand we are confident of our errors

A similar problem has been encountered,
according to Umberto Eco, about 1327 (”Il nome della rosa”)

”So you don’t have unique answers to your questions?”

”Adson, if I had, I would teach theology in Paris”

”Do they always have a right answer in Paris”

”Never”, said William,
”but there they are quite confident of their errors”.

Jerzy DUDEK, University of Strasbourg, France Nuclear Hamiltonians and Spectroscopic Predictive Power
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Part IV

Predicitive Power in Terms of Soluble Models
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Predictive Power in Terms of Soluble Models

• A central issue about predictive power of any given theory
is the determination of its Hamiltonian (read: its parameters)

• This implies: Solving the Inverse Problem (not χ-by-the eye)

• The problems (seemingly not known in sub-atomic physics):

Hamiltonians contain inter-dependent parameters

This implies that the Inverse Problem is ill-posed

This implies that the theory has no predictive power

• The problem is serious as illustrated below using an exactly
soluble modelling but the presence on the market of over 130
non-equivalent parametrizations of the Skyrme-HF Hamilto-
nian is a strong signal! - And one has to stop the non-sense!!
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Predictive Power in Terms of Soluble Models

• A mathematical model with a Hamiltonian will be replaced
by an equivalent one [same mechanisms]: Fitting a function

• The issue: Find parameters a, b, c and d in the formula

exp(x) = a · x + b + c · sinh(x) + d · cosh(x)

• Introduce ‘experiment’ by selecting the points x1, x2, . . . xn:

Experiment: y1 = exp(x1), . . . yn = exp(xn)

• One may think: Naive people! The exact solution is known:

a = 0, b = 0, c = 1, d = 1

•What useful could we learn from such a ‘naive’ formulation?

Jerzy DUDEK, University of Strasbourg, France Nuclear Hamiltonians and Spectroscopic Predictive Power
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Predictive Power in Terms of Soluble Models

• First of all we will need to model the experimental conditions

• Therefore we introduce Gaussian experim. error distributions

yi → ȳi + δyi; δyi ∼ 1
2πσ2 exp[−(yi − ȳi)2/2σ2]

• We generate a big number N (say N ∼ 40 000) of n-tuplets

{y1 . . . yn}1; {y1 . . . yn}2; . . . {y1 . . . yn}N;

• We launch the minimisation→ N quadruplets of {a, b, c, d}

• We construct histograms of occurrence of each parameter;
After normalisation→ probability distributions of a, b, c & d
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Predictive Power in Terms of Soluble Models
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Predictive Power in Terms of Soluble Models
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Predictive Power in Terms of Soluble Models
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Predictive Power in Terms of Soluble Models
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Predictive Power in Terms of Soluble Models
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Predictive Power in Terms of Soluble Models

• Extraneous Predictive Power ↔ Extrapolations by theory:

exp(5) = ?
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What Are the First Conclusions ?

• We are learning that a theory can give not only the result
but also its probability distribution - but in this particular case:

- The ‘theory’ is great! (down to an absurd!) a failure!!!

- It will obviously have nearly no predictive power [why?]

• Observe that uncertainty distributions are extremely broad!

• More precisely: With the parameter values of the order of
100 the distribution widths are of the order of 103 (3 orders)

What is the fundamental origin of the ‘theory′ failure?

Jerzy DUDEK, University of Strasbourg, France Nuclear Hamiltonians and Spectroscopic Predictive Power
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The Inverse Problem Related to the Theory

• Our ‘theory’ is dangerously near the parametric correlations

a = 0, b = 0, c = 1, d = 1 → a = f(b) and c = g(d)

• Let us come back to the underlying χ2 minimum condition:

∂χ2

∂pj
→ (JTJ)(p− p0) = JTb

• Using Singular-Value Decomposition written down explicitly

Jik =
∑r
`=1 Ui` d` VT

`k implies that (JTJ)−1 = V 1
d2 VT

• When there are correlations [pi = f(pj)] at least one d→ 0

(p− p0) =
[
(J JT)−1 JT

]︸ ︷︷ ︸
d→0 singularity

b; p-parameters; b-data
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Observations and Partial Conclusions

• Since d→ 0: ⇒ the correlations between d and p disappear

• Consequently - big variations of p may cause no effect on d

• Big modifications of parameters get mutually compensated

• As the result we obtain very broad parametric distributions

In other words : ‘Nothing Depends on Nothing′

At the end : Predictive Power Disappears

Jerzy DUDEK, University of Strasbourg, France Nuclear Hamiltonians and Spectroscopic Predictive Power
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Truncated Singular Value Decomposition (TSVD)

• Let us come back to the underlying χ2 minimum condition:

∂χ2

∂pj
→ (JTJ)(p− p0) = JTb

• Using Singular-Value Decomposition written down explicitly

Jik =
∑r
`=1 Ui` d` VT

`k implies that (JTJ)−1 = V 1
d2 VT

• But when singular values d→ 0 ⇒ they do not contribute
on the left-hand side, and the effective size of J gets smaller!

• Paradoxically, the divergence through the zero (singular!)
values is a false conclusion since from the beginning they do
not contribute! Ignoring them is called ‘truncation’ (TSVD).

• The real problem: How about small but 6= 0 singular values?
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• The real problem: How about small but 6= 0 singular values?
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Hidden Charms of the TSVD Method

• The central point of considerations: Singular Values di → 1
di

(JTJ)−1 = V
[
D−1

]2
VT; D−1 ≡ diag.

{
1
d1
, 1

d2
, . . . 1

dN

}
•We order the singular values (decreasing sequence): dN ≈ 0

• If dN = 0 strictly, it does not contribute to the sum in Jik

Jik =
r∑
`=1

Ui` d` VT
`k no term with dN = 0

• There is no divergence in the solution for the parameters

(p− p0) =
[
(J JT)−1 JT

]︸ ︷︷ ︸
NO singularity

b; Problem is well posed
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Hidden Charms... But What if d 6= 0, Yet Small?

• This is the heart of the problem: d1 > d2 >→ . . . dN → 0

(JTJ)−1 = V
[
D−1

]2
VT; D−1 ≡ diag.

{
1
d1
, 1

d2
, . . . 1

dN

}

• If we remove small but non-zero values, we introduce errors!

• But if we do not remove - we have ‘an almost’ divergence!

• We arrive at conflicting factors and thus a problem to solve

• Before we start looking for a compromise→ an illustration
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Effect of Truncating Non-Zero Singular Values

• TSVD: ⇒ efficiently counteracts the problem of instability

amplitudeHisto

Entries  20001

Mean    89.15

RMS      10.7

Underflow       0

Overflow        0

Integral   2e+04
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Blue: no TSVD truncation, Green = cut off = 0.01, Red = cut off 0.1
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Sampling: Increasing the Number of Experimental Points

• Divergence depend on the ’Hamiltonian’ and on data points

60 80 100 120 140 160 180 200 220 240
0

100

200

300

400

500

600

Exp(5)=148.4
5 points

20 points

10 points

Etude de l'influence du nombre de points

Increasing the no. of data points increases the constraint on the model
and as a consequence - stabilises the final solution
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are intended
for Mature Audiences
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About Contemporary Skyrme-Type Functionals

• In their comprehensive study Carlsson, Dobaczewski and
Kortelainen introduce nuclear density functionals up to the
sixth order (the standard Skyrme is of the second order)

• Their total energy density reads

H(~r) =
∑

m′I′,n′L′v′J′
mI,nLvJ,Q

Cm′I′,n′L′v′J′

mI,nLvJ,Q Tm′I′,n′L′v′J′

mI,nLvJ,Q (~r),

where Cm′I′,n′L′v′J′

mI,nLvJ,Q are coupling constants

• It is instructive to think about the extentions of the EDF
based approaches in terms of increasing number of coupling
constants and the preceding illustrations...
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About Contemporary Skyrme-Type Functionals

Numbers of terms of different orders in the EDF up to N3LO. Num-
bers of terms depending on the time-even and time-odd densities are
given separately. The last two columns give numbers of terms when
the Galilean or gauge invariance is assumed, respectively. To take
into account both isospin channels, the numbers of terms should be
multiplied by a factor of two.

Order T-even T-odd Total Galilean Gauge

0 1 1 2 2 2
2 8 10 18 12 12
4 53 61 114 45 29
6 250 274 524 129 54

N3LO 2x312 2x346 2x658 2x188 2x97
624 692 1316 376 194

For comments about Skyrme HF gauge invariance cf. e.g.
J. Dobaczewski and J. Dudek, PRC 52 (1995) 1827
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A Realistic Toy Model - Noise-Simulation Example

• Let us calculate {eµ}-levels for a given W-S parameter set, here:

Woods-Saxon parameters for the neutrons in 208Pb reproduce the experimental

levels with the r.m.s. deviation of 0.164 MeV and maximum error of 0.353 MeV.

V c
o r c

o ac
o λ r so

o aso

-39.520 1.371 0.694 26.133 1.255 0.500

• We can treat {eµ} ‘as experimental’; by trying to reproduce them
through fitting we know an exact solution!

• Extra advantage: we may introduce the notion of ‘noise’, usually
a random variable distributed according to a certain probability fct.

• We will obtain the response of all the levels to a ‘linear noise’ -
vary a level position within a window and refit the H-parameters {p}
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‘Chi-by-the-eye’ Results May Look Attractive...

• We fit the single-particle experimental levels in 16O using Woods-
Saxon potential (six parameters for protons and neutrons each)
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• This result may look surprising: the quality of the fit is such that
graphical illustrations are insufficient to show it !!!

• On the other hand: If we trust the model - we may hope that also
the remaining levels are close to the experimental results to come
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Unprecedented Precision of the Fits: 10−1 keV!

→ The standard Woods-Saxon Hamiltonian has been used:

No. Ecalc Eexp Level Err.(th-exp)

1. -15.300 -15.300 1p3/2 -0.0001

2. -9.000 -9.000 1p1/2 -0.0001

3. -0.600 -0.600 1d5/2 0.0000

4. -0.100 -0.100 2s1/2 0.0000

5. 4.400 4.400 1d3/2 0.0001

→ Couple of questions may come to one’s mind...:

Is this property limited to one single nucleus? Not at all!

Can a simple phenomenology achieve the precision of hundreds

of electronvolts in nearly all doubly-magic nuclei? Is it trivial?

What is the mathematical/physical significance of the result?

Jerzy DUDEK, University of Strasbourg, France Nuclear Hamiltonians and Spectroscopic Predictive Power
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→ Couple of questions may come to one’s mind...:

Is this property limited to one single nucleus? Not at all!

Can a simple phenomenology achieve the precision of hundreds

of electronvolts in nearly all doubly-magic nuclei? Is it trivial?

What is the mathematical/physical significance of the result?
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Unprecedented Precision ... Known as ‘Overfitting’
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•We introduce the Gaussian noise into the experimental-level input,
repeat the χ2-fit - and plot the histograms in function of χ2.

• Under the mathematical conditions discussed there are N = ∞6

exact fits possible. Is it totally trivial?
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‘Overfitting’ - What Does It Imply?

• Even if there are too few data points and too many parameters -
one generally cannot obtain χ2 = 0 solutions always: 2 conclusions

a. The physics modeling is not totally wrong, but also
b. The number of data points is too weak to constrain the model.

• We have two ways out of the overfitting problem:

A. We modify the model decreasing the number of parameters, or:
B. We increase the number of data points (if we can...)

• We have already used out all the experimental data: as theorists
we can only modify the model...

• We improve the model by reducing the number of parameters
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Part V

Nuclear Hamiltonians: Sampling vs. Microscopic
Structure
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Decrease Parametric Freedom: ‘Be More Microscopic’

• We suggest to replace a too neat W-S spin-orbit parametrisation
by using the density gradient

Vso
ws ∼

1

r

d

dr


λ

1 + exp[(r − Ro)/ao]

ff
↔ Vso

ws ∼
λ′

r

dρ

dr

• The nucleonic density can be seen as describing the interaction
source: in systems with short range interactions, on the average,
the higher the density (gradient) - the more chance to S-O interact.

• Similarly, in the relativistic approach

Vso
rel ∼

1

r

d

dr
[S(r)− V(r)]

with S and V expressed by the densities of (source) mesons.

Jerzy DUDEK, University of Strasbourg, France Nuclear Hamiltonians and Spectroscopic Predictive Power



Decrease Parametric Freedom: ‘Be More Microscopic’

• We suggest to replace a too neat W-S spin-orbit parametrisation
by using the density gradient

Vso
ws ∼

1

r

d

dr


λ

1 + exp[(r − Ro)/ao]

ff
↔ Vso

ws ∼
λ′

r

dρ

dr

• The nucleonic density can be seen as describing the interaction
source: in systems with short range interactions, on the average,
the higher the density (gradient) - the more chance to S-O interact.

• Similarly, in the relativistic approach

Vso
rel ∼

1

r

d

dr
[S(r)− V(r)]

with S and V expressed by the densities of (source) mesons.

Jerzy DUDEK, University of Strasbourg, France Nuclear Hamiltonians and Spectroscopic Predictive Power



Decrease Parametric Freedom: ‘Be More Microscopic’

• We suggest to replace a too neat W-S spin-orbit parametrisation
by using the density gradient

Vso
ws ∼

1

r

d

dr


λ

1 + exp[(r − Ro)/ao]

ff
↔ Vso

ws ∼
λ′

r

dρ

dr

• The nucleonic density can be seen as describing the interaction
source: in systems with short range interactions, on the average,
the higher the density (gradient) - the more chance to S-O interact.

• Similarly, in the relativistic approach

Vso
rel ∼

1

r

d

dr
[S(r)− V(r)]

with S and V expressed by the densities of (source) mesons.

Jerzy DUDEK, University of Strasbourg, France Nuclear Hamiltonians and Spectroscopic Predictive Power



A New Toy-Model, Half-Microscopic Hamiltonian

• Consider a given nucleus with the density ρ and a series of neigh-
bouring nuclei with extra occupied orbitals j1 ↔ ρj1 , j2 ↔ ρj2 , etc.
We expect that the density-dependent spin-orbit potentials

Vso ∼
dρ

dr
,

dρj1

dr
,

dρj2

dr
. . .

account much better for these extra orbitals than just a flat WS
potential introduced long ago for numerical simplicity

• Therefore we will test the following Hartree-Fock like hypothesis

V so
π = λππ

r
dρπ
dr + λπν

r
dρν
dr and V so

ν = λνπ
r

dρπ
dr + λνν

r
dρν
dr

with the central WS potentials

V c
π = Vπ

o
1+exp[(r−Rπo )/aπo ] and V c

π = V ν
o

1+exp[(r−Rνo )/aνo ]
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A New Toy-Model, Half-Microscopic Hamiltonian

• We will try to test two strategies: First of all, the central Woods-
Saxon potentials seem to be very robust when ‘moving’ from one
corner of the Periodic Table to another - as independent tests show

• On the other hand we will modify the HF idea of self-consistency
from the usual variational context to the spectroscopic context:

H(ρ)ψn = en ψn → ρ =
∑

ψ∗ψ → H(ρ)ψn = en ψn . . .

We will iterate to obtain the self-consistency that in this context we
call ‘auto-reproduction’ - it is not a result of energy minimisation!

• In other words: If at ith iteration the spectrum is {ei
n} and

at i + 1st → {ei+1
n }, we stop iterating when

|ei+1
n − ei

n| < ε, ∀ n
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Self-consistent Formulation: Minimum Coupling

• For the first tests we apply what we call a minimum coupling
hypothesis

λππ = λπν = λνπ = λνν
df
= λ

• We adjust parameters of the central potential together with |λ|

• In other words: We will reduce the number of spin-orbit
parameters from 6 (3 per particle kind: λ, rso

o and aso) to one!
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Comparing with Experimental Results: Example 16O

Single particle proton and neutron states in 16O
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Z= 8  N=  8  protons  S2= 7.38  Rrms=2.54
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theor exper

Z= 8  N=  8  neutrons  S2= 5.95  Rrms=2.57

These results corresponds to just one λ-parameter fit instead of 6.

Recall: spin-orbit strength parameter λ = λνν = λνπ = λπν = λππ.
The maximum error ∼ 200 keV
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Comparing with Experimental Results: Example 40Ca

Similarly the single particle proton and neutron states in 40Ca
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Z=20  N= 20  protons  S2= 0.91  Rrms=3.31
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Z=20  N= 20  neutrons  S2= 1.18  Rrms=3.22
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Removing the Overfit: Increase Physical Significance

1. One can fully appreciate the physics success realising that:

We have replaced six adjustable parameters by a single one

Flat-bottom W-S functions are replaced by nucleon densities
that carry more physical information through various j-orbitals

2. This result implies that:

The new, simple and in a way natural notion of self-consistency
works in a powerful manner

Most importantly, Fits show that the density fluctuations are
needed for the gradients in the realistic spin-orbit terms!
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Conclusions:

• We presented a few guide-lines followed in our project that
aims at quantifying the Question of Predictive Power of Nu-
clear Hamiltonians

• The audience is warned not to be mislead by the simplicity
of the illustrations based on the toy model (here: spherical
Woods-Saxon) vs. generality and importance of the Inverse-
Problem Theory which applies to all realistic Hamiltonians

• Needless to say - we aim at the microscopic level (theories),
in particular HF - but today we have presented some simple
semi-quantitative illustrations
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