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Introduction

Time-dependent approach to the fast transition at scission:

{αi} → {αf}; i and f meaning just-before and immediately-after.
"New" scission model:
1) dynamical: it takes into account the duration of the
neck rupture and its integration in the fragments
2) microscopic: it calculates the time evolution of each
occupied neutron state
3) fully quantum mechanical: it uses the two-dimensional
time-dependent Schrödinger equation (TDSE2D) with
time-dependent potential (TDP).
Most previous models were statical, statistical and
semiclassical: Fong (1963), Wilkins et al. (1976), etc.
The picture behind the present model was first proposed
by Fuller (Wheeler) in 1962 and illustrated by a "volcano
erupting" in the middle of a Fermi sea.
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Plan

• Presentation of the model.
• Numerical solution of TDSE2D with TDP.
• Application to the scission process: focus on
single-particle excitations.
• Formalism: excitation energy of the nascent fission
fragments, multiplicity of the neutrons released at
scission, distribution of their emission points and finally
the partition of these quantities among the fission
fragments.
• Numerical results for 236U .
• Summary.
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Model

Mechanism for excitation and emission of neutrons
during the last stage of nuclear fission: coupling between
the neutron degree of freedom and the rapidly changing
potential of its interaction with the rest of the nucleus.
A realistic mean field is used: Woods-Saxon type with
spin-orbit term adapted to nuclear shapes described by
Cassini ovals.
The numerical method used to solve TDSE2D with TDP
is unconditionally stable (it doesn’t rely on the alternating
direction approximation) and avoids reflections on the
numerical boundary.
The duration of the neck rupture and its absorption T is
taken as parameter in the interval [0.25,9.00]×10−22 sec.
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Time-dependent Schrödinger equation

The equation that describes the motion of a nucleon in
an axially symmetric deformed nucleus has the form

i~
∂Ψ(ρ, z, φ, t)

∂t
= H(ρ, z, φ, t)Ψ(ρ, z, φ, t). (1)

In cylindrical cordinates, the wavefunction has two
components, corresponding to spin up and down:

Ψ(ρ, z, φ, t) = f1(ρ, z, t)eiΛ1φ| ↑〉 + f2(ρ, z, t)eiΛ2φ| ↓〉, (2)

where Λ1 = Ω − 1
2 , Λ2 = Ω + 1

2 and Ω is the projection of
the total angular momentum along the symmetry axis.
Due to the axial symmetry, φ disappears and we have:
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The Hamiltonian

HΨ =

[

O1 − CSc −CSa

−CSb O2 − CSd

][

f1

f2

]

, (3)

O1,2 = −
~

2

2µ
(∆ −

Λ2
1,2

ρ2
) + V (ρ, z, t), ∆ =

1

ρ

∂

∂ρ
+

∂2

∂ρ2
+

∂2

∂z2
.

∆ is the Laplacean, V is the potential, C is a const. and
the operators Sa, . . . , Sd represent the spin-orbit coupling.
The nucl.shape is described in terms of Cassini ovaloids.
This representation depends on a set of param.; in our
case we considered two: α (elongation) and α1 (mass
asymmetry). By the transform. g1,2 = ρ1/2f1,2 (Liouville),
the 1st deriv. from ∆ is removed, resulting a simplified
Hamiltonian Ĥ with w.f. Ψ̂ having the components g1, g2:
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The Transformed Hamiltonian

ĤΨ̂ =

[

L1 + Pc P−

P+ L2 + Pd

][

g1

g2

]

,

L1,2 = −
~

2

2µ

(

∂2

∂ρ2
+

∂2

∂z2
+

1/4 − Λ2
1,2

ρ2

)

+ V (ρ, z, t),

P± = ±Q1 + Q2, Q1 = C
(

∂V
∂ρ

∂
∂z − ∂V

∂z
∂
∂ρ

)

, Q2 = C Ω
ρ

∂V
∂z ,

Pc = −C Λ1

ρ
∂V
∂ρ , Pd = C Λ2

ρ
∂V
∂ρ .

TDSE is solved by a Crank-Nicolson scheme (Ĥ′ = ∂Ĥ
∂t ):

(

1 +
i∆t

2~
Ĥ +

i∆t2

4~
Ĥ′

)

Ψ̂(t+∆t) =

(

1 −
i∆t

2~
Ĥ −

i∆t2

4~
Ĥ′

)

Ψ̂(t).
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The definition of the potential

The nuclear potential is given by

VN (ρ, z) = −V0 [1 + exp(Θ/a)]−1 (4)

where V0 is the depth and a the diffuseness. The quantity
Θ is an approx. to the distance between a point and the
nuclear surface, described by Cassini ovals. The spin-
orbit interaction is taken proportional to the gradient of
VN :

Vso = −C[σ̄σσ × p̄pp]∇VN , C = λ

(

~

2µc

)2

(5)

where σ̄σσ and p̄pp are the nucleon spin and momentum.
The constant C involves the strength of the spin-orbit
interaction.
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The spatial discretization

For numerical solving, the infinite physical domain should
be limited to a finite one, [0, R] × [−Z,Z], which is discre-
tized by a grid with the mesh points: ρj = j∆ρ, 1 ≤ j ≤ J

(ρJ = R), zk = k∆z, −K ≤ k ≤ K (zK = Z). At each point
the partial derivatives in Ĥ are approximated by finite
difference formulas. For the derivatives w.r. to z we used
standard 3-point formula, while for the derivatives in ρ,
we deduced a special formula, which takes into account
the accomplished function transformation. It has the
(symmetric) form: h2g′′j ≈ ajgj+1 + bjgj + ajgj−1, where g

is any of the two functions. The coefficients aj , bj are
determined so that the formula is exact when g is
replaced by ρ1/2+Λ; ρ5/2+Λ (the leading terms of its series
expansion - the cylind. symm. is also taken into account).
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Adapted finite differences

It results:

aj =
4(Λ + 1)

j2(pj − qj)
, bj =

1

j2

[

Λ2 −
1

4
−

4(Λ + 1)qj

pj − qj

]

, (6)

pj = (1+
1

j
)Λ+ 5

2 +(1−
1

j
)Λ+ 5

2 , qj = (1+
1

j
)Λ+ 1

2 +(1−
1

j
)Λ+ 1

2 .

aj → 1, bj → −2 as j → ∞, i.e. the above formula → the
standard one. The variable coeff. are used only in the vi-
cinity of ρ = 0, where the particular behavior of g is domi-
nant. In the rest of the interval, the stand.form.is applied.
Note that Ĥ still contains first derivatives w.r. to ρ (in the
spin-orbit components). These deriv.are approximated as
well by adapted diff.formulas, deduced in a similar way.
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Numerical solution of TDSE

Let us denote g
(n)
jk the approx. of g in the point (ρj , zk)

and at time tn = n∆t (g is any of g1 and g2). As initial
solution (at t0 = 0) we take an eigenfunction of the
stationary Schrödinger equation whose potential
corresponds to the starting deformation. We use the
same discretization of the Hamiltonian and we arrive to
an algebraic eigenvalue problem, which is solved by the
package ARPACK, based on the Implicitly Restarted
Arnoldi Method. The solution at time tn+1, represented

by the values g
(n+1)
jk , is obtained in terms of the solution

at time tn, on the basis of the above CN scheme, which
turns into a linear system, after the discretization. It is
solved by the conjugate gradient iterative method.
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Transparent Boundary Conditions

Special cond. on the boundaries of the comput. domain
should be imposed to avoid the reflexions which alter the
propagated w.f. We implemented a variant of transparent
bound.cond. The idea is to assume near the boundary
rB the following form of the sol.:g = g0 exp(ikrr),g0, kr ∈ C

(a 1D notation was used). Linear relations between gB+1

and gB then result, which are used in the fin.diff.formulas
for the derivatives at rB, when the CN scheme is applied.
In 2D, this algorithm should be used at each point of the
grid belonging to boundaries. We advance the solution
during a temporal interval [0, T ]. T corresponds to the
final configuration. The deform.param. are changing on
this interval. At each time step the potential V (t) and its
derivative V ′(t) are recalculated. This deriv. is obtained
by a simple fin.diff.form., using two successive values.
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Application to the scission process

A fast transition at scission produces the excitation of all
neutrons that are present in the surface region. For few
of them, this excitation exceeds their binding and they
are released.
Let |Ψi〉, |Ψf 〉 be the eigenfunctions corresponding to the
just-before-scission and immediately-after-scission
configurations respectively. The propagated wave
functions |Ψi(t)〉 are wave packets that have also some
positive-energy components. The probability amplitude
that a neutron occupying the state |Ψi〉 before scission
populates a state |Ψf 〉 after scission is

aif = 〈Ψi(T )|Ψf 〉 = 2π

∫ ∫

(gi
1(T )gf

1 + gi
2(T )gf

2 )dρdz.
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Excitation energy of the fission fragments

The total occupation probability of a given final
eigenstate is:

V 2
f =

∑

bound

v2
i |aif |

2

where v2
i is the ground-state occupation probability of a

given initial eigenstate. Since V 2
f is different from v2

f (the
ground-state value), the fragments are left in an excited
state. The corresponding excitation energy at scission is:

E∗
sc = 2

∑

bound states

(V 2
f − v2

f )ef .

The factor of 2 is due to the spin degeneracy.
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Occupation probabilities at scission

Consistent with the independent particle model used, v2
i,f

are step functions: 1 for states below the Fermi level and
0 above. Possible correlations between neutrons will
smooth this function. To see the effect of this
modification on the calculated quantities, BCS
occupation probabilities are also used:

v2
i,f =

1

2

[

1 −
ei,f − λ

√

(ei,f − λ)2 + ∆2

]

,

with ∆ and λ deduced from the BCS equations. ei, ef are
the eigen energies of the states |Ψi〉 and |Ψf 〉
respectively.
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Neutrons emitted at scission

One can also calculate the multiplicity of the neutrons
released during scission:

νsc = 2
∑

bound

v2
i (
∑

unbound

|aif |
2).

A quantity that influences the amount of neutrons that
are reabsorbed, scattered or left unaffected by the
fragments and finally determines the angular distribution
of the scission neutrons with respect to the fission axis is
the spatial distribution of the emission points

Sem(ρ, z) =
∑

bound

v2
i |Ψ

i
em(ρ, z)|2,
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where
|Ψi

em〉 = |Ψi(T )〉 −
∑

bound states

aif |Ψ
f 〉

is the part of the wave packet that is emitted.
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Nuclear shapes at scission

The just-before and immediately-after scission
configurations are characterized by the parameters
αi = 0.985 and respectively, αf = 1.001 in the Cassini
description of the nuclear shapes.
The fission can be symmetric (each fragment has the
mass 118) or, more frequently, asymmetric. In the latter
case, one more deformation parameter, namely α1, is
used. Its value depends on AL (the light fragment mass)
and on α.
To have an idea of the shapes involved we next show the
equipotential lines corresponding to half of the depth of
the nuclear potential at initial and final deformations for
five mass asymmetries.
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Equipotential lines V0/2 (before and after scission)
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Partition among the fission fragments (1)

Finally it is interesting to separate the contributions of the
light (L) and of the heavy (H) fragment using the
probability of each emitted (or excited) neutron to be
present in the L (or H) fragment:

E∗
sc(L,H) =

∑

f

ef

(

V 2
f − v2

f

)

NL,H
f

νsc(L,H) =
∑

i

v2
i (
∑

f

|aif |
2)NL,H

i ,

where the partial norms NL,H
i,f are given by:
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Partition among the fission fragments (2)

NL
i,f = 2π

∫ R

0

∫ zmin

−Z

[

(

gi,f
1

)2
+
(

gi,f
2

)2
]

dρdz

NH
i,f = 2π

∫ R

0

∫ Z

zmin

[

(

gi,f
1

)2
+
(

gi,f
2

)2
]

dρdz

zmin corresponds to the neck position, identified as the
point between −Z and Z where an equipotential line has
a minimum.
The knowledge of E∗

sc(L,H) is important since it enters
into the Monte-Carlo Hauser-Feschbach simulation of
the neutron evaporation from the accelerated fragments.
Arbitrary hypotheses concerning the share of excitation energy
among the fragments have been employed so far.
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Numerical results for 236U

We apply the above formalism to the low energy fission
of 236U .

The numerical domain is: ρ ∈ [∆ρ, 27], z ∈ [−27, 27], while
∆ρ = ∆z = 0.125. (Number of grid points ≈ 93500). The
time step ∆t = 1/256 × 10−22 sec.

The numerical evaluation of the overlap integrals is
performed by the Simpson formula. With respect to ρ the
formula is adapted to the special form of the solutions
g1, g2. Before calculating aif , the eigenfunctions provided
by ARPACK are orthonormalized by the Gram-Schmidt
algorithm.
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Excitation energy as function of transition time T

for T=10−22 sec the values are 20% below the sudden limit
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Neutron multiplicity as function of transition time

a smooth occupation-probability function produces little change
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Scission neutron multiplicity

H
H

H
H

H
H

AL 70 90 118

∆T νsc/ νsc/ νsc/ νsc/ νsc/ νsc/

IP PC IP PC IP PC
0 0.792 0.791 0.833 0.781 0.790 0.747

1/2 0.751 0.751 0.790 0.739 0.745 0.704
1 0.668 0.670 0.704 0.656 0.655 0.618
3 0.290 0.303 0.321 0.298 0.277 0.262
5 0.057 0.080 0.072 0.075 0.051 0.054
6 0.018 0.043 0.025 0.035 0.014 0.019
9 0.020 0.044 0.019 0.032 0.020 0.021
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Excitation energy at scission

H
H

H
H

H
H

AL 70 90 118

∆T E∗
sc/ E∗

sc/ E∗
sc/ E∗

sc/ E∗
sc/ E∗

sc/

IP PC IP PC IP PC
0 11.75 10.57 13.30 12.20 13.48 12.50

1/2 11.28 10.10 12.77 11.68 12.93 11.95
1 10.30 9.121 11.70 10.60 11.79 10.81
3 5.486 4.310 6.461 5.360 6.265 5.318
5 2.145 0.955 2.646 1.557 2.154 1.260
6 1.554 0.351 1.899 0.819 1.336 0.460
9 1.531 0.313 1.831 0.765 1.317 0.438
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Emission points ( AL=90; all Ω; T=0,3,5×10−22sec)

with increasing T the emission points slightly migrate from the H to the
L fragment and from the inter-fragment to the inside-fragment regions
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Emission points ( AL=90; T=0; Ω=1/2,3/2,5/2)

neutrons with low Ω values (1/2 and 3/2) are released in the
inter-fragment region and have the bigest chance to survive
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Emission points ( AL=90; T=0; Ω=7/2,9/2,11/2)

neutrons with high Ω values (9/2 and 11/2) are release in the surface
region but with very low probability
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Emission points ( AL=70; all Ω; T=0,1,3,6×10−22sec)

for this asymmetry the migration from L to H is even more pronounced
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Emission points ( AL=70; T=0; Ω=1/2,3/2,5/2)

Ω=3/2,5/2 are released from the L fragment; Ω=1/2 from the neck
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Emission points ( AL=70; T=0; Ω=7/2,9/2,11/2)

high Ω’s are released from the H fragment (but with low probability)
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Emission points ( AL=70; T=3; Ω=1/2,3/2,5/2)

For T=3, part of Ω=1/2 states and all Ω=3/2 left the neck region
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236U, AL = 70, α = 0.985 → 1.001, Ω = 1/2, T=3
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236U, AL = 70, α = 0.985 → 1.001, Ω = 3/2, T=3
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236U, AL = 70, α = 0.985 → 1.001, Ω = 5/2, T=3
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Emission points ( AL=70; T=3; Ω=7/2,9/2,11/2)

For T=3, the distribution of high Ω states is the same as for T=0.
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236U, AL = 70, α = 0.985 → 1.001, Ω = 7/2, T=3
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236U, AL = 70, α = 0.985 → 1.001, Ω = 9/2, T=3
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236U, AL = 70, α = 0.985 → 1.001, Ω = 11/2, T=3
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Emission points ( AL=70,86,90,96,118; Ω=3/2; T=0)
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236U, AL = 70, α = 0.985 → 1.001, Ω = 3/2, T=0
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236U, AL = 86, α = 0.985 → 1.001, Ω = 3/2, T=0
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236U, AL = 90, α = 0.985 → 1.001, Ω = 3/2, T=0

2
4
6
8

10
12

-25 -20 -15 -10 -5 0 5 10 15 20 25

2
4
6
8

10
12

-25 -20 -15 -10 -5 0 5 10 15 20 25
 z (fm)

   
 ρ

  (
fm

)

236U, AL = 96, α = 0.985 → 1.001, Ω = 3/2, T=0
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236U, AL = 118, α = 0.985 → 1.001, Ω = 3/2, T=0

increasing mass asymmetry: monotonous shift towards the L fragment
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Emission points ( AL=70,86,90,96,118; Ω=7/2; T=0)
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236U, AL = 70, α = 0.985 → 1.001, Ω = 7/2, T=0
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236U, AL = 86, α = 0.985 → 1.001, Ω = 7/2, T=0
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236U, AL = 90, α = 0.985 → 1.001, Ω = 7/2, T=0
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236U, AL = 96, α = 0.985 → 1.001, Ω = 7/2, T=0
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236U, AL = 118, α = 0.985 → 1.001, Ω = 7/2, T=0

oscillation between L and H fragments
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Emission points ( AL=70,86,90,96,118; Ω=9/2; T=0)
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236U, AL = 70, α = 0.985 → 1.001, Ω = 9/2, T=0
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236U, AL = 86, α = 0.985 → 1.001, Ω = 9/2, T=0
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236U, AL = 90, α = 0.985 → 1.001, Ω = 9/2, T=0
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236U, AL = 96, α = 0.985 → 1.001, Ω = 9/2, T=0
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236U, AL = 118, α = 0.985 → 1.001, Ω = 9/2, T=0
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νsc, AL = 70, AL/AH = 0.422, IP (0.985 → 1.001)

T νsc νL νH νL/νH

0 0.7917 0.3379 0.4538 0.7447
1/2 0.7512 0.3204 0.4308 0.7438
1 0.6682 0.2850 0.3832 0.7439
3 0.2898 0.1222 0.1676 0.7292
5 0.0568 0.0230 0.0338 0.6802
6 0.0184 0.0077 0.0107 0.7104

νL/νH > AL/AH hence the L fragment is more productive
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νsc, AL = 70, AL/AH = 0.422, PC(0.985 → 1.001)

T νsc νL νH νL/νH

0 0.7912 0.3694 0.4218 0.8759
1/2 0.7514 0.3514 0.4000 0.8785
1 0.6701 0.3147 0.3554 0.8854
3 0.3030 0.1426 0.1604 0.8893
5 0.0798 0.0371 0.0427 0.8696
6 0.0434 0.0211 0.0223 0.9468
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νsc, AL = 86, AL/AH = 0.573, IP (0.985 → 1.001)

T νsc νL νH νL/νH

0 0.7147 0.3169 0.3978 0.7966
1/2 0.6736 0.2986 0.3750 0.7962
1 0.5928 0.2633 0.3295 0.7990
3 0.2523 0.1144 0.1379 0.8299
5 0.0493 0.0230 0.0263 0.8750
6 0.0155 0.0075 0.0081 0.9271

νL/νH increases slightly with T
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νsc, AL = 86, AL/AH = 0.573, PC(0.985 → 1.001)

T νsc νL νH νL/νH

0 0.7088 0.3248 0.3840 0.8459
1/2 0.6683 0.3065 0.3618 0.8472
1 0.5885 0.2710 0.3175 0.8536
3 0.2540 0.1203 0.1337 0.8991
5 0.0541 0.0264 0.0277 0.9555
6 0.0198 0.0099 0.0099 0.9988
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E∗
sc, AL = 86, AL/AH = 0.573, IP (0.985 → 1.001)

T E∗
sc E∗

L E∗
H E∗

L/E∗
H

0 12.11 6.444 5.670 1.137
1/2 11.60 6.154 5.444 1.130
1 10.52 5.545 4.978 1.114
3 5.300 2.476 2.824 0.8766
5 1.557 0.296 1.261 0.2348
6 0.845 -0.073 0.919

E∗
L/E∗

H decreases with T: it starts > 1 and ends < 1
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νsc, AL = 90, AL/AH = 0.616, IP (0.985 → 1.001)

T νsc νL νH νL/νH

0 0.8333 0.4264 0.4070 1.048
1/2 0.7899 0.4051 0.3848 1.053
1 0.7039 0.3632 0.3406 1.066
3 0.3213 0.1734 0.1479 1.172
5 0.0721 0.0423 0.0298 1.419
6 0.0248 0.0149 0.0099 1.513

νL/νH increases with T
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νsc, AL = 90, AL/AH = 0.616, PC(0.985 → 1.001)

T νsc νL νH νL/νH

0 0.7807 0.3658 0.4149 0.8815
1/2 0.7386 0.3459 0.3927 0.8808
1 0.6557 0.3073 0.3485 0.8819
3 0.2981 0.1427 0.1555 0.9180
5 0.0750 0.0368 0.0382 0.9653
6 0.0348 0.0161 0.0187 0.8574

the initial occupation probabilities influences both the absolute value

of νL/νH and the magnitude of its increase
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E∗
sc, AL = 90, AL/AH = 0.616, PC(0.985 → 1.001)

T E∗
sc E∗

L E∗
H E∗

L/E∗
H

0 12.20 7.449 4.756 1.566
1/2 11.68 7.162 4.521 1.584
1 10.60 6.569 4.033 1.629
3 5.360 3.648 1.711 2.132
5 1.557 1.584 -0.0262
6 0.819 1.212 -0.392

E∗
L/E∗

H > 1 and increases with T; hence L fragment is always more

excited
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νsc, AL = 96, AL/AH = 0.686, IP (0.985 → 1.001)

T νsc νL νH νL/νH

0 0.7269 0.3735 0.3534 1.057
1/2 0.6846 0.3525 0.3322 1.061
1 0.6012 0.3109 0.2902 1.071
3 0.2545 0.1328 0.1217 1.091
5 0.0500 0.0249 0.0251 0.990
6 0.0164 0.0079 0.0085 0.936

again νL/νH > AL/AH and slightly increases with T
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νsc, AL = 96, AL/AH = 0.686, PC(0.985 → 1.001)

T νsc νL νH νL/νH

0 0.7077 0.3691 0.3386 1.090
1/2 0.6660 0.3482 0.3178 1.096
1 0.5843 0.3072 0.2771 1.109
3 0.2473 0.1317 0.1156 1.139
5 0.0510 0.0259 0.0250 1.037
6 0.0189 0.0093 0.0096 0.972
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E∗
sc, AL = 96, AL/AH = 0.686, IP (0.985 → 1.001)

T E∗
sc E∗

L E∗
H E∗

L/E∗
H

0 13.46 6.276 7.182 0.8738
1/2 12.92 5.996 6.926 0.8658
1 11.80 5.415 6.389 0.8477
3 6.356 2.531 3.825 0.6618
5 2.329 0.4094 1.920 0.2133
6 1.525 0.0079 1.517 0.0052

E∗
L/E∗

H decreases with T and is always < 1 hence H fragment is

always more excited
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E∗
sc, AL = 96, AL/AH = 0.686, PC(0.985 → 1.001)

T E∗
sc E∗

L E∗
H E∗

L/E∗
H

0 13.16 6.718 6.441 1.043
1/2 12.63 6.439 6.186 1.041
1 11.52 5.862 5.654 1.037
3 6.125 3.006 3.119 0.9637
5 2.165 0.921 1.244 0.7403
6 1.379 0.528 0.851 0.6209
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