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Idea of intrinsic frame

It is expected that the intrinsic frame:

• excludes contributions from global translational motion;

• introduces rotational degrees of fredom explicitely;

• shows intrinsic symmetries of nuclei;

• separates different kinds of intrinsic motions (sometimes), see,
e.g. Bohr Hamiltonian in quadrupole a0, a2 variables.
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Surface collective variables
The equation of nuclear surface in the laboratory frame is:

R(θ, φ) = R0

(
1 +

∑
λµ

(αlab
λµ) ?Yλµ(θ, φ)

)

αlab
λµ are spherical tensors in respect to SO(3).

The equation of nuclear surface has the same form after the
transformation to the intrinsic frame:

αlab
λµ → αλµ =

∑
µ′

Dλ
µ′µ(Ω) αlab

λµ′

(θ, φ)→ (θw , φw ), where new angles are measured in respect

to the intrinsic frame

αλµ are spherical tensors in respect to SO(3).
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Intrinsic groups G

Jin-Quan Chen, Jialun Ping & Fan Wang: Group Representation
Theory for Physicists, World Scientific, 2002.

Def. For each element g of the group G, one can define a
corresponding operator g in the group linear space LG as:

gS = Sg , for all S ∈ LG .

The group formed by the collection of the operators g is called the
intrinsic group of G.

IMPORTANT PROPERTY:

[G ,G] = 0
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Intrinsic group G

Action of the rotation intrinsic group ḡ ∈ SO(3).

Transformations of coordinates:

(αlab
λµ)′ = ḡαlab

λµ = αlab
λµ

(αλµ)′ = ḡαλµ =
∑
µ′

Dλ
µ′µ(g−1)αλµ′

Ω′ = ḡΩ = Ωg .

Action in the space of functions of intrinsic variables:

ḡψ(αλµ,Ω) = ψ(ḡαλµ, ḡ
−1Ω)
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Intrinsic vs laboratory frames

One may introduce the intrinsic frame which is tightly associated
with a nucleus. This frame always follows the nucleus.
In order to describe the nuclear dynamics we need the Euler angles
which determine mutual orientation of the intrinsic vs laboratory
frame.

The transition from the intrinsic to laboratory frame{
αlab
λµ =

∑λ
ν=−λ Dλ∗

µν (Ω)αλν
fk(αλµ,Ω) = 0, k = 1, 2, 3

(e.g. in a pure quadrupole case, (λ = 2), the conditions
fk(αλµ,Ω) = 0 are given explicite as α22 = α2−2 ∈ R ,
α21 = α2−1 = 0 set the intrinsic frame allong the elipsoid principal
axes)

8 / 30



Uniqueness of quantum states
In practice, the transformation to intrinsic frame is not reversible
because of insufficient number of required conditions, an important
problem is to discover this ambiguity.
One needs to construct the group of transformations which fulfill the
condition h ∈ Gs :

(αλν ,Ω)
h−→ ((αλν)′,Ω′)

which leave invariant the corersponding laboratory coordinates:

αlab
λµ((αλν)′,Ω′) = αlab

λµ(αλν ,Ω)

If
Ψ(αλµ,Ω) = Ψ(αlab

λµ)

then
Ψ((αλµ)′,Ω′) = Ψ(αlab
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Uniqueness of quantum states

If
Ψ(αλµ,Ω) = Ψ(αlab

λµ)

then
Ψ((αλµ)′,Ω′) = Ψ(αlab

λµ)

CONTRADICTION; generally while working in the intrinsic frame,
for most of square integrable functions Ψ(αλµ,Ω) 6= Ψ((αλµ)′,Ω′).

The group Gs is the SYMMETRIZATION GROUP.

The symmetrization condition for states. For all h̄ ∈ Gs :

h̄Ψ(αλµ,Ω) = Ψ(αλµ,Ω)
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The symmetrization group

Let us consider the standard quadrupole case of the collective
variables α20, α22,Ω. This definition of intrinsic variables requires 3
conditions

α2±1 = 0 and α2−2 = α22 ∈ R.
These requirements give the following set of equations:

D2
0,±1(g−1) = 0

D2
−2±1(g−1) + D2

2±1(g−1) = 0

D2
02(g−1)− D2

0,−2(g−1) = 0

D2
−2,−2(g−1) + D2

2,−2(g−1) = D2
−22(g−1) + D2

22(g−1).
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The symmetrization group

The symmetrization group is:

g ∈ Oh

Because the quadrupole variables are invariant in respect to the
space inversion, the operation Ci belongs to the symmetrization
group.

The generators of the group Oh:

R1 ≡ R̄(0, π, 0) : (β, γ)→ (β, γ)

R2 ≡ R̄(0, 0, π/2) : (β, γ)→ (β,−γ)

R3 ≡ R̄(π/2, π/2, π/2) : (β, γ)→ (β, γ − π/3)
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E.g. Bohr Hamiltonian

ĤBohr = Ĥvib;2(β, γ) + Ĥrot(Ω) + Ĥvr (β, γ,Ω)

where

Ĥvib;2 =
1

2

{
1

β4

∂

∂β
β4 ∂

∂β
− 1

β2 sin(3γ)

∂

∂γ
sin(3γ)

∂

∂γ
+ β2

}
+V (β, γ)

Ĥrot =
1

2

∑
k=1,2,3

J2
k

Jk
.

Ĥvr =
1

8β4

∑
k=1,2,3

J2
k

sin2(γ − (2π/3)k)
− Ĥrot .
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E.g. Bohr Hamiltonian
The vibrational hamiltonian has an octahedral symmetry:

Sym(Ĥvib;2) = Oh.

The generators of the group Oh:

R1 ≡ R̄(0, π, 0) : (β, γ)→ (β, γ)

R2 ≡ R̄(0, 0, π/2) : (β, γ)→ (β,−γ)

R3 ≡ R̄(π/2, π/2, π/2) : (β, γ)→ (β, γ − π/3)

Ĥvib;2 = Ĥvib;2(∂/∂β, ∂/∂γ, β, cos(3γ)) is a function of
Oh-invariants.

The symmetrization group is here identical to the vibrational
Hamiltonian symmetry group.
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E.g. Bohr Hamiltonian
The rotational hamiltonian has a dihedral symmetry:

Sym(Ĥrot) = D2h.

The generators of the group D2h:

C̄2y : (β, γ)→ (β, γ), J2
k → J2

k

C̄2z : (β, γ)→ (β, γ), J2
k → J2

k

Ĥrot = Ĥrot(Jx , Jy , Jz) is a function of D2h-invariants.

The coupling term has also a dihedral symmetry:

Sym(Ĥvr ) = D2h.
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E.g. Bohr Hamiltonian
The symmetry group for eigensolutions of the Bohr hamiltonian
(weak vib.-rot. coupling):

ĤBohr = Ĥvib;2 + Ĥrot

↓ ↓ ↓
GH = Oh × D2h

↓ ↓
Γv Γr

In general, using the spectral theorem one can always decompose the
Hamiltonian into a series of the subhamiltonians of given symmetry

Ĥ =
∑
G

ĤG =
∑
G

EG |ΨG 〉〈ΨG |
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Basis of Oh group built of rotational functions

r J
MK (Ω) =

√
2J + 1DJ

MK (Ω)∗

r
(+)J
MK (Ω) =

1√
2(1 + δK0)

(r J
MK + r J

M−K ),K ≥ 0

r
(−)J
MK (Ω) =

1√
2

(r J
MK − r J

M−K ),K > 0

RJ M
A B (Ω), A- irrep. of Oh, B-irrep. of D2.

J = 0, RJ=0M=0
A1A1K=0(Ω) = r

(+)0
00 (Ω)

J = 1,


RJ=1M

T1A1K=0(Ω) = r
(+)1
M0 (Ω)

RJ=1M
T1B1K=1(Ω) = r

(−)1
M1 (Ω)

RJ=1M
T1B3K=1(Ω) = r

(+)1
M1 (Ω)
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The schematic model

The quadrupole+octupole model Hamiltonian:

Ĥ = Ĥvib + Ĥrot

No vib-rot coupling terms ⇒ the eigenfunctions:

ΨΓJMν(α,Ω) = φΓJ(α)RJMν(Ω)

The reduced (in respect to J3 = M) matrix elements:

〈ΨΓ′J′ν′||Q lab
λ ||ΨΓJν〉 =

∑
µ

〈φΓ′J′|Qλµ|φΓJ〉〈RJ′ν′ ||Dλ?
·µ ||RJν〉

The reduced B(Eλ) probability:

B(Eλ; (ΓJν)→ (Γ′J ′ν ′)) = |〈Γ′J ′ν ′||Q lab
λ ||ΓJν〉|2/(2J + 1)
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Another group of symmetrization
Another choice of intrinsic variables (α20, α21,Ω):
α2±2 = 0 and α21 = −α2−1 ∈ R , (αλ−µ = (−1)µα∗λµ).

It leads to the set of equations for allowed rotations and the
symmetrization group:

D2
±20(g)∗ = 0

D2
±2,1(g)∗ − D2

±2,−1(g)∗ = 0

D2
10(g)∗ + D2

−1,0(g)∗ = 0

D2
11(g)∗ − D2

1,−1(g)∗ = D2
−1−1(g)∗ − D2

−11(g)∗.

The symmetrization group is:

g ∈ D2h
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Gs for quadrupole-octupole model

The quadrupole+octupole model.

The intrinsic variables (α20, α21, {α3µ},Ω).

The intrinsic frame defined as: α22 = α2,−2 and α2,±1 = 0.

The symmetrization group is:

g ∈ O
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Symmetrization for a quadrupole-octupole model
Choice of collective variables:

α32 = α3−2, α30 = α3±3 = α3±1 = 0

α22 = α2,−2, α2,±1 = 0.

0 = D3
−3−2(g)∗ + D3

−32(g)∗ (1)

D3
2−2(g)∗ + D3

22(g)∗ = D3
−2−2(g)∗ + D3

−22(g)∗ (2)

0 = D3
−1−2(g)∗ + D3

−12(g)∗ (3)

0 = D3
0−2(g)∗ + D3

02(g)∗ (4)

0 = D3
1−2(g)∗ + D3

12(g)∗ (5)

0 = D3
3−2(g)∗ + D3

32(g)∗ (6)

The symmetrization group is: g ∈ D4
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The symmetrization problem

The physical state space:

K = {φ(α,Ω) : gφ = φ, for all g ∈ Gs}

The collective hamiltonians Ĥ are generally defined in wider space
Kcoll consisted of all functions, not only symmetrized.

One needs to restrict Ĥ to the physical subspace !
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The symmetrization problem
There are 3 possible procedures:

1. Projection

Project the hamiltonian Ĥ: Ĥ1 = PKĤPK. and solve it in K

IMPORTANT:Ĥ1 = PKĤPK has the symmetry of the
symmetrization group Gs , e.g. OCTAHEDRAL

2. Selection

Solve Ĥ in Kcoll and choose solutions belonging to K (*)

3. Symmetrization

Solve Ĥ in Kcoll and symmetrize the solutions.

Which procedure is physical ?
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The symmetrization problem

Projection operator onto the scalar representation of the
symmetrization group Gs in K :

PK =
1

card(Gs)

∑
g∈Gs

g ,

ad. 1. Projection

Ĥ1 ≡ PKĤPK
Ĥ1|Ψ1;ν〉 = E1;ν |Ψ1;ν〉

then PK|Ψ1;ν〉 = |Ψ1;ν〉 ∈ K.
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The symmetrization problem

Spectral form of H1

Ĥ1 =
∑
ν

E1;ν |Ψ1;ν〉〈Ψ1;ν |

Hamiltonian Ĥ1 has the intrinsic symmetry Gs or larger,
independently of the symmetry of the original Hamiltonian Ĥ.
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The symmetrization problem

ad. 2. Selection

First, solving the oryginal Ĥ in K:

Ĥ|Ψn〉 = En|Ψn〉

Next, choosing the solutions which fulfil the symmetrization
condition

PK|Ψn〉 = |Ψn〉 ≡ |Ψn〉K

Spectral form of the effective H2

Ĥ2 =
∑

n

En|Ψn〉KK〈Ψn|
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The symmetrization problem

Note to the second procedure:

Ĥ|Ψn〉K = En|Ψn〉K ⇒
Ĥ1|Ψn〉K = En|Ψn〉K.

The solutions for the second procedure are also solutions for the first
procedure.

The OPPOSITE property is, in general, not TRUE.

Conlusion

i.e. the projected hamiltonian Ĥ1 can provide more solutions |Ψ〉K
than Ĥ itself.
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The symmetrization problem

ad. 3. Symmetrization

First, solving the original Ĥ in K:

Ĥ|Ψn〉 = En|Ψn〉

Next, symmetrizing all solutions

|Ψn〉S ≡ PK|Ψn〉

Note that, in general when [Ĥ, P̂K] 6= 0:

S〈Ψn1|Ψn2〉S = 〈Ψn1|PKΨn2〉 6= 0

and cont.

28 / 30



The symmetrization problem

cont.

Ĥ3 =
∑

n

En|Ψn〉SS〈Ψn|

is NOT the spectral decomposition of the effective hamiltonian
[error in IJMP E20 (2011) 199].

A formal relation

Ĥ1 = PK

(∑
n

En|Ψn〉〈Ψn|

)
PK =

∑
n

En{PK|Ψn〉〈Ψn|PK} = Ĥ3.

does not prove equivalence of 1st and 3rd procedure.

3rd procedure is, in fact, INCORRECT.
29 / 30



CONCLUSIONS:

• concept of constructing collective Hamiltonians already in the
intrinsic frame as new way of proceeding,

• symmetrization process can be realized according to, at least,
two different schemes,

• symmetrization group depends on the set of collective variables
and way of setting the intrinsic frame,

• strength of the EM transitions strongly depends on the group
structure of the collective eigenstates
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